The Role of Innovation Technology in the Rehabilitation of Patients Affected by Huntington’s Disease: A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Results
3.1. Innovative Rehabilitation Devices
3.1.1. Virtual Reality
3.1.2. PC-Based Rehabilitation
3.2. Other Therapy (Cognitive and Motor Rehabilitation)
Studies | Study Design | Sample Size | Intervention | Device Type Tools Domains | Outcome Measures | Major Findings |
---|---|---|---|---|---|---|
Khalil et al. (2013) [42] | RCT | 21 EG:11 CG:10 | EG: Exercises at home three times a week for eight weeks using an exercise DVD. GC received their usual care. | DVD Motor functions | GAITRite system BBS SAM SF36 | Structured, short-term home exercise programs are practical, beneficial, and safe for individuals in the early and middle stages of Huntington’s disease. |
Shih et al. (2023) [43] | Clinical study | early-PD: 13 HD: 14 | 4-month coaching program, wore a Fitbit, and were guided through a behavioural intervention to facilitate PA uptake | Coaching Program with FitBit Motor functions | BBS | Incorporating wearables into a coaching intervention was achievable and offered valuable insights into physical activity behavior |
Trinkler et al. (2019) [44] | Pilot study | 19 | Contemporary dance, a lyrical dance form, practiced for two hours per week over five months | Dance therapy Motor functions | UHDRS MDRS TMT LARS PBA QLI | Dance therapy has promising results in terms of spatial and bodily representations, helping to enhance motor function in individuals with HD |
3.3. Non-Invasive Brain Stimulation (NIBS)
3.4. tDCS
3.5. TMS
3.6. tACS
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HD | Huntington’s Disease |
RCT | Randomized Clinical Trials |
VR | Virtual Reality |
PC | Personal Computer |
NIBS | Non-Invasive Brain Stimulation |
mPFC | Medial Prefrontal Cortex |
TMS | Transcranial Magnetic Stimulation |
tES | Transcranial Electric Stimulation |
tDCS | Transcranial Direct Current Stimulation |
tACS | Transcranial Alternating Current Stimulation |
References
- Ajitkumar, A.; De Jesus, O. Huntington Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Liang, S.; Zhou, J.; Yu, X.; Lu, S.; Liu, R. Neuronal conversion from glia to replenish the lost neurons. Neural Regen. Res. 2024, 19, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Gough, S.; Niyibizi, A.; Sheikh, M. Juvenile Huntington’s Disease: A Case Report and a Review of Diagnostic Challenges. Cureus 2023, 15, e40637. [Google Scholar] [CrossRef] [PubMed]
- Meem, T.M.; Khan, U.; Mredul, M.B.R.; Awal, M.A.; Rahman, M.H.; Khan, M.S. A Comprehensive Bioinformatics Approach to Identify Molecular Signatures and Key Pathways for the Huntington Disease. Bioinform. Biol. Insights 2023, 17, 11779322231210098. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Song, M.K. Update of Rehabilitation in Huntington’s Disease: Narrative Review. Brain Neurorehabil. 2023, 16, e28. [Google Scholar] [CrossRef] [PubMed]
- Roos, R.A. Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Huang, Y.; Orth, M.; Gillis, T.; Siciliano, J.; Hong, E.; Mysore, J.S.; Lucente, D.; Wheeler, V.C.; Seong, I.S.; et al. Genetic modifiers of Huntington disease differentially influence motor and cognitive domains. Am. J. Hum. Genet. 2022, 109, 885–899. [Google Scholar] [CrossRef]
- Koch, E.T.; Sepers, M.D.; Cheng, J.; Raymond, L.A. Early Changes in Striatal Activity and Motor Kinematics in a Huntington’s Disease Mouse Model. Mov. Disord. 2022, 37, 2021–2032. [Google Scholar] [CrossRef]
- Ruiz-Idiago, J.; Pomarol-Clotet, E.; Salvador, R. Longitudinal analysis of neuropsychiatric symptoms in a large cohort of early-moderate manifest Huntington’s disease patients. Park. Relat. Disord. 2023, 106, 105228. [Google Scholar] [CrossRef]
- Olvera, C.; Stebbins, G.T.; Romero, V.P.; Hall, D.A. Criminality in Huntington Disease. Neurol. Clin. Pract. 2022, 12, 397–405. [Google Scholar] [CrossRef]
