Evaluation of Peripheral Blood Concentrations of Phoenixin, Spexin, Nesfatin-1 and Kisspeptin as Potential Biomarkers of Bipolar Disorder in the Pediatric Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biochemical Assessment and Biological Material Collection
2.3. Symptoms Analysis
2.4. Statistical Analysis
2.5. Bioethical Committee Consent
3. Results
3.1. Group Characteristics
3.2. Comparative Analyses
3.3. Correlation Analyses
3.4. Logistic Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cichoń, L.; Janas-Kozik, M.; Siwiec, A.; Rybakowski, J.K. Obraz kliniczny i leczenie choroby afektywnej dwubiegunowej w populacji dzieci i młodzieży. Psychiatr. Pol. 2020, 54, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Łojko, D.; Suwalska, A.; Rybakowski, J. Dwubiegunowe zaburzenia nastroju i zaburzenia depresyjne w klasyfikacji DSM-5. Psychiatr. Pol. 2014, 48, 245–260. [Google Scholar] [PubMed]
- Xiao, X.; Kuang, Z.; Burke, B.J.; Chushak, Y.; Farmer, B.L.; Mirau, P.A.; Naik, R.R.; Hall, C.K. In Silico Discovery and Validation of Neuropeptide-Y-Binding Peptides for Sensors. J. Phys. Chem. B 2020, 124, 61–68. [Google Scholar] [CrossRef]
- McKay, F.M.; McCoy, C.J.; Crooks, B.; Marks, N.J.; Maule, A.G.; Atkinson, L.E.; Mousley, A. In silico analyses of neuropeptide-like protein (NLP) profiles in parasitic nematodes. Int. J. Parasitol. 2022, 52, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kuromitsu, J.; Yokoi, A.; Kawai, T.; Nagasu, T.; Aizawa, T.; Haga, S.; Ikeda, K. Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder. Brain Res. Gene Expr. Patterns 2001, 1, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Caberlotto, L.; Hurd, Y.L. Reduced neuropeptide Y mRNA expression in the prefrontal cortex of subjects with bipolar disorder. Neuroreport 1999, 10, 1747–1750. [Google Scholar] [CrossRef]
- Sandberg, J.V.; Jakobsson, J.; Pålsson, E.; Landén, M.; Mathé, A.A. Low neuropeptide Y in cerebrospinal fluid in bipolar patients is associated with previous and prospective suicide attempts. Eur. Neuropsychopharmacol. 2014, 24, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Turan, T.; Uysal, C.; Asdemir, A.; Kılıç, E. May oxytocin be a trait marker for bipolar disorder? Psychoneuroendocrinology 2013, 38, 2890–2896. [Google Scholar] [CrossRef]
- Tsuchimine, S.; Hattori, K.; Ota, M.; Hidese, S.; Teraishi, T.; Sasayama, D.; Hori, H.; Noda, T.; Yoshida, S.; Yoshida, F.; et al. Reduced plasma orexin-A levels in patients with bipolar disorder. Neuropsychiatr. Dis. Treat. 2019, 15, 2221–2230. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Li, S.; Huang, B.; Shi, G.; Mou, T.; Xu, Y. Increased hypocretin (orexin) plasma level in depression, bipolar disorder patients. Front. Psychiatry 2021, 12, 676336. [Google Scholar] [CrossRef]
