The Impact of Biomarkers on the Early Detection of Acute Mesenteric Ischemia
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
3. Results
3.1. I-FABP (Intestinal Fatty Acid-Binding Protein)
- Compared to healthy individuals, using a cutoff value of 144.9 pg/mL, I-FABP showed a sensitivity of 71.4% and a specificity of 94.6% [9];
- I-FABP has the potential for diagnosing vascular-related intestinal ischemia but not for nonvascular intestinal ischemia caused by strangulation, hernia, volvulus, or intussusception. A cutoff value of 9.1 ng/mL demonstrated a sensitivity of 83.3% and a specificity of 89.1% [12];
- Differentiating between strangulated small bowel obstruction (SBO) and simple SBO, a cutoff value of 6.5 ng/mL provided a sensitivity of 71.4% and a specificity of 93.8% [13];
- I-FABP can serve as a predictor of mortality within 28 days in septic shock patients with intestinal ischemia, using a cutoff value of 19.9 ng/mL, with a sensitivity of 61.5% and a specificity of 86.4% [14];
- In combination with other indicators, I-FABP at a cutoff value of 9.7 ng/mL exhibited a sensitivity of 70.4% and a specificity of 86% in the diagnosing of pathological pneumatosis intestinalis (PI), which was interpreted as a condition where bowel ischemia requires immediate intervention, irrespective of the underlying pathophysiological processes. In the univariate analysis of this study, portal venous gas was associated with pathologic PI while there was no association in the multivariate analysis. Other radiographic observations, such as free air, ascites, thickened bowel walls, bowel dilation, and stranding, were not associated with pathologic PI [15];
- In experimentally controlled one-hour ischemia, I-FABP demonstrated a cutoff value of 1.3 ng/mL, a sensitivity of 89%, and a specificity of 100% in detecting irreversible intestinal ischemia–reperfusion damage [16].
3.2. D-Dimer
3.3. L-Lactate
- L-lactate cutoff was 3 mmol/L, sensitivity 90.91%, specificity 64.29%;
- D-dimer cutoff was 1.73 μg/mL FEU, sensitivity 83.33%, specificity 85.71%;
- CRP cutoff was 19.4 mg/L, sensitivity 92.86%, specificity 69.23%;
- Neutrophil–lymphocyte ratio (NLR) cutoff was 12.5 × 103/μL, sensitivity 69.23%, and specificity 85.71% [36].
3.4. Ischemia Modified Albumin (IMA)
3.5. Alpha Glutathione S-Transferase (αGST)
3.6. Interleukin 6 (IL-6)
3.7. Citrulline
3.8. Procalcitonin (PCT)
3.9. Blood Count
3.10. Neutrophil–Lymphocyte Ratio (NLR)
3.11. Mean Platelet Volume (MPV)
3.12. Platelet–Lymphocyte Ratio (PLR)
3.13. Red-Cell Distribution Width (RDW)
3.14. Delta Neutrophil Index (DNI) and Immature Granulocytes (IGs)
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
60I | 60 min lasting ischemia |
AAP | acute abdominal pain |
AF | atrial fibrillation |
αGST | alpha glutathione S-transferase |
AMAE | acute mesenteric arterial embolism |
AMSBO | acute mechanical small bowel obstruction |
AMAT | acute mesenteric arterial thrombosis |
AMI | acute mesenteric ischemia |
AUTO-Dimer | automated quantitative immuno-turbidimetric D-dimer |
AVD | arteriovenous difference |
B | blood |
BN | bowel necrosis |
CABA | cobalt–albumin binding assay |
CG | Control Group |
CH | Switzerland |
CK | creatinine kinase |
CO | Colombia |
CPK | creatinine phosphokinase |
CTA | computed tomography angiography |
DE | Germany |
DNI | delta neutrophil index |
ETD | extended tissue damages |
FEU | fibrinogen equivalent units |
