Are pvcrt-o and pvmdr1 Gene Mutations Associated with Plasmodium vivax Chloroquine-Resistant Parasites?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study and Samples Collected
2.2. Malaria Diagnosis
2.3. DNA Extraction, Amplification and Sequencing
3. Results
3.1. Prevalence of Polymorphisms in the pvcrt-o Gene
3.2. Prevalence of Polymorphisms in the pvmdr1 Gene
3.3. Comparative Alignment between Here Presented pvcrt-o and pvmdr1 Sequences of CQ-Sensitive Parasites with Those Reported by Melo et al. (2014) [20]
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2022; World Health Organization: Geneva, Switzerland, 2022; pp. 1–293. ISBN 9789240064898. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (accessed on 23 May 2023).
- Rodríguez, J.A.I.; Rodríguez, S.N.I.; Olivera, M.J. Plasmodium vivax Malaria across South America: Management Guidelines and Their Quality Assessment. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200179. [Google Scholar] [CrossRef] [PubMed]
- Daron, J.; Boissière, A.; Boundenga, L.; Ngoubangoye, B.; Houze, S.; Arnathau, C.; Sidobre, C.; Trape, J.-F.; Durand, P.; Renaud, F.; et al. Population Genomic Evidence of Plasmodium vivax Southeast Asian Origin. Sci. Adv. 2021, 7, 3713–3741. [Google Scholar] [CrossRef] [PubMed]
- Tableau Public. Tableau Public Dados Para Cidadão. Available online: https://public.tableau.com/app/profile/mal.ria.brasil/viz/Dadosparacidado_201925_03_2020/Incio (accessed on 14 December 2023).
- Gonçalves, L.A.; Cravo, P.; Ferreira, M.U. Emerging Plasmodium vivax Resistance to Chloroquine in South America: An Overview. Mem. Inst. Oswaldo Cruz 2014, 109, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Rieckmann, K.H.; Davis, D.R.; Hutton, D.C. Plasmodium vivax Resistance to Chloroquine? Lancet 1989, 334, 1183–1184. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.V.; Lanier, J.E. Observations on Two Plasmodium falciparum Infections with an Abnormal Response to Chloroquine. Am. J. Trop. Med. Hyg. 1961, 10, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Gama, B.E.; Lacerda, M.V.G.; Daniel-Ribeiro, C.T.; Ferreira-da-Cruz, M.d.F. Chemoresistance of Plasmodium falciparum and Plasmodium vivax Parasites in Brazil: Consequences on Disease Morbidity and Control. Mem. Inst. Oswaldo Cruz 2011, 106, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Alecrim, M.D.G.C.; Alecrim, W.; Macêdo, V. Plasmodium vivax Resistance to Chloroquine (R2) and Mefloquine (R3) in Brazilian Amazon Region. Rev. Soc. Bras. Med. Trop. 1999, 32, 67–68. [Google Scholar] [CrossRef]
- De Santana Filho, F.S.; Arcanjo, A.R.D.L.; Chehuan, Y.M.; Costa, M.R.; Martinez-Espinosa, F.E.; Vieira, J.L.; Barbosa, M.D.G.V.; Alecrim, W.D.; Alecrim, M.D.G.C. Chloroquine-Resistant Plasmodium vivax, Brazilian Amazon. Emerg. Infect. Dis. 2007, 13, 1125–1126. [Google Scholar] [CrossRef]