- Pałasz, A.; Janas-Kozik, M.; Borrow, A.; Arias-Carrión, O.; Worthington, J.J. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochem. Int. 2018, 113, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Pałasz, A.; Rojczyk, E.; Siwiec, A.; Janas-Kozik, M. Nesfatin-1 in the neurochemistry of eating disorders. Psychiatr. Pol. 2020, 54, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Samson, W.K.; Zhang, J.V.; Avsian-Kretchmer, O.; Cui, K.; Yosten, G.L.; Klein, C.; Lyu, R.M.; Wang, Y.X.; Chen, X.Q.; Yang, J.; et al. Neuronostatin encoded by the somatostatin gene regulates neuronal cardiovascular metabolic functions. J. Biol. Chem. 2008, 283, 31949–31959. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Sun, Z.; Zhao, W.; Wang, T.; Zhang, J.; Niu, D. Phoenixin: A newly discovered peptide with multi-functions. Protein Pept. Lett. 2017, 24, 472–475. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, E.K.; Zhang, N.; Belsham, D.D. The regulation of phoenixin: A fascinating multidimensional peptide. J. Endocr. Soc. 2021, 6, bvab192. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; He, Z.; Peng, Y.L.; Jin, W.D.; Mu, J.; Xue, H.X.; Wang, Z.; Chang, M.; Wang, R. Effects of phoenixin-14 on anxiolytic-like behavior in mice. Behav. Brain Res. 2015, 286, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Weibert, E.; Ahnis, A.; Elbelt, U.; Rose, M.; Klapp, B.F.; Stengel, A. Phoenixin is negatively associated with anxiety in obese men. Peptides 2017, 88, 32–36. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, Q.; Lv, S.; Ji, X. Regulation and physiological functions of phoenixin. Front. Mol. Biosci. 2022, 9, 956500. [Google Scholar] [CrossRef]
- Guvenc, G.; Altinbas, B.; Kasikci, E.; Ozyurt, E.; Bas, A.; Udum, D.; Niaz, N.; Yalcin, M. Contingent role of phoenixin and nesfatin-1 on secretions of the male reproductive hormones. Andrologia 2019, 51, e13410. [Google Scholar] [CrossRef]
- Oh-I, S.; Shimizu, H.; Satoh, T.; Okada, S.; Adachi, S.; Inoue, K.; Eguchi, H.; Yamamoto, M.; Imaki, T.; Hashimoto, K.; et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443, 709–712. [Google Scholar] [CrossRef]
- Stengel, A.; Tache, Y. Nesfatin-1—Role as possible new potent regulator of food intake. Regul. Pept. 2010, 163, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Pałasz, A.; Krzystanek, M.; Worthington, J.; Czajkowska, B.; Kostro, K.; Wiaderkiewicz, R.; Bajor, G. Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides 2012, 46, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Gao, N.; Wu, Q.; Li, Y.; Zhang, L.; Jiang, Z.; Wang, Z.; Liu, J. High plasma nesfatin-1 level in Chinese adolescents with depression. Sci. Rep. 2023, 13, 15288. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Alcaraz, A.; Lee, Y.N.; Son, G.H.; Kim, N.H.; Kim, D.K.; Yun, S.; Kim, D.H.; Hwang, J.I.; Seong, J.Y. Development of spexin-based human galanin receptor type II-specific agonists with increased stability in serum and anxiolytic effect in mice. Sci. Rep. 2016, 6, 21453. [Google Scholar] [CrossRef] [PubMed]
- Mirabeau, O.; Perlas, E.; Severini, C.; Audero, E.; Gascuel, O.; Possenti, R.; Birney, E.; Rosenthal, N.; Gross, C. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007, 17, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Yun, S.; Son, G.H.; Hwang, J.I.; Park, C.R.; Kim, J.I.; Kim, K.; Vaudry, H.; Seong, J.Y. Coevolution of the spexin/galanin/kisspeptin family: Spexin activates galanin receptor type II and III. Endocrinology 2014, 155, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Rucinski, M.; Macchi, V.; Stecco, C.; Malendowicz, L.K.; De Caro, R. Spexin expression in normal rat tissues. J. Histochem. Cytochem. 2010, 58, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Kupcova, I.; Danisovic, L.; Grgac, I.; Harsneyi, S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav. Sci. 2022, 12, 262. [Google Scholar] [CrossRef]