GI | Gastro-intestinal |
I-BABP | ileal bile acid-binding protein |
IC | ischemic colitis |
IE CHR | ion-exchange chromatography |
I-FABP | intestinal fatty acid-binding protein |
IGs | immature granulocytes |
II | intestinal ischemia |
IL | interleukin |
IL-6 | interleukin 6 |
IMA | ischemia modified albumin |
IMFA | immunofiltration assay |
IR | ischemia reperfusion |
IRA | interventional radiology approach |
KSM | kinetic spectrophotometric method |
LDH | lactate dehydrogenase |
LEU | leukocyte |
LR | literature reference |
LTIA | latex turbidimetric immunoassay |
Lab. | laboratory |
L-FABP | urinary L-type fatty acid-binding protein |
MI | mesenteric infarction |
MO | mortality |
MOF | multiple organ failure |
MPV | mean platelet volume |
MVT | mesenteric venous thrombosis |
ND | necrotic damages |
NL | Netherlands |
NLR | Neutrophil–lymphocyte ratio |
NOMI | nonocclusive mesenteric ischemia |
NPV | negative predictive value |
NVBN | nonvascular bowel necrosis |
PCT | procalcitonin |
PE | physical examination |
PI | pneumatosis intestinalis |
PLR | platelet–lymphocyte ratio |
QIMFA | quantitative immunofiltration assay |
RDW | red-cell distribution width |
RI | reversible ischemia |
SAPS II | Simplified Acute Physiology Score |
SBI | small bowel ischemia |
SBO | small bowel obstruction |
SLBT | standardized laboratory blood test |
SMA | superior mesenteric artery |
TEO | thromboembolic occlusion disease |
TINIA | Turbidimetric inhibition immunoassay |
TRACE | time-resolved amplified cryptate emission |
U | urine |
US | ultrasound |
USA | United States of America |
WBC | white blood count |
References
- Gnanapandithan, K.; Feuerstadt, P. Review Article: Mesenteric Ischemia. Curr. Gastroenterol. Rep. 2020, 22, 17. [Google Scholar] [CrossRef]
- Bala, M.; Kashuk, J.; Moore, E.E.; Kluger, Y.; Biffl, W.; Gomes, C.A.; Ben-Ishay, O.; Rubinstein, C.; Balogh, Z.J.; Civil, I.; et al. Acute mesenteric ischemia: Guidelines of the World Society of Emergency Surgery. World J. Emerg. Surg. 2017, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, J.D.; Boyle, C.M.; Schwartz, L.B. The mesenteric circulation. Anatomy and physiology. Surg. Clin. N. Am. 1997, 77, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Haglund, U.; Bergqvist, D. Intestinal ischemia—The basics. Langenbeck’s Arch. Surg. 1999, 384, 233–238. [Google Scholar] [CrossRef] [PubMed]
- van Petersen, A.S.; Kolkman, J.J.; Meerwaldt, R.; Huisman, A.B.; van der Palen, J.; Zeebregts, C.J.; Geelkerken, R.H. Mesenteric stenosis, collaterals, and compensatory blood flow. J. Vasc. Surg. 2014, 60, 111–119.e2. [Google Scholar] [CrossRef]
- Coco, D.; Leanza, S. Acute Mesenteric Ischemia: A Challenging Diagnostic Disease—Four Cases Reports and Literature Review (AMI). Adv. Mol. Imaging 2018, 8, 59–68. [Google Scholar] [CrossRef]
- Clair, D.G.; Beach, J.M. Mesenteric Ischemia. N. Engl. J. Med. 2016, 374, 959–968. [Google Scholar] [CrossRef]
- Pierce, J.D.; McCabe, S.; White, N.; Clancy, R.L. Biomarkers: An important clinical assessment tool. Am. J. Nurs. 2012, 112, 52–58. [Google Scholar] [CrossRef]
- Uzun, O.; Turkmen, S.; Eryigit, U.; Mentese, A.; Turkyilmaz, S.; Turedi, S.; Karahan, S.C.; Gunduz, A. Can Intestinal Fatty Acid Binding Protein (I-FABP) Be A Marker in the Diagnosis of Abdominal Pathology? Turk. J. Emerg. Med. 2014, 14, 99–103. [Google Scholar] [CrossRef]