- Bilal, H.; Harding, I.H.; Stout, J.C. The relationship between disease-specific psychosocial stressors and depressive symptoms in Huntington’s disease. J. Neurol. 2023. [Google Scholar] [CrossRef]
- Eddy, C.M.; Rickards, H. Social cognition and quality of life in Huntington’s disease. Front. Psychiatry 2022, 13, 963457. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Mridha, D. Unraveling Huntington’s Disease: A Report on Genetic Testing, Clinical Presentation, and Disease Progression. Cureus 2023, 15, e43377. [Google Scholar] [CrossRef] [PubMed]
- Kreitzer, N.; Rath, K.; Kurowski, B.G.; Bakas, T.; Hart, K.; Lindsell, C.J.; Adeoye, O. Rehabilitation Practices in Patients with Moderate and Severe Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2019, 34, E66–E72. [Google Scholar] [CrossRef] [PubMed]
- Pfalzer, A.C.; Watson, K.H.; E Ciriegio, A.; Hale, L.; Diehl, S.; E McDonell, K.; Vnencak-Jones, C.; Huitz, E.; Snow, A.; Roth, M.C.; et al. Impairments to executive function in emerging adults with Huntington disease. J. Neurol. Neurosurg. Psychiatry 2023, 94, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, S.; Maggio, M.G.; Russo, M.; Bramanti, A.; Arcadi, F.A.; Naro, A.; Calabrò, R.S.; De Luca, R. Cognitive recovery in people with relapsing/remitting multiple sclerosis: A randomized clinical trial on virtual reality-based neurorehabilitation. Clin. Neurol. Neurosurg. 2021, 208, 106828. [Google Scholar] [CrossRef] [PubMed]
- Manuli, A.; Maggio, M.G.; Stagnitti, M.C.; Aliberti, R.; Cannavò, A.; Casella, C.; Milardi, D.; Bruschetta, A.; Naro, A.; Calabrò, R.S. Is intensive gait training feasible and effective at old age? A retrospective case-control study on the use of Lokomat Free-D in patients with chronic stroke. J. Clin. Neurosci. 2021, 92, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Billeri, L.; Balletta, T.; Lauria, P.; Onesta, M.P.; Calabrò, R.S. Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Brain Sci. 2022, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Cezar, R.P.; Milardi, D.; Borzelli, D.; DEMarchis, C.; D’Avella, A.; Quartarone, A.; Calabrò, R.S. Do patients with neurological disorders benefit from immersive virtual reality? A scoping review on the emerging use of the computer-assisted rehabilitation environment. Eur. J. Phys. Rehabil. Med. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Bruschetta, R.; Maggio, M.G.; Naro, A.; Ciancarelli, I.; Morone, G.; Arcuri, F.; Tonin, P.; Tartarisco, G.; Pioggia, G.; Cerasa, A.; et al. Gender Influences Virtual Reality-Based Recovery of Cognitive Functions in Patients with Traumatic Brain Injury: A Secondary Analysis of a Randomized Clinical Trial. Brain Sci. 2022, 12, 491. [Google Scholar] [CrossRef]
- De Giorgi, R.; Fortini, A.; Aghilarre, F.; Gentili, F.; Morone, G.; Antonucci, G.; Vetrano, M.; Tieri, G.; Iosa, M. Virtual Art Therapy: Application of Michelangelo Effect to Neurorehabilitation of Patients with Stroke. J. Clin. Med. 2023, 12, 2590. [Google Scholar] [CrossRef]
- Begeti, F.; Schwab, L.C.; Mason, S.L.; Barker, R.A. Hippocampal dysfunction defines disease onset in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 2016, 87, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Júlio, F.; Ribeiro, M.J.; Morgadinho, A.; Sousa, M.; van Asselen, M.; Simões, M.R.; Castelo-Branco, M.; Januário, C. Cognition, function and awareness of disease impact in early Parkinson’s and Huntington’s disease. Disabil. Rehabil. 2022, 44, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Júlio, F.; Caetano, G.; Januário, C.; Castelo-Branco, M. The effect of impulsivity and inhibitory control deficits in the saccadic behavior of premanifest Huntington’s disease individuals. Orphanet J. Rare Dis. 2019, 14, 246. [Google Scholar] [CrossRef] [PubMed]