- Marques, M.M.; Costa, M.R.F.; Santana Filho, F.S.; Vieira, J.L.F.; Nascimento, M.T.S.; Brasil, L.W.; Nogueira, F.; Silveira, H.; Reyes-Lecca, R.C.; Monteiro, W.M.; et al. Plasmodium vivax Chloroquine Resistance and Anemia in the Western Brazilian Amazon. Antimicrob. Agents Chemother. 2014, 58, 342–347. [Google Scholar] [CrossRef]
- Cotter, C.; Sturrock, H.J.W.; Hsiang, M.S.; Liu, J.; Phillips, A.A.; Hwang, J.; Gueye, C.S.; Fullman, N.; Gosling, R.D.; Feachem, R.G.A. The Changing Epidemiology of Malaria Elimination: New Strategies for New Challenges. Lancet 2013, 382, 900–911. [Google Scholar] [CrossRef]
- Ferreira, M.U.; Nobrega de Sousa, T.; Rangel, G.W.; Johansen, I.C.; Corder, R.M.; Ladeia-Andrade, S.; Gil, J.P. Monitoring Plasmodium vivax Resistance to Antimalarials: Persisting Challenges and Future Directions. Int. J. Parasitol. Drugs Drug Resist. 2021, 15, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Cheong, F.-W.; Dzul, S.; Fong, M.-Y.; Lau, Y.-L.; Ponnampalavanar, S. Plasmodium vivax Drug Resistance Markers: Genetic Polymorphisms and Mutation Patterns in Isolates from Malaysia. Acta Trop. 2020, 206, 105454. [Google Scholar] [CrossRef] [PubMed]
- Nomura, T.; Carlton, J.M.R.; Baird, J.K.; Del Portillo, H.A.; Fryauff, D.J.; Rathore, D.; Fidock, D.A.; Su, X.Z.; Collins, W.E.; McCutchan, T.F.; et al. Evidence for Different Mechanisms of Chloroquine Resistance in 2 Plasmodium Species That Cause Human Malaria. J. Infect. Dis. 2001, 183, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Buyon, L.E.; Elsworth, B.; Duraisingh, M.T. The Molecular Basis of Antimalarial Drug Resistance in Plasmodium vivax. Int. J. Parasitol. Drugs Drug Resist. 2021, 16, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Lim, C.S.; Nam, D.-H.; Kim, K.; Lin, K.; Kim, T.-S.; Lee, H.-W.; Chen, J.-H.; Wang, Y.; Sattabongkot, J.; et al. Genetic Polymorphism in Pvmdr1 and Pvcrt-o Genes in Relation to in Vitro Drug Susceptibility of Plasmodium vivax Isolates from Malaria-Endemic Countries. Acta Trop. 2011, 117, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Chehuan, Y.F.; Costa, M.R.; Costa, J.S.; Alecrim, M.G.; Nogueira, F.; Silveira, H.; Brasil, L.W.; Melo, G.C.; Monteiro, W.M.; Lacerda, M.V. In Vitro Chloroquine Resistance for Plasmodium vivax Isolates from the Western Brazilian Amazon. Malar. J. 2013, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, L.; Soe, M.T.; Aung, P.L.; Wei, H.; Liu, Z.; Ma, T.; Huang, Y.; Menezes, L.J.; Wang, Q.; et al. Molecular Surveillance for Drug Resistance Markers in Plasmodium vivax Isolates from Symptomatic and Asymptomatic Infections at the China–Myanmar Border. Malar. J. 2020, 19, 281. [Google Scholar] [CrossRef] [PubMed]
