Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer’s Disease
Abstract
:1. Introduction
2. Methods
2.1. Analysis of the Existing Databases for ACE Mutations (PolyPhen-2 and Other Engines)
2.2. Localization of AD Associated ACE Mutations on the N- and C-Domains of ACE
2.3. Chemicals
2.4. Antibodies
2.5. Human Tissues
2.6. ACE Activity Assay
2.7. Immunological Characterization of the Brain ACE
2.8. Allele Frequencies and Age of ACE Variants
2.9. Statistical Analysis
3. Results and Discussion
3.1. Aβ42 Hydrolysis by ACE Occurs In Vivo in Humans and Plays a Role in AD Development
3.2. Analysis of ACE Mutations Decreasing Blood ACE Levels
3.3. Global Distribution and Age of ACE Variants
3.4. Localization of AD-Associated ACE Mutations and Possible Mechanism of Its Action
3.5. Conformational Fingerprinting of ACE in Human Brain
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Sims, R.; Hill, M.; Williams, J. The multiplex model of the genetics of Alzheimer’s disease. Nat. Neurosci. 2020, 23, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ando, F.; Fujita, Y.; Liu, J.; Maeda, T.; Shen, X.; Kikuchi, K.; Matsumoto, A.; Yokomori, M.; Tanabe-Fujimura, C.; et al. A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ace deletion exacerbate Alzheimer’s disease pathology in mice. J. Biol. Chem. 2019, 294, 9760–9770. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.; Maeda, T.; Watanabe, A.; Liu, J.; Liu, S.; Oba, R.; Satoh, Y.; Komano, H.; Michikawa, M. Aβ42-to-Aβ40- and angiotensin-converting activities in different domains of angiotensin-converting enzyme. J. Biol. Chem. 2009, 284, 31914–31920. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, P.; Russ, C.; McIlory, S.; Williams, H.; Holmans, P.; Holmes, C.; Liolitsa, D.; Vahidassr, D.; Powell, J.; McGleenon, B.; et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer’s disease. Nat. Genet. 1999, 21, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Schächter, F.; Faure-Delanef, L.; Guénot, F.; Rouger, H.; Froguel, P.; Lesueur-Ginot, L.; Cohen, D. Genetic associations with human longevity at the APOE and ACE Loci. Nat. Genet. 1994, 6, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, P.G. The coming of age of the angiotensin hypothesis in Alzheimer’s disease: Progress toward disease prevention and treatment? J. Alzheim. Dis. 2018, 62, 1443–1466. [Google Scholar] [CrossRef]
- Jochemsen, H.M.; van der Flier, W.M.; Ashby, E.L.; Teunissen, C.E.; Jones, R.E.; Wattjes, M.P.; Scheltens, P.; Geerlings, M.I.; Kehoe, P.G.; Muller, M. Angiotensin-converting enzyme in cerebrospinal fluid and risk of brain atrophy. J. Alzheim. Dis. 2015, 44, 153–162. [Google Scholar] [CrossRef]
- Sturrock, E.D.; Anthony, C.S.; Danilov, S.M. Peptidyl-dipeptidase a/angiotensin I-converting enzyme. In Handbook of Proteolytic Enzymes; Elsevier: Amsterdam, The Netherlands, 2012; pp. 480–494. [Google Scholar]
- Bernstein, K.E.; Ong, F.S.; Blackwell, W.-L.B.; Shah, K.H.; Giani, J.F.; Gonzalez-Villalobos, R.A.; Shen, X.Z. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 2012, 65, 1–46. [Google Scholar] [CrossRef]
- Samokhodskaya, L.M.; Jain, M.S.; Kurilova, O.V.; Bobkov, A.P.; Kamalov, A.A.; Dudek, S.M.; Danilov, S.M. Phenotyping angiotensin-converting enzyme in blood: A necessary approach for precision medicine. J. Appl. Lab. Med. 2021, 6, 1179–1191. [Google Scholar] [CrossRef]