- Júlio, F.; Ribeiro, M.J.; Patrício, M.; Malhão, A.; Pedrosa, F.; Gonçalves, H.; Simões, M.; Van Asselen, M.; Simões, M.R.; Castelo-Branco, M.; et al. A Novel Ecological Approach Reveals Early Executive Function Impairments in Huntington’s Disease. Front. Psychol. 2019, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Cellini, R.; Paladina, G.; Mascaro, G.; Lembo, M.A.; Lombardo Facciale, A.; Ferrera, M.C.; Fonti, B.; Pergolizzi, L.; Buonasera, P.; Bramanti, P.; et al. Effect of Immersive Virtual Reality by a Computer Assisted Rehabilitation Environment (CAREN) in Juvenile Huntington’s Disease: A Case Report. Medicina 2022, 58, 919. [Google Scholar] [CrossRef]
- De Luca, R.; Russo, M.; Gasparini, S.; Leonardi, S.; Cuzzola, M.F.; Sciarrone, F.; Zichittella, C.; Sessa, E.; Maggio, M.G.; De Cola, M.C.; et al. Do people with multiple sclerosis benefit from PC-based neurorehabilitation? A pilot study. Appl. Neuropsychol. Adult 2021, 28, 427–435. [Google Scholar] [CrossRef]
- De Luca, R.; Leonardi, S.; Spadaro, L.; Russo, M.; Aragona, B.; Torrisi, M.; Maggio, M.G.; BioEng, A.B.; Naro, A.; De Cola Mstat, M.C.; et al. Improving Cognitive Function in Patients with Stroke: Can Computerized Training Be the Future? J. Stroke Cerebrovasc. Dis. 2018, 27, 1055–1060. [Google Scholar] [CrossRef]
- Kempnich, C.L.; Wong, D.; Georgiou-Karistianis, N.; Stout, J.C. Feasibility and Efficacy of Brief Computerized Training to Improve Emotion Recognition in Premanifest and Early-Symptomatic Huntington’s Disease. J. Int. Neuropsychol. Soc. 2017, 23, 314–321. [Google Scholar] [CrossRef]
- Kloos, A.D.; Fritz, N.E.; Kostyk, S.K.; Young, G.S.; Kegelmeyer, D.A. Video game play (Dance Dance Revolution) as a potential exercise therapy in Huntington’s disease: A controlled clinical trial. Clin. Rehabil. 2013, 27, 972–982. [Google Scholar] [CrossRef]
- Yhnell, E.; Furby, H.; Lowe, R.S.; Brookes-Howell, L.C.; Drew, C.J.; Playle, R.; Watson, G.; Metzler-Baddeley, C.; Rosser, A.E.; Busse, M.E. A randomised feasibility study of computerised cognitive training as a therapeutic intervention for people with Huntington’s disease (CogTrainHD). Pilot. Feasibility Stud. 2020, 6, 88. [Google Scholar] [CrossRef]
- Sadeghi, M.; Barlow-Krelina, E.; Gibbons, C.; Shaikh, K.T.; Fung, W.L.A.; Meschino, W.S.; Till, C. Feasibility of computerized working memory training in individuals with Huntington disease. PLoS ONE 2017, 12, e0176429. [Google Scholar] [CrossRef] [PubMed]
- Won, E.J.; Johnson, P.W.; Punnett, L.; Dennerlein, J.T. Upper extremity biomechanics in computer tasks differ by gender. J. Electromyogr. Kinesiol. 2009, 19, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.M.; Govus, A.; Rankin, T.; Lampit, A.; Feindel, K.; Poudel, G.; Teo, W.-P.; Lo, J.; Georgiou-Karistianis, N.; Ziman, M.R.; et al. The effects of multidisciplinary rehabilitation on neuroimaging, biological, cognitive and motor outcomes in individuals with premanifest Huntington’s disease. J. Neurol. Sci. 2020, 416, 117022. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.M.; Lazar, A.S.; Kordsachia, C.C.; Rankin, T.J.; Lo, J.; Govus, A.D.; Power, B.D.; Lampit, A.; Eastwood, P.R.; Ziman, M.R.; et al. Multidisciplinary rehabilitation reduces hypothalamic grey matter volume loss in individuals with preclinical Huntington’s disease: A nine-month pilot study. J. Neurol. Sci. 2020, 408, 116522. [Google Scholar] [CrossRef] [PubMed]
- Metzler-Baddeley, C.; Busse, M.; Drew, C.; Pallmann, P.; Cantera, J.; Ioakeimidis, V.; Rosser, A. HD-DRUM, a Tablet-Based Drumming Training App Intervention for People with Huntington Disease: App Development Study. JMIR Form. Res. 2023, 7, e48395. [Google Scholar] [CrossRef] [PubMed]