- Melo, G.C.; Monteiro, W.M.; Siqueira, A.M.; Silva, S.R.; Magalhães, B.M.L.; Alencar, A.C.C.; Kuehn, A.; Del Portillo, H.A.; Fernandez-Becerra, C.; Lacerda, M.V.G. Expression Levels of Pvcrt-o and Pvmdr-1 Are Associated with Chloroquine Resistance and Severe Plasmodium vivax Malaria in Patients of the Brazilian Amazon. PLoS ONE 2014, 9, e105922. [Google Scholar] [CrossRef]
- Suwanarusk, R.; Chavchich, M.; Russell, B.; Jaidee, A.; Chalfein, F.; Barends, M.; Prasetyorini, B.; Kenangalem, E.; Piera, K.A.; Lek-Uthai, U.; et al. Amplification of Pvmdr1 Associated with Multidrug-Resistant Plasmodium vivax. J. Infect. Dis. 2008, 198, 1558–1564. [Google Scholar] [CrossRef]
- Orjuela-Sánchez, P.; Filho, F.S.D.S.; Machado-Lima, A.; Chehuan, Y.F.; Costa, M.R.F.; Alecrim, M.D.G.C.; Del Portillo, H.A. Analysis of Single-Nucleotide Polymorphisms in the Crt-o and Mdr1 Genes of Plasmodium vivax among Chloroquine-Resistant Isolates from the Brazilian Amazon Region. Antimicrob. Agents Chemother. 2009, 53, 3561–3564. [Google Scholar] [CrossRef]
- Lu, F.; Wang, B.; Cao, J.; Sattabongkot, J.; Zhou, H.; Zhu, G.; Kim, K.; Gao, Q.; Han, E.-T. Prevalence of Drug Resistance-Associated Gene Mutations in Plasmodium vivax in Central China. Korean J. Parasitol. 2012, 50, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Golassa, L.; Erko, B.; Baliraine, F.N.; Aseffa, A.; Swedberg, G. Polymorphisms in Chloroquine Resistance-Associated Genes in Plasmodium vivax in Ethiopia. Malar. J. 2015, 14, 64–164. [Google Scholar] [CrossRef] [PubMed]
- Jovel, I.T.; Mejía, R.E.; Banegas, E.; Piedade, R.; Alger, J.; Fontecha, G.; Ferreira, P.E.; Veiga, M.I.; Enamorado, I.G.; Bjorkman, A.; et al. Drug Resistance Associated Genetic Polymorphisms in Plasmodium falciparum and Plasmodium vivax Collected in Honduras, Central America. Malar. J. 2011, 10, 376. [Google Scholar] [CrossRef] [PubMed]
- Gama, B.E.; de Oliveira, N.K.A.; de Souza, J.M.; Daniel-Ribeiro, C.T.; Ferreira-da-Cruz, M.d.F. Characterisation of Pvmdr1 and Pvdhfr Genes Associated with Chemoresistance in Brazilian Plasmodium vivax Isolates. Mem. Inst. Oswaldo Cruz 2009, 104, 1009–1011. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Rodríguez, R.D.C.M.; Bastos, M.D.S.; Menezes, M.J.; Orjuela-Sánchez, P.; Ferreira, M.U. Single-Nucleotide Polymorphism and Copy Number Variation of the Multidrug Resistance-1 Locus of Plasmodium vivax: Local and Global Patterns. Am. J. Trop. Med. Hyg. 2012, 87, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Gama, B.E.; Silva-Pires, F.d.E.S.; Lopes, M.N.K.R.; Cardoso, M.A.B.; Britto, C.; Torres, K.L.; de Mendonça Lima, L.; de Souza, J.M.; Daniel-Ribeiro, C.T.; de Fátima Ferreira-da-Cruz, M. Real-Time PCR versus Conventional PCR for Malaria Parasite Detection in Low-Grade Parasitemia. Exp. Parasitol. 2007, 116, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Almeida-De-Oliveira, N.K.; Moreira, O.C.; De Lavigne, A.R.; Mendonça-Lima, L.; Werneck, G.L.; Daniel-Ribeiro, C.T.; Ferreira-Da-Cruz, M.D.F. Analytical Validation of Real-Time Quantitative PCR Assays for Optimum Diagnosis of Vivax Malaria. Mem. Inst. Oswaldo Cruz 2019, 114, e180350. [Google Scholar] [CrossRef] [PubMed]