- Kanda, T.; Fujii, H.; Tani, T.; Murakami, H.; Suda, T.; Sakai, Y.; Ono, T.; Hatakeyama, K. Intestinal fatty acid-binding protein is a useful diagnostic marker for mesenteric infarction in humans. Gastroenterology 1996, 110, 339–343. [Google Scholar] [CrossRef]
- Kanda, T.; Tsukahara, A.; Ueki, K.; Sakai, Y.; Tani, T.; Nishimura, A.; Yamazaki, T.; Tamiya, Y.; Tada, T.; Hirota, M.; et al. Diagnosis of ischemic small bowel disease by measurement of serum intestinal fatty acid-binding protein in patients with acute abdomen: A multicenter, observer-blinded validation study. J. Gastroenterol. 2011, 46, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Sekine, K.; Funaoka, H.; Yamazaki, M.; Shimizu, M.; Hayashida, K.; Kitano, M. Diagnostic performance of plasma biomarkers in patients with acute intestinal ischaemia. Br. J. Surg. 2014, 101, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Kittaka, H.; Akimoto, H.; Takeshita, H.; Funaoka, H.; Hazui, H.; Okamoto, M.; Kobata, H.; Ohishi, Y. Usefulness of intestinal fatty acid-binding protein in predicting strangulated small bowel obstruction. PLoS ONE 2014, 9, e99915. [Google Scholar] [CrossRef] [PubMed]
- Sekino, M.; Funaoka, H.; Sato, S.; Okada, K.; Inoue, H.; Yano, R.; Matsumoto, S.; Ichinomiya, T.; Higashijima, U.; Matsumoto, S.; et al. Intestinal fatty acid-binding protein level as a predictor of 28-day mortality and bowel ischemia in patients with septic shock: A preliminary study. J. Crit. Care 2017, 42, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Sekine, K.; Funaoka, H.; Funabiki, T.; Yamazaki, M.; Orita, T.; Hayashida, K.; Kitano, M. Diagnostic value of intestinal fatty acid-binding protein for pneumatosis intestinalis. Am. J. Surg. 2016, 212, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Schellekens, D.H.S.M.; Grootjans, J.; Dello, S.A.W.G.; van Bijnen, A.A.; van Dam, R.M.; Dejong, C.H.C.; Derikx, J.P.M.; Buurman, W.A. Plasma intestinal fatty acid-binding protein levels correlate with morphologic epithelial intestinal damage in a human translational ischemia-reperfusion model. J. Clin. Gastroenterol. 2014, 48, 253–260. [Google Scholar] [CrossRef]
- van der Voort, P.H.J.; Westra, B.; Wester, J.P.J.; Bosman, R.J.; van Stijn, I.; Haagen, I.-A.; Loupatty, F.J.; Rijkenberg, S. Can serum L-lactate, D-lactate, creatine kinase and I-FABP be used as diagnostic markers in critically ill patients suspected for bowel ischemia. BMC Anesthesiol. 2014, 14, 111. [Google Scholar] [CrossRef]
- Güzel, M.; Sözüer, E.M.; Salt, Ö.; İkizceli, İ.; Akdur, O.; Yazıcı, C. Value of the serum I-FABP level for diagnosing acute mesenteric ischemia. Surg. Today 2014, 44, 2072–2076. [Google Scholar] [CrossRef]
- Shi, H.; Wu, B.; Wan, J.; Liu, W.; Su, B. The role of serum intestinal fatty acid binding protein levels and D-lactate levels in the diagnosis of acute intestinal ischemia. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 373–378. [Google Scholar] [CrossRef]
- Salim, S.Y.; Young, P.Y.; Churchill, T.A.; Khadaroo, R.G. Urine intestinal fatty acid-binding protein predicts acute mesenteric ischemia in patients. J. Surg. Res. 2017, 209, 258–265. [Google Scholar] [CrossRef]
- Bourcier, S.; Ulmann, G.; Jamme, M.; Savary, G.; Paul, M.; Benghanem, S.; Lavillegrand, J.-R.; Schmidt, M.; Luyt, C.-E.; Maury, E.; et al. A multicentric prospective observational study of diagnosis and prognosis features in ICU mesenteric ischemia: The DIAGOMI study. Ann. Intensive Care 2022, 12, 113. [Google Scholar] [CrossRef]