- Danilov, S.M.; Kalinin, S.; Chen, Z.; Vinokour, E.I.; Nesterovitch, A.B.; Schwartz, D.E.; Gribouval, O.; Gubler, M.-C.; Minshall, R.D. Angiotensin I-converting enzyme Gln1069Arg mutation impairs trafficking to the cell surface resulting in selective denaturation of the C-domain. PLoS ONE 2010, 5, e10438. [Google Scholar] [CrossRef] [PubMed]
- Sherry, S.T.; Ward, M.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Mou, C.; Dong, Y.; Tu, Y. DbNSFP V4: A comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site snvs. Genome Med. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed]
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc. 2015, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.; Douville, C.; Stenson, P.D.; Cooper, D.N.; Karchin, R. Identifying mendelian disease genes with the variant effect scoring tool. BMC Genom. 2013, 14 (Suppl. 3), S3. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. Revel: An ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; et al. Clinvar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2017, 46, D1062–D1068. [Google Scholar] [CrossRef]
- Anthony, C.S.; Masuyer, G.; Sturrock, E.D.; Acharya, K.R. Angiotensin converting enzyme N domain glycosylation mutant (NDOM389) in complex with RXP407. J. Biol. Chem. 2010, 285, 35685–35693. [Google Scholar] [CrossRef]
- Akif, M.; Georgiadis, D.; Mahajan, A.; Dive, V.; Sturrock, E.D.; Isaac, R.E.; Acharya, K.R. Novel mechanism of inhibition of human angiotensin-I-converting enzyme (ACE) by a highly specific phosphinic tripeptide. Biochem. J. 2011, 436, 53–59. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. FF14SB: Improving the accuracy of protein side chain and backbone parameters from ff99sb. J. Chem. Theory Computat. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Ribeiro, J.V.; Bernardi, R.C.; Rudack, T.; Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Schulten, K. QWIKMD—Integrative molecular dynamics toolkit for novices and experts. Sci. Rep. 2016, 6, 26536. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; MacKerell, A.D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Computat. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Dahl, A.C.; Chavent, M.; Sansom, M.S. Bendix: Intuitive helix geometry analysis and abstraction. Bioinformatics 2012, 28, 2193–2194. [Google Scholar] [CrossRef]
- Danilov, S.M.; Balyasnikova, I.V.; Danilova, A.S.; Naperova, I.A.; Arablinskaya, N.E.; Borisov, S.E.; Metzger, R.; Franke, F.E.; Schwartz, D.E.; Gachok, I.V.; et al. Conformational fingerprinting of the angiotensin I-converting enzyme (ACE). 1. application in sarcoidosis. J. Proteome Res. 2010, 9, 5782–5793. [Google Scholar] [CrossRef]
- Popova, I.A.; Lubbe, L.; Petukhov, P.A.; Kalantarov, G.F.; Trakht, I.N.; Chernykh, E.R.; Leplina, O.Y.; Lyubimov, A.V.; Garcia, J.G.N.; Dudek, S.M.; et al. Epitope mapping of novel monoclonal antibodies to human angiotensin I-converting enzyme. Protein Sci. 2021, 30, 1577–1593. [Google Scholar] [CrossRef]
- Danilov, S.; Savoie, F.; Lenoir, B.; Jeunemaitre, X.; Azizi, M.; Tarnow, L.; Alhenc-Gelas, F. Development of enzyme-linked immunoassays for human angiotensin-I converting enzyme suitable for large-scale studies. J. Hypertens. 1996, 14, 719–727. [Google Scholar] [CrossRef]