- Zalis, M.G.; Ferreira-da-Cruz, M.F.; Balthazar-Guedes, H.C.; Banic, D.M.; Alecrim, W.; Souza, J.M.; Druilhe, P.; Daniel-Ribeiro, C.T. Malaria Diagnosis: Standardization of a Polymerase Chain Reaction for the Detection of Plasmodium falciparum Parasites in Individuals with Low-Grade Parasitemia. Parasitol. Res. 1996, 82, 612–616. [Google Scholar] [CrossRef]
- Snounou, G.; Viriyakosol, S.; Zhu, X.P.; Jarra, W.; Pinheiro, L.; do Rosario, V.E.; Thaithong, S.; Brown, K.N. High Sensitivity of Detection of Human Malaria Parasites by the Use of Nested Polymerase Chain Reaction. Mol. Biochem. Parasitol. 1993, 61, 315–320. [Google Scholar] [CrossRef]
- Brega, S.; Meslin, B.; De Monbrison, F.; Severini, C.; Gradoni, L.; Udomsangpetch, R.; Sutanto, I.; Peyron, F.; Picot, S. Identification of the Plasmodium vivax Mdr-like Gene (Pvmdr1) and Analysis of Single-Nucleotide Polymorphisms among Isolates from Different Areas of Endemicity. J. Infect. Dis. 2005, 191, 272–277. [Google Scholar] [CrossRef]
- Phyo, A.P.; Dahal, P.; Mayxay, M.; Ashley, E.A. Clinical Impact of Vivax Malaria: A Collection Review. PLoS Med. 2022, 19, e1003890. [Google Scholar] [CrossRef] [PubMed]
- Spotin, A.; Mahami-Oskouei, M.; Ahmadpour, E.; Parsaei, M.; Rostami, A.; Emami, S.; Gholipour, S.; Farmani, M. Global Assessment of Genetic Paradigms of Pvmdr1 Mutations in Chloroquine-Resistant Plasmodium vivax Isolates. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Cubides, J.R.; Camargo-Ayala, P.A.; Niño, C.H.; Garzón-Ospina, D.; Ortega-Ortegón, A.; Ospina-Cantillo, E.; Orduz-Durán, M.F.; Patarroyo, M.E.; Patarroyo, M.A. Simultaneous Detection of Plasmodium vivax Dhfr, Dhps, Mdr1 and Crt-o Resistance-Associated Mutations in the Colombian Amazonian Region. Malar. J. 2018, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Habtamu, K.; Petros, B.; Yan, G. Plasmodium vivax: The Potential Obstacles It Presents to Malaria Elimination and Eradication. Trop. Dis. Travel Med. Vaccines 2022, 8, 27. [Google Scholar] [CrossRef]
- De Souza-Neiras, W.C.; De Melo, L.M.S.; Machado, R.L.D. The Genetic Diversity of Plasmodium vivax: A Review. Mem. Inst. Oswaldo Cruz 2007, 102, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Musset, L.; Heugas, C.; Naldjinan, R.; Blanchet, D.; Houze, P.; Abboud, P.; Volney, B.; Walter, G.; Lazrek, Y.; Epelboin, L.; et al. Emergence of Plasmodium vivax Resistance to Chloroquine in French Guiana. Antimicrob. Agents Chemother. 2019, 63, e02116-18. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, J.; Li, Q.; Hu, Y.; Ruan, Y.; Tao, Z.; Xia, H.; Qiao, J.; Meng, L.; Zeng, W.; et al. Ex Vivo Susceptibilities of Plasmodium vivax Isolates from the China-Myanmar Border to Antimalarial Drugs and Association with Polymorphisms in Pvmdr1 and Pvcrt-o Genes. PLoS Negl. Trop. Dis. 2020, 14, e0008255. [Google Scholar] [CrossRef]