- Cronk, D.R.; Houseworth, T.P.; Cuadrado, D.G.; Herbert, G.S.; McNutt, P.M.; Azarow, K.S. Intestinal fatty acid binding protein (I-FABP) for the detection of strangulated mechanical small bowel obstruction. Curr. Surg. 2006, 63, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Thuijls, G.; van Wijck, K.; Grootjans, J.; Derikx, J.P.M.; van Bijnen, A.A.; Heineman, E.; Dejong, C.H.C.; Buurman, W.A.; Poeze, M. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann. Surg. 2011, 253, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, A.; Guedj, K.; Curac, S.; Hercend, C.; Bendavid, C.; Gault, N.; Tran-Dinh, A.; Ronot, M.; Nicoletti, A.; Bouhnik, Y.; et al. Accuracy of citrulline, I-FABP and D-lactate in the diagnosis of acute mesenteric ischemia. Sci. Rep. 2021, 11, 18929. [Google Scholar] [CrossRef] [PubMed]
- Acosta, S.; Nilsson, T.K.; Björck, M. D-dimer testing in patients with suspected acute thromboembolic occlusion of the superior mesenteric artery. Br. J. Surg. 2004, 91, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Icoz, G.; Makay, O.; Sozbilen, M.; Gurcu, B.; Caliskan, C.; Firat, O.; Kurt, Z.; Ersin, S. Is D-dimer a predictor of strangulated intestinal hernia? World J. Surg. 2006, 30, 2165–2169. [Google Scholar] [CrossRef]
- Block, T.; Nilsson, T.K.; Björck, M.; Acosta, S. Diagnostic accuracy of plasma biomarkers for intestinal ischaemia. Scand. J. Clin. Lab. Investig. 2008, 68, 242–248. [Google Scholar] [CrossRef]
- Yang, K.; Wang, W.; Zhang, W.-H.; Chen, X.-L.; Zhou, J.; Chen, X.-Z.; Zhang, B.; Chen, Z.-X.; Zhou, Z.-G.; Hu, J.-K. The Combination of D-Dimer and Peritoneal Irritation Signs as a Potential Indicator to Exclude the Diagnosis of Intestinal Necrosis. Medicine 2015, 94, e1564. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Huang, M.-K.; How, C.-K.; Hsu, T.-F.; Chen, J.-D.; Chern, C.-H.; Yen, D.H.-T.; Huang, C.-I. D-dimer in patients with suspected acute mesenteric ischemia. Am. J. Emerg. Med. 2009, 27, 975–979. [Google Scholar] [CrossRef]
- Acosta, S.; Nilsson, T.K.; Björck, M. Preliminary study of D-dimer as a possible marker of acute bowel ischaemia. Br. J. Surg. 2001, 88, 385–388. [Google Scholar] [CrossRef]
- Gün, B.; Yolcu, S.; Değerli, V.; Elçin, G.; Tomruk, Ö.; Erdur, B.; Parlak, İ. Multi-detector angio-CT and the use of D-dimer for the diagnosis of acute mesenteric ischemia in geriatric patients. Ulus. Travma Acil Cerrahi Derg. 2014, 20, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Akyildiz, H.; Akcan, A.; Oztürk, A.; Sozuer, E.; Kucuk, C.; Karahan, I. The correlation of the D-dimer test and biphasic computed tomography with mesenteric computed tomography angiography in the diagnosis of acute mesenteric ischemia. Am. J. Surg. 2009, 197, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Studer, P.; Vaucher, A.; Candinas, D.; Schnüriger, B. The value of serial serum lactate measurements in predicting the extent of ischemic bowel and outcome of patients suffering acute mesenteric ischemia. J. Gastrointest. Surg. 2015, 19, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Ambe, P.C.; Kang, K.; Papadakis, M.; Zirngibl, H. Can the Preoperative Serum Lactate Level Predict the Extent of Bowel Ischemia in Patients Presenting to the Emergency Department with Acute Mesenteric Ischemia? Biomed. Res. Int. 2017, 2017, 8038796. [Google Scholar] [CrossRef] [PubMed]