- Navarro, V.M.; Bosch, M.A.; León, S.; Simavli, S.; True, C.; Pinilla, L.; Carroll, R.S.; Seminara, S.B.; Tena-Sempere, M.; Rønnekleiv, O.K.; et al. The integrated hypothalamic tachykinin-kisspeptin system as a central coordinator for reproduction. Endocrinology 2015, 156, 627–637. [Google Scholar] [CrossRef]
- Kim, J.; Semaan, S.J.; Clifton, D.; Steiner, R.; Dhamija, S.; Kauffman, A. Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 2011, 152, 2020–2030. [Google Scholar] [CrossRef]
- De Bond, J.A.; Smith, J.T. Kisspeptin and energy balance in reproduction. Reproduction 2014, 147, 53–63. [Google Scholar] [CrossRef]
- Mills, E.G.; Izzi-Engbeaya, C.; Abbara, A.; Comninos, A.N.; Dhillo, W.S. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat. Rev. Endocrinol. 2021, 17, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Lim, D.Y.; Chee, K.T. Reimagining the spectrum of affective disorders. Bipolar Disord. 2020, 22, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Emul, M.; Karamustafalioglu, N.; Kalelioglu, T.; Genc, A.; Tasdemir, A.; Can Gungor, F.; Incir, S.; Seven, A. The nesfatin 1 level in male patients with manic episode and alterations of nesfatin 1 level after antipsychotic and electroconvulsive treatment. J. Affect. Disord. 2013, 151, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.-R.; Liang, J.; Cao, Y.; Shan, F.; Liu, Y.; Xu, Y.-Y. Increased plasma nesfatin-1 levels may be associated with corticosterone, IL-6, and CRP levels in patients with major depressive disorder. Clin. Chim. Acta 2018, 480, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Sahpolat, M.; Ari, M. Plasma nesfatin 1 level in patients with first attack psychosis. Bratisl. Lek. Listy 2017, 118, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Ünal, K.; Yüksel, R.N.; Turhan, T.; Sezer, S.; Yaylaci, E.T. The association of serum nesfatin-1 and ghrelin levels with metabolic syndrome in patients with schizophrenia. Psychiatry Res. 2018, 261, 45–49. [Google Scholar] [CrossRef]
- Behrooz, M.; Vaghef-Mehrabany, E.; Maleki, V.; Pourmoradian, S.; Fathifar, Z.; Ostadrahimi, A. Spexin status in relation to obesity and its related comorbidities: A systematic review. J. Diabetes Metab. Disord. 2020, 19, 1943–1957. [Google Scholar] [CrossRef]
- Pałasz, A.; Suszka-Świtek, A.; Filipczyk, Ł.; Bogus, K.; Rojczyk, E.; Worthington, J.; Krzystanek, M.; Wiaderkiewicz, R. Escitalopram affects spexin expression in the rat hypothalamus, hippocampus and striatum. Pharmacol. Rep. 2016, 68, 1326–1331. [Google Scholar] [CrossRef]
- Pałasz, A.; Pałka, M.; Filipczyk, Ł.; Menez, I.C.; Rojczyk, E.; Worthington, J.; Piwowarczyk-Nowak, A.; Krzystanek, M.; Wiaderkiewicz, R. Effect of long-term treatment with classical neuroleptics on NPQ/spexin, kisspeptin and POMC mRNA expression in the male rat amygdala. J. Neural Transm. 2018, 125, 1099–1105. [Google Scholar] [CrossRef]