- Joy, S.; Mukhi, B.; Ghosh, S.K.; Achur, R.N.; Gowda, D.C.; Surolia, N. Drug Resistance Genes: Pvcrt-o and Pvmdr-1 Polymorphism in Patients from Malaria Endemic South Western Coastal Region of India. Malar. J. 2018, 17, 40. [Google Scholar] [CrossRef]
- Noisang, C.; Prosser, C.; Meyer, W.; Chemoh, W.; Ellis, J.; Sawangjaroen, N.; Lee, R. Molecular Detection of Drug Resistant Malaria in Southern Thailand. Malar. J. 2019, 18, 275. [Google Scholar] [CrossRef]
- Bansal, D.; Acharya, A.; Bharti, P.K.; Abdelraheem, M.H.; Elmalik, A.; Abosalah, S.; Khan, F.Y.; ElKhalifa, M.; Kaur, H.; Mohapatra, P.K.; et al. Distribution of Mutations Associated with Antifolate and Chloroquine Resistance among Imported Plasmodium vivax in the State of Qatar. Am. J. Trop. Med. Hyg. 2017, 97, 1797–1803. [Google Scholar] [CrossRef]
- Roesch, C.; Mairet-Khedim, M.; Kim, S.; Lek, D.; Popovici, J.; Witkowski, B. Impact of the first-line treatment shift from dihydroartemisinin/piperaquine to artesunate/mefloquine on Plasmodium vivax drug susceptibility in Cambodia. J. Antimicrob. Chemother. 2020, 75, 1766–1771. [Google Scholar] [CrossRef] [PubMed]
- Rumaseb, A.; Moraes Barros, R.R.; Sá, J.M.; Juliano, J.J.; William, T.; Braima, K.A.; Barber, B.E.; Anstey, N.M.; Price, R.N.; Grigg, M.J.; et al. No Association between the Plasmodium vivax crt-o MS334 or In9pvcrt Polymorphisms and Chloroquine Failure in a Pre-Elimination Clinical Cohort from Malaysia with a Large Clonal Expansion. Antimicrob. Agents Chemother. 2023, 67, e0161022. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Almeida, A.C.G.; Da Silva, G.A.V.; Ramasawmy, R.; Lopes, S.C.P.; Siqueira, A.M.; Costa, G.L.; Sousa, T.N.; Vieira, J.L.F.; Lacerda, M.V.G.; et al. Chloroquine Resistance Is Associated to Multi-Copy Pvcrt-o Gene in Plasmodium vivax Malaria in the Brazilian Amazon. Malar. J. 2018, 17, 267. [Google Scholar] [CrossRef] [PubMed]
- Noisang, C.; Meyer, W.; Sawangjaroen, N.; Ellis, J.; Lee, R. Molecular Detection of Antimalarial Drug Resistance in Plasmodium vivax from Returned Travellers to NSW, Australia during 2008–2018. Pathogens 2020, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Chaorattanakawee, S.; Lon, C.; Chann, S.; Thay, K.H.; Kong, N.; You, Y.; Sundrakes, S.; Thamnurak, C.; Chattrakarn, S.; Praditpol, C.; et al. Measuring Ex Vivo Drug Susceptibility in Plasmodium vivax Isolates from Cambodia. Malar. J. 2017, 16, 392. [Google Scholar] [CrossRef] [PubMed]
- Benavente, E.D.; Manko, E.; Phelan, J.; Campos, M.; Nolder, D.; Fernandez, D.; Velez-Tobon, G.; Castaño, A.T.; Dombrowski, J.G.; Marinho, C.R.F.; et al. Distinctive Genetic Structure and Selection Patterns in Plasmodium vivax from South Asia and East Africa. Nat. Commun. 2021, 12, 3160. [Google Scholar] [CrossRef] [PubMed]