- Danilov, S.M.; Balyasnikova, I.V.; Albrecht, R.F.; Kost, O.A. Simultaneous determination of ACE activity with 2 substrates provides information on the status of somatic ace and allows detection of inhibitors in human blood. J. Cardiovasc. Pharmacol. 2008, 52, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Gurdasani, D.; Carstensen, T.; Tekola-Ayele, F.; Pagani, L.; Tachmazidou, I.; Hatzikotoulas, K.; Karthikeyan, S.; Iles, L.; Pollard, M.O.; Choudhury, A.; et al. The African Genome Variation Project Shapes Medical Genetics in Africa. Nature 2014, 517, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- Eckman, E.A.; Adams, S.K.; Troendle, F.J.; Stodola, B.A.; Kahn, M.A.; Fauq, A.H.; Xiao, H.D.; Bernstein, K.E.; Eckman, C.B. Regulation of steady-state β-amyloid levels in the brain by meprylysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem. 2006, 281, 30471–30478. [Google Scholar] [CrossRef] [PubMed]
- Krege, J.H.; John, S.W.; Langenbach, L.L.; Hodgin, J.B.; Hagaman, J.R.; Bachman, E.S.; Jennette, J.C.; O’Brien, D.A.; Smithies, O. Male–female differences in fertility and blood pressure in ACE-deficient mice. Nature 1995, 375, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Gribouval, O.; Morinière, V.; Pawtowski, A.; Arrondel, C.; Sallinen, S.-L.; Saloranta, C.; Clericuzio, C.; Viot, G.; Tantau, J.; Blesson, S.; et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum. Mut. 2011, 33, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Corvol, P.; Michaud, A.; Gribouval, O.; Gask, J.-M.; Gubler, M.-C. Can we live without a functional renin-angiotensin system? Clin. Exp. Pharm. Physiol. 2008, 35, 431–433. [Google Scholar]
- Danilov, S.M.; Sadovnikova, E.; Scharenborg, N.; Balyasnikova, I.V.; Svinareva, D.A.; Semikina, E.L.; Parovichnikova, E.N.; Savchenko, V.G.; Adema, G.J. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hem. 2003, 31, 1301–1309. [Google Scholar] [CrossRef]
- Balyasnikova, I.V.; Sun, Z.-L.; Metzger, R.; Taylor, P.R.; Vicini, E.; Muciaccia, B.; Visintine, D.J.; Berestetskaya, Y.V.; McDonald, T.D.; Danilov, S.M. Monoclonal antibodies to native mouse angiotensin-converting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery. Tissue Antigens 2006, 67, 10–29. [Google Scholar] [CrossRef]
- Danilov, S.M.; Jain, M.S.; Petukhov, P.A.; Goldman, C.; Goldman, M.; Vancavage, R.; Francuzevitch, L.Y.; Samokhodskaya, L.M.; Kamalov, A.A.; Arbieva, Z.H.; et al. Novel ACE mutations mimicking sarcoidosis by increasing blood ACE Levels. Transl. Res. 2021, 230, 5–20. [Google Scholar] [CrossRef]
- Cuddy, L.K.; Prokopenko, D.; Cunningham, E.P.; Brimberry, R.; Song, P.; Kirchner, R.; Chapman, B.A.; Hofmann, O.; Hide, W.; Procissi, D. Aβ-accelerated neurodegeneration caused by Alzheimer’s-associated ACE variant R1279Q is rescued by angiotensin system inhibition in mice. Sci. Transl. Med. 2020, 12, eaaz2541. [Google Scholar] [CrossRef] [PubMed]
- Hartl, D.L. Natural selection in large populations. In A Primer of Population Genetics and Genomics, 4th ed.; Oxford University Press: Oxford, UK, 2020; pp. 109–146. [Google Scholar]
- Sassi, C.; Ridge, P.G.; Nalls, M.A.; Gibbs, R.; Ding, J.; Lupton, M.K.; Troakes, C.; Lunnon, K.; Al-Sarraj, S.; Brown, K.S.; et al. Influence of coding variability in APP-Aβ metabolism genes in sporadic Alzheimer’s disease. PLoS ONE 2016, 11, e0150079. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.; Franklin, R.J.; Johnson, T.; Estrada, K.; et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021, 53, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-Y.; Zhao, Q.-H.; Huang, Q.; Dammer, E.; Chen, S.-D.; Ren, R.-J.; Wang, G. Genetic profiles of familial late-onset Alzheimer’s disease in China: The Shanghai FLOAD Study. Genes Dis. 2022, 9, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Lalli, M.A.; Garcia, G.; Madrigal, L.; Arcos-Burgos, M.; Arcila, L.M.; Kosik, K.S.; Lopera, F. Exploratory data from complete genomes of familial Alzheimer’s disease age-at-onset outliers. Hum. Mutat. 2012, 33, 1630–1634. [Google Scholar] [CrossRef] [PubMed]