- Gallagher, J.P.; Orozco-Cabal, L.F.; Liu, J.; Shinnick-Gallagher, P. Synaptic Physiology of Central CRH System. Eur. J. Pharmacol. 2008, 583, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.D.; Garfield, A.S.; Marston, O.J.; Shaw, J.; Heisler, L.K. Brain Serotonin System in the Coordination of Food Intake and Body Weight. Pharmacol. Biochem. Behav. 2010, 97, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Donner, N.C.; Siebler, P.H.; Johnson, D.T.; Villarreal, M.D.; Mani, S.; Matti, A.J.; Lowry, C.A. Serotonergic Systems in the Balance: CRHR1 and CRHR2 Differentially Control Stress-Induced Serotonin Synthesis. Psychoneuroendocrinology 2016, 63, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Nikisch, G.; Baumann, P.; Liu, T.; Mathe, A.A. Quetiapine affects neuropeptide Y and corticotropin-releasing hormone in cerebrospinal fluid from schizophrenia patients: Relationship to depression and anxiety symptoms and to treatment response. Int. J. Neuropsychopharmacol. 2012, 15, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Pałasz, A.; Żarczyński, P.; Bogus, K.; Mordecka-Chamera, K.; Della Vecchia, A.; Skałbania, J.; Worthington, J.; Krzystanek, M.; Żarczyńska, M. Modulatory effect of olanzapine on SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expressions in the rat brainstem. Pharmacol. Rep. 2021, 73, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Kim-Cohen, J.; Caspi, A.; Moffitt, T.E.; Harrrington, H.; Milne, B.J.; Poulton, R. Prior juvenile diagnoses in adults with mental disorder: Developmental follow-back of a prospective-longitudinal cohort. Arch. Gen. Psychiatry 2003, 60, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, D.P.; Rich, B.A.; Pradella, A.G.; Towbin, K.E.; Pine, D.S.; Leinbenluft, E. Comorbid anxiety in phenotypes of pediatric bipolar disorder. J. Child. Adolesc. Psychopharmacol. 2005, 15, 534–548. [Google Scholar] [CrossRef]
- Schalla, M.A.; Stengel, A. The role of phoenixin in behavior and food intake. Peptides 2019, 114, 38–43. [Google Scholar] [CrossRef]
- Billert, M.; Rak, A.; Nowak, K.W.; Skrzypski, M. Phoenixin: More than reproductive peptide. Int. J. Mol. Sci. 2020, 21, 8378. [Google Scholar] [CrossRef]
- Trevisan, C.M.; Montagna, E.; de Oliveira, R.; Christofolini, D.M.; Barbosa, C.P.; Crandall, K.A.; Bianco, B. Kisspeptin/GPR54 system: What do we know about its role in human reproduction? Cell. Physiol. Biochem. 2018, 49, 1259–1276. [Google Scholar] [CrossRef]
- Hofmann, T.; Elbelt, U.; Haas, V.; Ahnis, A.; Klapp, B.F.; Rose, M.; Stengel, A. Plasma Kisspeptin and Ghrelin Levels Are Independently Correlated with Physical Activity in Patients with Anorexia Nervosa. Appetite 2017, 108, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Csabafi, K.; Jászberényi, M.; Bagosi, Z.; Lipták, N.; Telegdy, G. Effects of kisspeptin-13 on the hypothalamic-pituitary-adrenal axis, thermoregulation, anxiety and locomotor activity in rats. Behav. Brain Res. 2013, 241, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Csabafi, K.; Telegdy, G. Neurotransmissions of antidepressant-like effects of kisspeptin-13. Regul. Pept. 2013, 180, 1–4. [Google Scholar] [CrossRef] [PubMed]
Manic Symptoms | Depressive Symptoms | Productive Symptoms |
---|---|---|