- Conde Monroy, D.M.; Girón Arango, F.; Rodríguez Moreno, L.; Rey Chaves, C.E.; Donoso-Samper, A.; Nassar, R.; Isaza-Restrepo, A. Succoring the challenging acute mesenteric ischemia: Feasibility of lactate dehydrogenase for evaluation of intestinal necrosis extension and mortality. Ann. Med. Surg. 2022, 84, 104922. [Google Scholar] [CrossRef]
- Destek, S.; Yabacı, A.; Abik, Y.N.; Gül, V.O.; Değer, K.C. Akut mezenterik iskemi hastalarında L-laktat, D-dimer, lökosit, CRP ve nötrofil/lenfosit oranının prediktif ve prognostik değeri. Ulus. Travma Acil Cerrahi Derg. 2020, 26, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Collange, O.; Lopez, M.; Lejay, A.; Pessaux, P.; Ouattara, A.; Dewitte, A.; Rimmele, T.; Girardot, T.; Arnaudovski, D.; Augustin, P.; et al. Serum lactate and acute mesenteric ischaemia: An observational, controlled multicentre study. Anaesth. Crit. Care Pain Med. 2022, 41, 101141. [Google Scholar] [CrossRef]
- Gunduz, A.; Turedi, S.; Mentese, A.; Karahan, S.C.; Hos, G.; Tatli, O.; Turan, I.; Ucar, U.; Russell, R.M.; Topbas, M. Ischemia-modified albumin in the diagnosis of acute mesenteric ischemia: A preliminary study. Am. J. Emerg. Med. 2008, 26, 202–205. [Google Scholar] [CrossRef]
- Polk, J.D.; Rael, L.T.; Craun, M.L.; Mains, C.W.; Davis-Merritt, D.; Bar-Or, D. Clinical utility of the cobalt-albumin binding assay in the diagnosis of intestinal ischemia. J. Trauma 2008, 64, 42–45. [Google Scholar] [CrossRef]
- Delaney, C.P.; O’Neill, S.; Manning, F.; Fitzpatrick, J.M.; Gorey, T.F. Plasma concentrations of glutathione S-transferase isoenzyme are raised in patients with intestinal ischaemia. Br. J. Surg. 1999, 86, 1349–1353. [Google Scholar] [CrossRef]
- Gearhart, S.L.; Delaney, C.P.; Senagore, A.J.; Banbury, M.K.; Remzi, F.H.; Kiran, R.P.; Fazio, V.W. Prospective assessment of the predictive value of alpha-glutathione S-transferase for intestinal ischemia. Am. Surg. 2003, 69, 324–329, discussion 329. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, F.; Cunningham, H.; Pontikes, L.; Parsons, L.; Klassen, J. Elevated serum interleukin 6 levels in patients with acute intestinal ischemia. Hepatogastroenterology. 2003, 50, 419–421. [Google Scholar] [PubMed]
- Kulu, R.; Akyildiz, H.; Akcan, A.; Oztürk, A.; Sozuer, E. Plasma citrulline measurement in the diagnosis of acute mesenteric ischaemia. ANZ J. Surg. 2017, 87, E57–E60. [Google Scholar] [CrossRef] [PubMed]
- Cosse, C.; Sabbagh, C.; Browet, F.; Mauvais, F.; Rebibo, L.; Zogheib, E.; Chatelain, D.; Kamel, S.; Regimbeau, J.M. Serum value of procalcitonin as a marker of intestinal damages: Type, extension, and prognosis. Surg. Endosc. 2015, 29, 3132–3139. [Google Scholar] [CrossRef] [PubMed]
- Toptas, M.; Akkoc, İ.; Savas, Y.; Uzman, S.; Toptas, Y.; Can, M.M. Novel hematologic inflammatory parameters to predict acute mesenteric ischemia. Blood Coagul. Fibrinolysis 2016, 27, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Aktimur, R.; Cetinkunar, S.; Yildirim, K.; Aktimur, S.H.; Ugurlucan, M.; Ozlem, N. Neutrophil-to-lymphocyte ratio as a diagnostic biomarker for the diagnosis of acute mesenteric ischemia. Eur. J. Trauma Emerg. Surg. 2016, 42, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Tanrıkulu, Y.; Şen Tanrıkulu, C.; Sabuncuoğlu, M.Z.; Temiz, A.; Köktürk, F.; Yalçın, B. Diagnostic utility of the neutrophil-lymphocyte ratio in patients with acute mesenteric ischemia: A retrospective cohort study. Ulus. Travma Acil Cerrahi Derg. 2016, 22, 344–349. [Google Scholar] [CrossRef]