- Ferkingstad, E.; Sulem, P.; Atlason, B.A.; Sveinbjornsson, G.; Magnusson, M.I.; Styrmisdottir, E.L.; Gunnarsdottir, K.; Helgason, A.; Oddsson, A.; Halldorsson, B.V.; et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021, 53, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.M.; Lünsdorf, H.; Akinbi, H.T.; Nesterovitch, A.B.; Epshtein, Y.; Letsiou, E.; Kryukova, O.V.; Piegeler, T.; Golukhova, E.Z.; Schwartz, D.E.; et al. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding. Sci. Rep. 2016, 6, 34913. [Google Scholar] [CrossRef]
- Michaud, A.; Acharya, K.R.; Acharya, G.; Quenech’du, N.; Gribouval, O.; Morinière, V.; Gubler, M.-C.; Corvol, P. Absence of cell surface expression of human ACE leads to perinatal death. Hum. Mol. Genet. 2013, 23, 1479–1491. [Google Scholar] [CrossRef]
- Belova, V.; Pavlova, A.; Afasizhev, R.; Afasizhev, V.; Korzhanova, M.; Krivoy, A.; Cheranev, V.; Nikashin, B.; Bulusheva, I.; Rebrikov, D.; et al. System analysis of the sequencing quality of human whole expme samples on BGI NGS platform. Sci. Rep. 2022, 12, 609. [Google Scholar] [CrossRef]
- Chung, C.-M.; Wang, R.-Y.; Fann, C.S.; Chen, J.-W.; Jong, Y.-S.; Jou, Y.-S.; Yang, H.-C.; Kang, C.-S.; Chen, C.-C.; Chang, H.-C.; et al. Fine-mapping angiotensin-converting enzyme gene: Separate QTLS identified for hypertension and for ACE activity. PLoS ONE 2013, 8, e56119. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; MacArthur, D.G. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Aron, S.; Aron, L.R.; Sengupta, D.; Botha, G.; Bensellak, T.; Wells, G.; Kumuthini, J.; Shriner, D.; Fakim, Y.J.; et al. High-depth African genomes inform human migration and health. Nature 2020, 586, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Larmuth, K.M.; Masuyer, G.; Douglas, R.G.; Schwager, S.L.; Acharya, K.R.; Sturrock, E.D. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme. FEBS J. 2016, 283, 1060–1076. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, L.; Sewell, B.T.; Woodward, J.D.; Sturrock, E.D. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. EMBO J. 2022, 41, e110550. [Google Scholar] [CrossRef] [PubMed]
- Zukowska, J.; Moss, S.J.; Subramanian, V.; Acharya, K. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer’s disease. FEBS J. 2023. ahead of printing. [Google Scholar] [CrossRef]
- Cooper, W.O.; Hernandez-Diaz, S.; Arbogast, P.G.; Dudley, J.A.; Dyer, S.; Gideon, P.S.; Hall, K.; Ray, W.A. Major congenital malformations after first-trimester exposure to ACE inhibitors. N. Engl. J. Med. 2006, 354, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, L.; Cozier, G.E.; Oosthuizen, D.; Acharya, K.R.; Sturrock, E.D. ACE2 and ACE: Structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin. Sci. 2020, 134, 2851–2871. [Google Scholar] [CrossRef] [PubMed]