Mood enhancement Agitation Shortening of nighttime sleep Appetite change Attention deficits Undertaking a wide variety of activities Taking risky behaviors Acceleration of the train of thoughts Increased sexual energy | Depressed mood Decreased energy/fatigue Decline in activity Loss of interest Prolongation of nighttime sleep Appetite change Anhedonia Suicidal thoughts and attempts Self-harm Hygiene negligence Withdrawal from peer relationships | Delusions Hallucinations of any modality Pseudohallucinations of any modality |
Study Group (Mean; 95% CI) | Control Group (Mean; 95% CI) | p-Value | |
---|---|---|---|
PNX | 1.59; (1.38–1.79) | 1.15; (1.1–1.2) | p = 0.21 |
Nesfatin-1 | 1.42; (1.38–1.46) | 1.81; (1.5–2.11) | p < 0.00000001 ** |
SPX | 365.1; (271.09–458.92) | 116.7; (69.6–163.9) | p = 0.007 * |
Kisspeptin | 67.7; (18.6–116.75) | 54.8; (39.2–70.4) | p = 0.31 |
Manic Episode (Mean; 95% CI) | Depressive Episode (Mean; 95% CI) | Control Group (Mean; 95% CI) | p-Value DEP vs. Mania | |
---|---|---|---|---|
PNX | 1.69 (1.43–1.94) | 1.47 (1.12–1.82) | 1.15; (1.1–1.2) | p > 0.05 |
Nesfatin-1 | 1.42 (1.36–1.48) | 1.42 (1.36–1.48) | 1.81; (1.5–2.11) | p > 0.05 |
SPX | 348.48 (238.32–458.64) | 365.01 (188–541.9) | 116.7; (69.6–163.9) | p > 0.05 |
Kisspeptin | 38.9 (25.4–52.4) | 130.77 (0–294.4) | 54.8; (39.2–70.4) | p = 0.04 * |
Beginning of Treatment (Mean; 95% CI) | After 6 Weeks (Mean; 95% CI) | p-Value | |
---|---|---|---|
PNX | 1.13 (0.86–1.39) | 1.58 (1.21–1.94) | p = 0.012 |
SPX | 660.14 (477.6–842.6) | 814.32 (618.12–1010.44) | p = 0.03 |
Kisspeptin | 217.7 (−97.2–532.6) | 166.48 (−35.4–368.4) | p = 0.81 |
Nesfatine-1 | PNX | SPX | Kisspeptin | |
---|---|---|---|---|
Nesfatine-1 | n/s | n/s | n/s | |
PNX | r = −0.044409 | n/s | n/s | |
SPX | r = 0.536088 | r = −0.001385 | n/s | |
Kisspeptin | r = 0.260870 | r = −0.242148 | r = 0.426915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichoń, L.; Pałasz, A.; Wilczyński, K.M.; Suszka-Świtek, A.; Żmijowska, A.; Jelonek, I.; Janas-Kozik, M. Evaluation of Peripheral Blood Concentrations of Phoenixin, Spexin, Nesfatin-1 and Kisspeptin as Potential Biomarkers of Bipolar Disorder in the Pediatric Population. Biomedicines 2024, 12, 84. https://doi.org/10.3390/biomedicines12010084
Cichoń L, Pałasz A, Wilczyński KM, Suszka-Świtek A, Żmijowska A, Jelonek I, Janas-Kozik M. Evaluation of Peripheral Blood Concentrations of Phoenixin, Spexin, Nesfatin-1 and Kisspeptin as Potential Biomarkers of Bipolar Disorder in the Pediatric Population. Biomedicines. 2024; 12(1):84. https://doi.org/10.3390/biomedicines12010084
Chicago/Turabian StyleCichoń, Lena, Artur Pałasz, Krzysztof M. Wilczyński, Aleksandra Suszka-Świtek, Anna Żmijowska, Ireneusz Jelonek, and Małgorzata Janas-Kozik. 2024. "Evaluation of Peripheral Blood Concentrations of Phoenixin, Spexin, Nesfatin-1 and Kisspeptin as Potential Biomarkers of Bipolar Disorder in the Pediatric Population" Biomedicines 12, no. 1: 84. https://doi.org/10.3390/biomedicines12010084
APA StyleCichoń, L., Pałasz, A., Wilczyński, K. M., Suszka-Świtek, A., Żmijowska, A., Jelonek, I., & Janas-Kozik, M. (2024). Evaluation of Peripheral Blood Concentrations of Phoenixin, Spexin, Nesfatin-1 and Kisspeptin as Potential Biomarkers of Bipolar Disorder in the Pediatric Population. Biomedicines, 12(1), 84. https://doi.org/10.3390/biomedicines12010084