- Türkoğlu, A.; Gül, M.; Oğuz, A.; Bozdağ, Z.; Ülger, B.V.; Yılmaz, A.; Aldemir, M. Mean platelet volume: Is it a predictive parameter in diagnosis of acute mesenteric ischemia? Int. Surg. 2015, 100, 962–965. [Google Scholar] [CrossRef]
- Degerli, V.; Ergin, I.; Duran, F.Y.; Ustuner, M.A.; Duran, O. Could Mean Platelet Volume Be a Reliable Indicator for Acute Mesenteric Ischemia Diagnosis? A Case-Control Study. Biomed. Res. Int. 2016, 2016, 9810280. [Google Scholar] [CrossRef]
- Altintoprak, F.; Arslan, Y.; Yalkin, O.; Uzunoglu, Y.; Ozkan, O.V. Mean platelet volume as a potential prognostic marker in patients with acute mesenteric ischemia-retrospective study. World J. Emerg. Surg. 2013, 8, 49. [Google Scholar] [CrossRef]
- Bilgiç, İ.C.; Gelecek, S.; Ozmen, M.M.; Kasapoglu, B. The association of elevated mean platelet volume with the outcome of acute mesenteric ischemia. Blood Coagul. Fibrinolysis 2015, 26, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Augène, E.; Lareyre, F.; Chikande, J.; Guidi, L.; Ballaith, A.; Bossert, J.-N.; Pelletier, Y.; Caradu, C.; Hassen-Khodja, R.; Raffort, J. Platelet to lymphocyte ratio as a predictive factor of 30-day mortality in patients with acute mesenteric ischemia. PLoS ONE 2019, 14, e0219763. [Google Scholar] [CrossRef] [PubMed]
- Kisaoglu, A.; Bayramoglu, A.; Ozogul, B.; Atac, K.; Emet, M.; Atamanalp, S.S. Sensitivity and specificity of red cell distribution width in diagnosing acute mesenteric ischemia in patients with abdominal pain. World J. Surg. 2014, 38, 2770–2776. [Google Scholar] [CrossRef] [PubMed]
- Durak, D.; Turhan, V.B.; Alkurt, E.G.; Tutan, M.B.; Şahiner, I.T. The role of immature granulocyte count and delta neutrophil index in the early prediction of mesenteric ischemia. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4238–4243. [Google Scholar] [CrossRef]
- Cudnik, M.T.; Darbha, S.; Jones, J.; Macedo, J.; Stockton, S.W.; Hiestand, B.C. The diagnosis of acute mesenteric ischemia: A systematic review and meta-analysis. Acad. Emerg. Med. 2013, 20, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Bala, M.; Catena, F.; Kashuk, J.; de Simone, B.; Gomes, C.A.; Weber, D.; Sartelli, M.; Coccolini, F.; Kluger, Y.; Abu-Zidan, F.M.; et al. Acute mesenteric ischemia: Updated guidelines of the World Society of Emergency Surgery. World J. Emerg. Surg. 2022, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Peoc’h, K.; Nuzzo, A.; Guedj, K.; Paugam, C.; Corcos, O. Diagnosis biomarkers in acute intestinal ischemic injury: So close, yet so far. Clin. Chem. Lab. Med. 2018, 56, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Gollin, G.; Marks, C.; Marks, W.H. Intestinal fatty acid binding protein in serum and urine reflects early ischemic injury to the small bowel. Surgery 1993, 113, 545–551. [Google Scholar]
- Piton, G.; Capellier, G. Biomarkers of gut barrier failure in the ICU. Curr. Opin. Crit. Care 2016, 22, 152–160. [Google Scholar] [CrossRef]
- Weitz, J.I.; Fredenburgh, J.C.; Eikelboom, J.W. A Test in Context: D-Dimer. J. Am. Coll. Cardiol. 2017, 70, 2411–2420. [Google Scholar] [CrossRef]