- Quitterer, U.; Abdalla, S. Improvements of symptoms of Alzheimer’s disease by inhibition of the angiotensin system. Pharmacol. Res. 2020, 154, 104230. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Sun, Y.; Islam, S.; Nakamura, T.; Tomita, T.; Zou, K.; Michikawa, M. Presenilin 1 deficiency impairs Aβ42-to-Aβ40- and angiotensin-converting activities of ACE. Front. Aging Neurosci. 2023, 15, 1098034. [Google Scholar] [CrossRef]
- Cozier, G.E.; Lubbe, L.; Sturrock, E.D.; Acharya, K.R. Angiotensin-converting enzyme open for business: Structural insights into the subdomain dynamics. FEBS J. 2020, 288, 2238–2256. [Google Scholar] [CrossRef]
- Danilov, S.; Jaspard, E.; Churakova, T.; Towbin, H.; Savoie, F.; Wei, L.; Alhenc-Gelas, F. Structure-function analysis of angiotensin I-converting enzyme using monoclonal antibodies. selective inhibition of the amino-terminal active site. J. Biol. Chem. 1994, 269, 26806–26814. [Google Scholar] [CrossRef]
- Skirgello, O.E.; Balyasnikova, I.V.; Binevski, P.V.; Sun, Z.-L.; Baskin, I.I.; Palyulin, V.A.; Nesterovitch, A.B.; Albrecht, R.F.; Kost, O.A.; Danilov, S.M. Inhibitory antibodies to human angiotensin-converting enzyme: fine epitope mapping and mechanism of action. Biochemistry 2006, 45, 4831–4847. [Google Scholar] [CrossRef]
- Kohsledt, K.; Shoghi, F.; Müller-Esterl, W.; Busse, R.; Fleming, I. CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. Circ. Res. 2002, 91, 749–756. [Google Scholar]
- Kozuch, A.J.; Petukhov, P.A.; Fagyas, M.; Popova, I.A.; Lindeblad, M.O.; Bobkov, A.P.; Kamalov, A.A.; Toth, A.; Dudek, S.M.; Danilov, S.M. Urinary ACE phenotyping as a research and diagnostic tool: Identification of sex-dependent ACE immunoreactivity. Biomedicines 2023, 11, 953. [Google Scholar] [CrossRef]
- Strittmatter, S.M.; Thiele, E.A.; Kapiloff, M.S.; Snyder, S.H. A rat brain isozyme of angiotensin-converting enzyme. unique specificity for amidated peptide substrates. J. Biol. Chem. 1985, 260, 9825–9832. [Google Scholar] [CrossRef]
- Lin, K.A.; Doraiswamy, P.M. When Mars versus Venus is not a cliche: Gender differences in the neurobiology of Alzheimer’s disease. Front. Neurol. 2015, 5, 288. [Google Scholar] [CrossRef]
- Navratilova, E.; Fillingim, R.B.; Porreca, F. Sexual dimorphism in functional pain syndromes. Sci. Transl. Med. 2021, 13, eabj7180. [Google Scholar] [CrossRef]
- Danilov, S.M. Conformational fingerprinting using monoclonal antibodies (on the example of angiotensin I-converting enzyme-ACE). Mol. Biol. 2017, 51, 906–920. [Google Scholar] [CrossRef]
- Hooper, N.M.; Turner, A.J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase a (angiotensin converting enzyme) from pig brain: A re-evaluation of their role in neuropeptide metabolism. Biochem. J. 1987, 241, 625–633. [Google Scholar] [CrossRef]
- Stewart, T.A.; Weare, J.A.; Erdös, E.G. Human peptidyl dipeptidase (converting enzyme, Kininase II). Methods Enzymol. 1981, 80, 450–460. [Google Scholar]
Prediction (Proportion/Count) | PolyPhen-2 | SIFT4G | VEST4 | REVEL | Majority Vote | Sum of MAFs *(%) | Mean/SEM of MAFs ** (%) |
---|---|---|---|---|---|---|---|
Damaging | 0.34/416 | 0.46/573 | 0.54/663 | 0.22/268 | 0.33/412 | 0.81 | 0.0031/0.0005 |
Possibly Damaging | 0.16/203 | - | - | - | - | 0.46 | 0.0037/0.0008 |
Benign/Tolerant | 0.46/570 | 0.50/616 | 0.46/576 | 0.74/921 | 0.54/668 | 1.19 | 0.0031/0.0004 |
n/a | 0.04/50 | 0.04/50 | 0/0 | 0.04/50 | 0.13/159 | 0.27 | 0.0028/0.0008 |
# | Genetic Position | Amino Acid Position (Mature Protein) | Polymorphism and/or (Reference) | PolyPhen-2 Score (HVAR) | Minor Allele Frequency (per 100,000) | Blood ACE, % of Mean |
---|---|---|---|---|---|---|