- Quinn, L.; Playle, R.; Drew, C.J.; Taiyari, K.; Williams-Thomas, R.; Muratori, L.M.; Hamana, K.; Griffin, B.A.; Kelson, M.; Schubert, R.; et al. Physical activity and exercise outcomes in Huntington’s disease (PACE-HD): Results of a 12-month trial-within-cohort feasibility study of a physical activity intervention in people with Huntington’s disease. Park. Relat. Disord. 2022, 101, 75–89. [Google Scholar] [CrossRef] [PubMed]
- van Walsem, M.R.; Piira, A.; Mikalsen, G.; Fossmo, H.L.; Howe, E.I.; Knutsen, S.F.; Frich, J.C. Cognitive Performance After a One-Year Multidisciplinary Intensive Rehabilitation Program for Huntington’s Disease: An Observational Study. J. Huntingtons Dis. 2018, 7, 379–389. [Google Scholar] [CrossRef]
- Atkins, K.J.; Friel, C.P.; Andrews, S.C.; Chong, T.T.; Stout, J.C.; Quinn, L. A qualitative examination of apathy and physical activity in Huntington’s and Parkinson’s disease. Neurodegener. Dis. Manag. 2022, 12, 129–139. [Google Scholar] [CrossRef]
- Cruickshank, T.M.; Reyes, A.P.; Penailillo, L.E.; Pulverenti, T.; Bartlett, D.M.; Zaenker, P.; Blazevich, A.J.; Newton, R.U.; Thompson, J.A.; Lo, J.; et al. Effects of multidisciplinary therapy on physical function in Huntington’s disease. Acta Neurol. Scand. 2018, 138, 500–507. [Google Scholar] [CrossRef]
- Zinzi, P.; Salmaso, D.; De Grandis, R.; Graziani, G.; Maceroni, S.; Bentivoglio, A.; Zappata, P.; Frontali, M.; Jacopini, G. Effects of an intensive rehabilitation programme on patients with Huntington’s disease: A pilot study. Clin. Rehabil. 2007, 21, 603–613. [Google Scholar] [CrossRef]
- Khalil, H.; Quinn, L.; van Deursen, R.; Dawes, H.; Playle, R.; Rosser, A.; Busse, M. What effect does a structured home-based exercise programme have on people with Huntington’s disease? A randomized, controlled pilot study. Clin. Rehabil. 2013, 27, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.S.; Quinn, L.; Morgan-Jones, P.; Long, K.; Schreier, A.R.; Friel, C.P. Wearable activity monitors to support physical activity interventions in neurodegenerative disease: A feasibility study. Neurodegener. Dis. Manag. 2023, 13, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Lalonde, K.; Truesdell, A.; Gomes Welter, P.; Brocardo, P.S.; Rosenstock, T.R.; Gil-Mohapel, J. New Avenues for the Treatment of Huntington’s Disease. Int. J. Mol. Sci. 2021, 22, 8363. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.C.; Sambataro, F.; Vasic, N.; Depping, M.S.; Thomann, P.A.; Landwehrmeyer, G.B.; Süssmuth, S.D.; Orth, M. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychol. Med. 2014, 44, 3341–3356. [Google Scholar] [CrossRef]
- Werner, C.J.; Dogan, I.; Saß, C.; Mirzazade, S.; Schiefer, J.; Shah, N.J.; Schulz, J.B.; Reetz, K. Altered resting-state connectivity in Huntington’s disease. Hum. Brain Mapp. 2014, 35, 2582–2593. [Google Scholar] [CrossRef]
- Ganguly, J.; Murgai, A.; Sharma, S.; Aur, D.; Jog, M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front. Neurosci. 2020, 14, 522. [Google Scholar] [CrossRef]
- Pini, L.; Jacquemot, C.; Cagnin, A.; Meneghello, F.; Semenza, C.; Mantini, D.; Vallesi, A. Aberrant brain network connectivity in presymptomatic and manifest Huntington’s disease: A systematic review. Hum. Brain Mapp. 2020, 41, 256–269. [Google Scholar] [CrossRef]
- Chase, H.W.; Boudewyn, M.A.; Carter, C.S.; Phillips, M.L. Transcranial direct current stimulation: A roadmap for research, from mechanism of action to clinical implementation. Mol. Psychiatry 2020, 25, 397–407. [Google Scholar] [CrossRef]
- Eddy, C.M.; Shapiro, K.; Clouter, A.; Hansen, P.C.; Rickards, H.E. Transcranial direct current stimulation can enhance working memory in Huntington’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 77, 75–82. [Google Scholar] [CrossRef]
- Bocci, T.; Baloscio, D.; Ferrucci, R.; Sartucci, F.; Priori, A. Cerebellar Direct Current Stimulation (ctDCS) in the Treatment of Huntington’s Disease: A Pilot Study and a Short Review of the Literature. Front. Neurol. 2020, 11, 614717. [Google Scholar] [CrossRef]