- Price, R.N.; Marfurt, J.; Chalfein, F.; Kenangalem, E.; Piera, K.A.; Tjitra, E.; Anstey, N.M.; Russell, B. In Vitro Activity of Pyronaridine against Multidrug-Resistant Plasmodium falciparum and Plasmodium vivax. Antimicrob. Agents Chemother. 2010, 54, 5146–5150. [Google Scholar] [CrossRef]
- Gomes, L.R.; Almeida-De-Oliveira, N.K.; De Lavigne, A.R.; De Lima, S.R.F.; De Pina-Costa, A.; Brasil, P.; Daniel-Ribeiro, C.T.; Ménard, D.; Ferreira-Da-Cruz, M.D.F. Plasmodium vivax mdr1 Genotypes in Isolates from Successfully Cured Patients Living in Endemic and Non-Endemic Brazilian Areas. Malar. J. 2016, 15, 96. [Google Scholar] [CrossRef]
- Schousboe, M.L.; Ranjitkar, S.; Rajakaruna, R.S.; Amerasinghe, P.H.; Morales, F.; Pearce, R.; Ord, R.; Leslie, T.; Rowland, M.; Gadalla, N.B.; et al. Multiple Origins of Mutations in the Mdr1 Gene—A Putative Marker of Chloroquine Resistance in P. Vivax. PLoS Negl. Trop. Dis. 2015, 9, e0004196. [Google Scholar] [CrossRef]
- Kaur, H.; Sehgal, R.; Kumar, A.; Bharti, P.K.; Bansal, D.; Mohapatra, P.K.; Mahanta, J.; Sultan, A.A. Distribution Pattern of Amino Acid Mutations in Chloroquine and Antifolate Drug Resistance Associated Genes in Complicated and Uncomplicated Plasmodium vivax Isolates from Chandigarh, North India. BMC Infect. Dis. 2020, 20, 671. [Google Scholar] [CrossRef]
- Tang, T.; Xu, Y.; Cao, L.; Tian, P.; Shao, J.; Deng, Y.; Zhou, H.; Xiao, B. Ten-Year Molecular Surveillance of Drug-Resistant Plasmodium Spp. Isolated From the China–Myanmar Border. Front. Cell Infect. Microbiol. 2021, 11, 733788. [Google Scholar] [CrossRef] [PubMed]
- Ould Ahmedou Salem, M.S.; Mint Lekweiry, K.; Bouchiba, H.; Pascual, A.; Pradines, B.; Ould Mohamed Salem Boukhary, A.; Briolant, S.; Basco, L.K.; Bogreau, H. Characterization of Plasmodium Falciparum Genes Associated with Drug Resistance in Hodh Elgharbi, a Malaria Hotspot near Malian–Mauritanian Border. Malar. J. 2017, 16, 140. [Google Scholar] [CrossRef] [PubMed]
- Lê, H.G.; Naw, H.; Kang, J.-M.; Võ, T.C.; Myint, M.K.; Htun, Z.T.; Lee, J.; Yoo, W.G.; Kim, T.-S.; Shin, H.-J.; et al. Molecular Profiles of Multiple Antimalarial Drug Resistance Markers in Plasmodium Falciparum and Plasmodium vivax in the Mandalay Region, Myanmar. Microorganisms 2022, 10, 2021. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Dong, Y.; Deng, Y.; Xu, Y.; Liu, Y.; Wu, J.; Chen, M.; Zhang, C.; Zheng, W. Characteristics of Molecular Markers Associated with Chloroquine Resistance in Plasmodium vivax Strains from Vivax Malaria Cases in Yunnan Province, China. Malar. J. 2023, 22, 181. [Google Scholar] [CrossRef]
State of Infection | Sample Collection | |||
---|---|---|---|---|
CPD-Mal 1 | Amazonas | Acre | Roraima | |
(FMT-HVD 2 and GJ 3) | (CZS 4 and ML 5) | (BV 6) | ||
Acre | 15 | – | 52 | – |
Amazonas | 18 | 12 | – | – |