1 | p.Arg149Leufs*53 | R120Lfs | rs778759606; [37,44] | 1.000 | 5.2 | Low |
2 | p.Arg228Cys | R199C | rs141543325; [44] | 1.000 | 24 | |
3 | p.Tyr244Cys | Y215C | rs3730025; [44,45,47] | 1.000 | 1068 | 45 [11] Low [48] * |
4 | p.Ala261Ser | A232S | rs4303; # | 0.420 | 742 | |
6 | p.Tyr266X | Y237X | rs121912704; [37,44] | 1.000 | 2.5 | Low |
7 | p.Gly267Arg | G238R | rs149412997; [44] | 0.999 | 33 | |
8 | p.Trp343X | W314X | rs200225958; [37,46] | 1.000 | 0.8 | Low |
9 | p.Pro351Leu | P322L | rs2229830; [44] | 0.999 | 24 | |
10 | p.Gly354 Arg | G325R | rs56394458; [44] | 1.000 | 780 | |
11 | p.Thr381Met | T352M | rs150466411; [44] | 1.000 | 85 | |
12 | p.Asp441fs | D412fs | [46] | 1.000 | 0.4 | Low |
13 | p.Arg482Cys | R453C | rs201540553; [44] | 0.999 | 19 | Low [48] * |
14 | p.Pro485Arg | P456R | rs28730839; [44] | 0.539 | 48 | |
15 | p.Pro505Ala | P476A | rs148943954; [44] | 0.997 | 59 | |
16 | p.Arg561Gln | R532Q | rs4314; [44] | 0.993 | 78 | 500 [49] |
17 | p.Asp592Gly | D563G | rs12709426; [42] | 0.001 | 382 | |
18 | p.His629Pro | H600P | rs201594771; [44] | 0.003 | 506 | |
19 | p.Ser660Cys | S631C | rs147429960; [44] | 0.242 | 93 | |
20 | p.Arg719Gln | R690Q | rs371010069; [24] | 1.000 | 24 | |
21 | p.Leu764Gln | L735Q | rs145819052; [44] | 0.869 | 25 | |
22 | p.Glu767Lys | E738K | rs148995315; [42,44] | 0.989 | 26 | |
23 | p.Iso798Val | I769V | rs117647476; [44] | 0.002 | 213 | |
24 | p.His861Tyr | H832Y | rs140056206; [44] | 0.002 | 5.6 | |
25 | p.Thr916Met | T887M | rs3730043; [42,44] | 1.000 | 397 | |
26 | p.Gly1013Ser | G984S | rs571848794; [44] | 1.000 | 4.4 | Low [48] * |
27 | p.Iso1018Thr | I989T | rs4976; [44] | 1.000 | 36 | |
28 | p.Leu1024fs | L995fs | [46] | 1.000 | 0.4 | Low |
29 | p.Asp1036Lys | N1007K | rs142947404; [42,46] | 0.294 | 80 | |
30 | p.Asp1058Tyrfs | D1029Yfs | [46] | 1.000 | 0.4 | Low |
31 | p.Arg1232His | R1203H | rs372282664; [44] | 0.923 | 6.9 | |
32 | p.Ser1238Pfs | S1209Pfs | [46] | 1.000 | 0.4 | Low |
33 | p.Arg1279Gln | R1250Q | rs4980; [42,44] | 0.016 | 410 | |
34 | p.Arg1284Cys | R1255C | rs375527470; [44] | 0.978 | 5.4 | |
35 | p.Arg1286Ser | R1257S | rs4364; [42] | 0.001 | 733 | |
Combined frequency | Probably damaging | 2680 | ||||
Possibly damaging | 73 | |||||
Benign | 3168 | |||||
All | 5921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilov, S.M.; Adzhubei, I.A.; Kozuch, A.J.; Petukhov, P.A.; Popova, I.A.; Choudhury, A.; Sengupta, D.; Dudek, S.M. Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer’s Disease. Biomedicines 2024, 12, 162. https://doi.org/10.3390/biomedicines12010162
Danilov SM, Adzhubei IA, Kozuch AJ, Petukhov PA, Popova IA, Choudhury A, Sengupta D, Dudek SM. Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer’s Disease. Biomedicines. 2024; 12(1):162. https://doi.org/10.3390/biomedicines12010162
Chicago/Turabian StyleDanilov, Sergei M., Ivan A. Adzhubei, Alexander J. Kozuch, Pavel A. Petukhov, Isolda A. Popova, Ananyo Choudhury, Dhriti Sengupta, and Steven M. Dudek. 2024. "Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer’s Disease" Biomedicines 12, no. 1: 162. https://doi.org/10.3390/biomedicines12010162
APA StyleDanilov, S. M., Adzhubei, I. A., Kozuch, A. J., Petukhov, P. A., Popova, I. A., Choudhury, A., Sengupta, D., & Dudek, S. M. (2024). Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer’s Disease. Biomedicines, 12(1), 162. https://doi.org/10.3390/biomedicines12010162