- Brusa, L.; Versace, V.; Koch, G.; Bernardi, G.; Iani, C.; Stanzione, P.; Centonze, D. Improvement of choreic movements by 1 Hz repetitive transcranial magnetic stimulation in Huntington’s disease patients. Ann. Neurol. 2005, 58, 655–656. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Jayarajan, R.N.; Muralidharan, K.; Jain, S. Repetitive transcranial magnetic stimulation not beneficial in severe choreiform movements of Huntington disease. J. ECT 2013, 29, e16–e17. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.; Phillips, A.; Tendler, A.; Oberdeck, A. Deep rTMS for Neuropsychiatric Symptoms of Huntington’s Disease: Case Report. Brain Stimul. 2016, 9, 960–961. [Google Scholar] [CrossRef] [PubMed]
- Bocci, T.; Hensghens, M.J.; Di Rollo, A.; Parenti, L.; Barloscio, D.; Rossi, S.; Sartucci, F. Impaired interhemispheric processing in early Huntington’s Disease: A transcranial magnetic stimulation study. Clin. Neurophysiol. 2016, 127, 1750–1752. [Google Scholar] [CrossRef] [PubMed]
- Groiss, S.; Netz, J.; Lange, H.; Buetefisch, C. Frequency dependent effects of rTMS on motor and cognitive functions in Huntington’s disease. Basal Ganglia 2012, 2, 41–48. [Google Scholar] [CrossRef]
- Booth, S.J.; Taylor, J.R.; Brown, L.J.E.; Pobric, G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex. 2022, 147, 112–139. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.-C.; Hill, A.T.; Fitzgerald, P.B.; Bailey, N.W.; Sullivan, C.; Stout, J.C.; Hoy, K.E. Medial prefrontal transcranial alternating current stimulation for apathy in Huntington’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 126, 110776. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, A.V.; Yun, K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front. Cell. Neurosci. 2017, 11, 214. [Google Scholar] [CrossRef]
- Billeri, L.; Naro, A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol. Sci. 2021, 42, 2191–2209. [Google Scholar] [CrossRef]
- Davis, M.C.; Fitzgerald, P.B.; Bailey, N.W.; Sullivan, C.; Stout, J.C.; Hill, A.T.; Hoy, K.E. Effects of medial prefrontal transcranial alternating current stimulation on neural activity and connectivity in people with Huntington’s disease and neurotypical controls. Brain Res. 2023, 1811, 148379. [Google Scholar] [CrossRef]
- Gavelin, H.M.; Lampit, A.; Hallock, H.; Sabatés, J.; Bahar-Fuchs, A. Cognition-oriented treatments for older adults: A systematic overview of systematic reviews. Neuropsychol. Rev. 2020, 30, 167–193. [Google Scholar] [CrossRef]
- Al Qasem, W.; Abubaker, M.; Kvašňák, E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front. Psychol. 2022, 13, 822545. [Google Scholar] [CrossRef]
- Maggio, M.G.; De Bartolo, D.; Calabrò, R.S.; Ciancarelli, I.; Cerasa, A.; Tonin, P.; Di Iulio, F.; Paolucci, S.; Antonucci, G.; Morone, G.; et al. Computer-assisted cognitive rehabilitation in neurological patients: State-of-art and future perspectives. Front. Neurol. 2023, 14, 1255319. [Google Scholar] [CrossRef]
- Maggio, M.G.; Bonanno, M.; Manuli, A.; Onesta, M.P.; De Luca, R.; Quartarone, A.; Calabrò, R.S. Do Individuals with Spinal Cord Injury Benefit from Semi-Immersive Virtual Reality Cognitive Training? Preliminary Results from an Exploratory Study on an Underestimated Problem. Brain Sci. 2023, 13, 945. [Google Scholar] [CrossRef]
- Maggio, M.G.; Luca, A.; D’Agate, C.; Italia, M.; Calabrò, R.S.; Nicoletti, A. Feasibility and usability of a non-immersive virtual reality tele-cognitive app in cognitive rehabilitation of patients affected by Parkinson’s disease. Psychogeriatrics 2022, 22, 775–779. [Google Scholar] [CrossRef]
- Uygur-Kucukseymen, E.; Pacheco-Barrios, K.; Yuksel, B.; Gonzalez-Mego, P.; Soysal, A.; Fregni, F. Non-invasive brain stimulation on clinical symptoms in multiple sclerosis patients: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2023, 78, 104927. [Google Scholar] [CrossRef]