Amapá | 3 | – | – | – |
Pará | 2 | – | – | – |
Roraima | 6 | – | – | 20 |
Rondônia | 2 | – | – | – |
Gene | SNP | Locality | NT 1 (%) | |||||
---|---|---|---|---|---|---|---|---|
Acre n = 50 | Amazonas n = 30 | Amapá n = 2 | Pará n = 1 | Roraima n = 19 | Rondônia n = 2 | |||
pvcrt-o | Wild-type | 43 (86%) | 25 (83%) | 2 (100%) | 0 | 17 (89%) | 2 (100%) | 89 (86%) |
K10 insertion | 7 (14%) | 5 (16%) | 0 | 1 (100%) | 2 (11%) | 0 | 15 (14%) |
Gene | SNP 1 | Locality | NT 2 (%) | |||||
---|---|---|---|---|---|---|---|---|
Acre n = 62 | Amazonas n = 25 | Amapá n = 2 | Pará n = 1 | Roraima n = 21 | Rondônia n = 2 | |||
pvmdr1 | Wild-type | 4 (5%) | 0 | 0 | 0 | 2 (10%) | 0 | 6 (5%) |
958M | 58 (93%) | 25 (100%) | 2 (100%) | 1 (100%) | 19 (90%) | 2 (100%) | 107 (95%) | |
958M + 1076L | – | 3 (12%) | 0 | 0 | 0 | 0 | 3 (3%) |
Gene | Haplotype 1 | Mutated Codon | NT 2 (%) |
---|---|---|---|
pvmdr1 | MYF | 1 | 104 (92%) |
MYL | 2 | 3 (3%) | |
TYF | 0 | 6 (5%) |
Patient | Date of Diagnosis | Date of Cure 1 |
---|---|---|
A | 31 December 2021 | 5 January 2022 |
B | 4 March 2022 | 11 March 2022 |
C | 14 August 2021 | 23 August 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu-Fernandes, R.d.; Almeida-de-Oliveira, N.K.; de Lavigne Mello, A.R.; Queiroz, L.T.d.; Barros, J.d.A.; Baptista, B.d.O.; Oliveira-Ferreira, J.; Souza, R.M.d.; Pratt-Riccio, L.R.; Brasil, P.; et al. Are pvcrt-o and pvmdr1 Gene Mutations Associated with Plasmodium vivax Chloroquine-Resistant Parasites? Biomedicines 2024, 12, 141. https://doi.org/10.3390/biomedicines12010141
Abreu-Fernandes Rd, Almeida-de-Oliveira NK, de Lavigne Mello AR, Queiroz LTd, Barros JdA, Baptista BdO, Oliveira-Ferreira J, Souza RMd, Pratt-Riccio LR, Brasil P, et al. Are pvcrt-o and pvmdr1 Gene Mutations Associated with Plasmodium vivax Chloroquine-Resistant Parasites? Biomedicines. 2024; 12(1):141. https://doi.org/10.3390/biomedicines12010141
Chicago/Turabian StyleAbreu-Fernandes, Rebecca de, Natália Ketrin Almeida-de-Oliveira, Aline Rosa de Lavigne Mello, Lucas Tavares de Queiroz, Jacqueline de Aguiar Barros, Bárbara de Oliveira Baptista, Joseli Oliveira-Ferreira, Rodrigo Medeiros de Souza, Lilian Rose Pratt-Riccio, Patrícia Brasil, and et al. 2024. "Are pvcrt-o and pvmdr1 Gene Mutations Associated with Plasmodium vivax Chloroquine-Resistant Parasites?" Biomedicines 12, no. 1: 141. https://doi.org/10.3390/biomedicines12010141
APA StyleAbreu-Fernandes, R. d., Almeida-de-Oliveira, N. K., de Lavigne Mello, A. R., Queiroz, L. T. d., Barros, J. d. A., Baptista, B. d. O., Oliveira-Ferreira, J., Souza, R. M. d., Pratt-Riccio, L. R., Brasil, P., Daniel-Ribeiro, C. T., & Ferreira-da-Cruz, M. d. F. (2024). Are pvcrt-o and pvmdr1 Gene Mutations Associated with Plasmodium vivax Chloroquine-Resistant Parasites? Biomedicines, 12(1), 141. https://doi.org/10.3390/biomedicines12010141