- Maggio, M.G.; Stagnitti, M.C.; Calatozzo, P.; Formica, S.; Latella, D.; Manuli, A.; Avena, G.; Oddo, V.; Calabrò, R.S. Cognitive rehabilitation outcomes in patients with Multiple sclerosis: Preliminary data about the potential role of personality traits. Mult. Scler. Relat. Disord. 2022, 58, 103533. [Google Scholar] [CrossRef]
- Baykara, E.; Könen, T.; Unger, K.; Karbach, J. MRI predictors of cognitive training outcomes. J. Cogn. Enhanc. 2020, 5, 245–258. [Google Scholar] [CrossRef]
- Yhnell, E.; Furby, H.; Breen, R.S.; Brookes-Howell, L.C.; Drew, C.J.G.; Playle, R.; Watson, G.; Metzler-Baddeley, C.; Rosser, A.E.; Busse, M.E. Exploring computerised cognitive training as a therapeutic intervention for people with Huntington’s disease (CogTrainHD): Protocol for a randomised feasibility study. Pilot. Feasibility Stud. 2018, 4, 45. [Google Scholar] [CrossRef]
- Metzler-Baddeley, C.; Cantera, J.; Coulthard, E.; Rosser, A.; Jones, D.K.; Baddeley, R.J. Improved executive function and callosal white matter microstructure after rhythm exercise in Huntington’s disease. J. Huntingtons Dis. 2014, 3, 273–283. [Google Scholar] [CrossRef]
- Duff, K.; Paulsen, J.; Mills, J.; Beglinger, L.J.; Moser, D.J.; Smith, M.M.; Langbehn, D.; Stout, J.; Queller, S.; Harrington, D.L. Mild cognitive impairment in prediagnosed Huntington disease. Neurology 2010, 75, 500. [Google Scholar] [CrossRef] [PubMed]
- Julayanont, P.; McFarland, N.R.; Heilman, K.M. Mild cognitive impairment and dementia in motor manifest Huntington’s disease: Classification and prevalence. J. Neurol. Sci. 2020, 408, 116523. [Google Scholar] [CrossRef] [PubMed]
- Huynh, K.; Nategh, L.; Jamadar, S.; Stout, J.; Georgiou-Karistianis, N.; Lampit, A. Cognition-oriented treatments and physical exercise on cognitive function in Huntington’s disease: A systematic review. J. Neurol. 2023, 270, 1857–1879. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.A.; Lovecky, D.; Kogan, J.; Vetter, L.A.; Yohrling, G.J. Survey of the Huntington’s disease patient and caregiver community reveals most impactful symptoms and treatment needs. J. Huntingtons Dis. 2016, 15, 395–403. [Google Scholar] [CrossRef]
- Mueller, S.M.; Petersen, J.A.; Jung, H.H. Exercise in Huntington’s Disease: Current State and Clinical Significance. Tremor Other Hyperkinet. Mov. 2019, 9, 601. [Google Scholar] [CrossRef]
- Li, X.; Guo, R.; Wei, Z.; Jia, J.; Wei, C. Effectiveness of exercise programs on patients with dementia: A systematic review and meta-analysis of randomized controlled trials. BioMed Res. Int. 2019, 2019, 2308475. [Google Scholar] [CrossRef]
Studies | Study Design | Sample Size | Intervention | Device Type Tools and Domains | Outcome Measures | Major Findings |
---|---|---|---|---|---|---|
Begeti et al. (2016) [22] | RCT | 13 HC 34 preHD 18 HD | Patients swim in a pool using a joystick, tasked with reaching a submerged platform by following external cues | VR MWM Assessment and Rehab Cognitive and motor domains | ACE-R NART | The deficit in allocentric memory reflects the hippocampal pathology in HD. Manifest HD patients experience more executive and motor difficulties. |
Júlio et al. (2022) [23] | Clinical Study | 19 HC 10 early-onset PD 20 early-PD 15 early HD | VR tasks presented on a desktop PC in a kitchen task related to preparing a cup of coffee and milk (task A); while carrying out task A, turning off a kettle (task B); or carrying out two exercises while preparing toast with butter (Task C). | EcoKitchen VR Assessment and Rehab Executive functions | BAD IAFAI BDI-II MoCA EHI IWRT UHDRS | Patients in the early stages of PD and HD without dementia maintain awareness of their performance in simulating daily tasks. Both HD and PD patients benefit from timely motor and cognitive interventions conducted with VR. |
Júlio et al. (2019) [24] | Clinical Study | 15 EarlyHD 15 PreHD 9 HC | VR tasks presented on a desktop PC in a kitchen task related to preparing a cup of coffee and milk (task A); while carrying out task A, turning off a kettle (task B); or carrying out two exercises while preparing toast with butter (Task C). | EcoKitchen VR Assessment and Feasibility Cognitive domains | MoCA BDI-II UHDRS EHI IWRT PVF Stroop Test SVF SDMT DST TMTA/B WCST | The EcoKitchen task is effective in detecting functionally significant deficits in patients with early and premanifest HD, and it is highly feasible. |
Júlio et al. (2019) [25] | Clinical Study | 15 EarlyHD 15 PreHD 19 HC | VR tasks presented on a desktop PC in a kitchen task related to preparing a cup of coffee and milk (task A); while carrying out task A, turning off a kettle (task B); or carrying out two exercises while preparing toast with butter (Task C). | EcoKitchen VR Assessment and Feasibility Executive functions | MoCA BDI-II UHDRS EHI IWRT PVF Stroop Test SVF SDMT DST TMTA/B WCST | The EcoKitchen task is sensitive to early executive deficits in HD. |
Cellini et al. (2022) [26] | Case report | 21-year-old woman juvenile HD | Immersive VR using six virtual scenarios, three sessions per week for six months, with each session lasting at least 45 min | CAREN VR Rehabilitation Motor outcomes | FESI TS BBS MRC TUG 6-WT 10-WT | The usefulness of neurorehabilitation using innovative VR technologies also extends to juvenile HD |
Kempnich et al. (2017) [29] | RCT | 22 13 preHD 9 Early HD | EG: Participants in the training group used the METT program twice a week for 4 weeks, and the examiner sent them email or text messages as reminders. CG: The control group was put on a waiting list and underwent training after completing the post-training session. | Pc-Based emotion recognition: “Mind Reading” “Emotion Trainer” Micro Expression Training Tool (METT) Emotional | METT ERT TASIT | Emotion recognition training through METT shows potential effectiveness in terms of maintaining participant engagement. |
Kloos et al. (2013) [30] | RCT | 18 HD | Participants engaged in the “Dance Dance Revolution” game under supervision, and they played the handheld game without supervision for 45 min, two days a week, over a span of six weeks | “Dance Dance” Revolution game PC-games Motor abilities and adherence to treatment | GAITRite TS FSST ASBCS WHOQOL-Bref | “Dance Dance Revolution” represents a feasiable, motivating, and secure physical activity intervention for individuals living with Huntington’s disease. |
Yhnell et al. (2020) [31] | RCT | 26 13 CG 13 EG | EG: 12-week executive function training intervention CG: Pen and paper-based exercise | CogTrainHD Pc-Based Cognitive and motor functions | CVF Stroop test TMT DST Tower of Hanoi SDMT WCST TUG CTTT | CogTrainHD is feasible and has good acceptability for implementing home-based cognitive training interventions |
Sadeghi et al. (2017) [32] | Clinical trial | 7 HD | Working Memory training program (Cogmed QM) in 5 weeks | CogTrainHD Pc-Based Working Memory | WMS WJTCA-III SDMT TMTA/B HDLT-R DKEFS | HD Patients recognize advantages from intensive working memory training. |
Coulson et al. (2007) [33] | Clinical Study | 793 HD | 1313 messages sent online by patients to receive social support were analyzed. | online internet chat PC-Based Social functions | The messages aimed at requesting support were quantified | The exchange of information and emotional assistance plays a crucial role in HD. |
Bartlett et al. (2020) [34] | Clinical study | 31 18 EG 13 CG | EG: A nine-month multidisciplinary rehabilitation program CG: Standard care control group. | PC training + Aerobic exercises, dual-task training, sleep hygiene, nutritional counselling | Neurocom Smart Balance Master platform MRI HD-CAB SDMT TMTA/B HVLT-R OTS | Multidisciplinary rehabilitation is clinically beneficial for individuals with HD. |
Bartlett et al. (2019) [35] | Clinical study | 31 18 EG 11 CG | EG: A nine-month multidisciplinary rehabilitation program CG: No intervention. | PC training + Aerobic exercises, dual-task training, sleep hygiene, nutritional counselling | MRI HADS | Multidisciplinary rehabilitation can mitigate hypothalamic volume loss and sustain peripheral BDNF levels in preclinical HD individuals, although it may not influence circadian rhythm |
Metzler-Baddeley et al. (2023) [36] | Clinical study | 12 HD | A web-based survey was conducted to gather information on their accessibility requirements. | HD-DRUM app PC-based usability | Web-based survey | Tablet-based touch screens were identified as viable and user-friendly solutions for app delivery |
Studies | Study Design | Sample Size | Intervention | Type NIBS Domains | Follow-Up Period | Major Findings |
---|---|---|---|---|---|---|
Eddy et al. (2017) [51] | Crossover trials | 20 | Sham vs. 1.5 mA anodal tDCS on the left DLPC | tDCS Working Memory | Immediately post-Rtms | Anodal tDCS improves working memory, especially in patients with more severe motor symptoms. |
Bocci et al. (2020) [52] | Crossover trials | 4 | Sham vs. 2 mA anodal tDCS cerebellar | tDCS Dystonia | Cerebellar direct current polarization improved motor scores. | |
Brusa et al. (2005) [53] | Crossover trials | 8 | 1Hz rTMS on SMA | rTMS Choreic movement | Immediatelypost-rTMS | 1 Hz rTMS improves choreic movements |
Shukla et al. (2013) [54] | Case series | 2 | Session of bilateral 1 Hz rTMS on SMA | rTMS Choreic movement | 8 months | No effects on choreic movements in severe HD. |
Davis et al. (2016) [55] | Case report | 1 | “Deep” rTMS on SMA 1 Hz | rTMS Depression anxiety | Improvement of depression and anxiety scores following the real stimulation. | |
Bocci et al. (2016) [56] | Crossover trials | 7 | TMS connected to a standard eight-shaped focal coil | TMS | Immediately post-rTMS | Changes in ipsilateral silent period (iSP: onset latency, iSPOL, and duration, iSPD) and transcallosal conduction time (TCT). |
Groiss et al. (2012) [57] | Crossover trials | 8 | High frequency (10 Hz), low frequency (1 Hz) and sham rTMS | rTMS Cognition depression | Improvement of mood after low frequency rTMS. | |
Davis et al. (2023) [58] | Clinical study | 22 | tACS to the medial prefrontal cortex (mPFC) | tACS Apathy and other non-motor symptoms | Alpha frequency tACS targeting bilateral mPFC flattened the aperiodic slope | |
Davis et al. (2023) [59] | Clinical study | 17 | tACS to the medial prefrontal cortex (mPFC) | tACS Apathy | CNV amplitude significantly increased in response to alpha-tACS, but not delta-tACS or sham |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggio, M.G.; Billeri, L.; Cardile, D.; Quartarone, A.; Calabrò, R.S. The Role of Innovation Technology in the Rehabilitation of Patients Affected by Huntington’s Disease: A Scoping Review. Biomedicines 2024, 12, 39. https://doi.org/10.3390/biomedicines12010039
Maggio MG, Billeri L, Cardile D, Quartarone A, Calabrò RS. The Role of Innovation Technology in the Rehabilitation of Patients Affected by Huntington’s Disease: A Scoping Review. Biomedicines. 2024; 12(1):39. https://doi.org/10.3390/biomedicines12010039
Chicago/Turabian StyleMaggio, Maria Grazia, Luana Billeri, Davide Cardile, Angelo Quartarone, and Rocco Salvatore Calabrò. 2024. "The Role of Innovation Technology in the Rehabilitation of Patients Affected by Huntington’s Disease: A Scoping Review" Biomedicines 12, no. 1: 39. https://doi.org/10.3390/biomedicines12010039
APA StyleMaggio, M. G., Billeri, L., Cardile, D., Quartarone, A., & Calabrò, R. S. (2024). The Role of Innovation Technology in the Rehabilitation of Patients Affected by Huntington’s Disease: A Scoping Review. Biomedicines, 12(1), 39. https://doi.org/10.3390/biomedicines12010039