- Keating, L.; Benger, J.R.; Beetham, R.; Bateman, S.; Veysey, S.; Kendall, J.; Pullinger, R. The PRIMA study: Presentation ischaemia-modified albumin in the emergency department. Emerg. Med. J. 2006, 23, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, B.; Kocak, S.; Defne Dundar, Z.; Girisgin, S.; Cander, B.; Gul, M.; Doseyici, S.; Mehmetoglu, I.; Kemal Sahin, T. Diagnostic value of ischemia-modified albumin in acute coronary syndrome and acute ischemic stroke. Pak. J. Med. Sci. 2013, 29, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Abboud, H.; Labreuche, J.; Meseguer, E.; Lavallee, P.C.; Simon, O.; Olivot, J.-M.; Mazighi, M.; Dehoux, M.; Benessiano, J.; Steg, P.G.; et al. Ischemia-modified albumin in acute stroke. Cerebrovasc. Dis. 2007, 23, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Evennett, N.J.; Petrov, M.S.; Mittal, A.; Windsor, J.A. Systematic review and pooled estimates for the diagnostic accuracy of serological markers for intestinal ischemia. World J. Surg. 2009, 33, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Karahalil, B.; Yağar, S.; Ozin, Y. Release of alpha-glutathione S-transferase (alpha-GST) and hepatocellular damage induced by Helicobacter pylori and eradication treatment. Curr. Drug Saf. 2007, 2, 43–46. [Google Scholar] [CrossRef]
- Santos, A.C.C.D.; Matos, A.; Raimundo, M.; Madureira, A.I.; Malcato, E.; Côrte-Real, H.; Gameiro, J.; Nobre, Â.; Bicho, M.; Almeida, E. Alpha-gst as a tubular biomarker in early diagnosis of acute kidney injury in cardiac surgery. J. Hypertens. 2021, 39, e111. [Google Scholar] [CrossRef]
- Khurana, S.; Corbally, M.T.; Manning, F.; Armenise, T.; Kierce, B.; Kilty, C. Glutathione S-transferase: A potential new marker of intestinal ischemia. J. Pediatr. Surg. 2002, 37, 1543–1548. [Google Scholar] [CrossRef]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 2011, 1813, 878–888. [Google Scholar] [CrossRef]
- DeLegge, M.H. Chapter 7–Enteral Access and Enteral Nutrition in Patients with Short Bowel Syndrome. In Adult Short Bowel Syndrome: Nutritional, Medical, and Surgical Management; Corrigan, M.L., Roberts, K., Steiger, E., Eds.; Academic Press: London, UK; San Diego, CA, USA, 2019; pp. 81–96. ISBN 978-0-12-814330-8. [Google Scholar]
- Piton, G.; Manzon, C.; Cypriani, B.; Carbonnel, F.; Capellier, G. Acute intestinal failure in critically ill patients: Is plasma citrulline the right marker? Intensive Care Med. 2011, 37, 911–917. [Google Scholar] [CrossRef]
- Curis, E.; Nicolis, I.; Moinard, C.; Osowska, S.; Zerrouk, N.; Bénazeth, S.; Cynober, L. Almost all about citrulline in mammals. Amino Acids 2005, 29, 177–205. [Google Scholar] [CrossRef]
- Fragkos, K.C.; Forbes, A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2018, 6, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Piton, G.; Manzon, C.; Monnet, E.; Cypriani, B.; Barbot, O.; Navellou, J.-C.; Carbonnel, F.; Capellier, G. Plasma citrulline kinetics and prognostic value in critically ill patients. Intensive Care Med. 2010, 36, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Sanchis-Gomar, F. Procalcitonin in inflammatory bowel disease: Drawbacks and opportunities. World J. Gastroenterol. 2017, 23, 8283–8290. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.L.; Ceonzo, K.A.; Shaffer, L.A.; Takahashi, K.; Rother, R.P.; Reenstra, W.R.; Buras, J.A.; Stahl, G.L. Gastrointestinal ischemia-reperfusion injury is lectin complement pathway dependent without involving C1q. J. Immunol. 2005, 174, 6373–6380. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, E.; Bayramoğlu, A.; Atamanalp, S.S. Sensitivity and Specificity of the Platelet-Lymphocyte Ratio and the Neutrophil-Lymphocyte Ratio in Diagnosing Acute Mesenteric Ischemia in Patients Operated on for the Diagnosis of Mesenteric Ischemia: A Retrospective Case-Control Study. J. Investig. Surg. 2020, 33, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Grootjans, J.; Lenaerts, K.; Derikx, J.P.M.; Matthijsen, R.A.; de Bruïne, A.P.; van Bijnen, A.A.; van Dam, R.M.; Dejong, C.H.C.; Buurman, W.A. Human intestinal ischemia-reperfusion-induced inflammation characterized: Experiences from a new translational model. Am. J. Pathol. 2010, 176, 2283–2291. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.S.; Lopez, M.F.; Fleming, M.D.; Rivera, A.; Martin, F.M.; Welsh, M.L.; Boyd, A.; Doctrow, S.R.; Burakoff, S.J. SOD2-deficiency anemia: Protein oxidation and altered protein expression reveal targets of damage, stress response, and antioxidant responsiveness. Blood 2004, 104, 2565–2573. [Google Scholar] [CrossRef]
- Gasparyan, A.Y.; Ayvazyan, L.; Mikhailidis, D.P.; Kitas, G.D. Mean platelet volume: A link between thrombosis and inflammation? Curr. Pharm. Des. 2011, 17, 47–58. [Google Scholar] [CrossRef]
- Kiliçli-Camur, N.; Demirtunç, R.; Konuralp, C.; Eskiser, A.; Başaran, Y. Could mean platelet volume be a predictive marker for acute myocardial infarction? Med. Sci. Monit. 2005, 11, CR387-92. [Google Scholar]
Inclusion Criteria | Exclusion Criteria |
---|---|
- Adult patients diagnosed with acute mesenteric ischemia, intestinal ischemia, small bowel obstruction, bowel necrosis, reversible/irreversible bowel ischemia, a mesenteric infarction. - English, Slovenian, Serbo-Croatian, Macedonian language - Freely available studies | - Patients < 18 years - Studies in other languages - Animal studies - Supplements - Reviews - Letters to the editor - Case studies |
Studied Marker | Country | Study Population (n) | Design | Sample Tissue | Method of Detection | Cutoff | Sensitivity (Sen) | Specificity (Spe) | Major Findings | Reference Test | LR |
---|---|---|---|---|---|---|---|---|---|---|---|
I-FABP | Turkey | AAP (171), from which 7 with AMI, Control group: 130 Total: 301 | Cohort, Prospective, Single Center | Blood | ELISA | AMI: 144.9 pg/mL | AMI: 71.4% | AMI: 94.6% | Serum I-FABPs were significantly higher when compared to those of healthy volunteers. | PE, US, CT | [9] |
I-FABP | Japan | AAP (61), from which 5 with MI. Control group: 35 Total: 96 | Cohort, Retrospective, Multicenter | Blood | ELISA | MI: 100 ng/mL | MI: 100% | MI: / | I-FABP is a useful biochemical marker for the accurate diagnosis of mesenteric infarction | Laboratory findings, Histopathologic findings | [10] |
I-FABP | Japan | AAP (361) from which 52 with SBI. Control group: 119 Total: 361 | Cohort, Prospective, Multicenter trial | Blood | ELISA | / | 78.8% | 73.8% | Serum I-FABP is potentially useful for identification of patients who are at risk of small bowel ischemia. | Laparotomy | [11] |
I-FABP | Japan | Suspect for AMI (208) from which 66 had II. Control group: 122 Total: 208 | Cohort, Prospective, Single Center | Blood | ELISA | 9.1 ng/mL | 83.3% | 89.1% | I-FABP shows promise for detecting vascular ischemia. | PE, Laboratory findings, CT, Laparotomy, Histopathologic findings | [12] |
I-FABP | Japan | AAP (287) from which 21 diagnosed with SBO Control group: 16 Total: 287 | Cohort Retrospective Single Center | Blood | ELISA | 6.5 ng/mL | 71.4% | 93.8% | I-FABP levels are a useful marker for discriminating between strangulated SBO and simple SBO in patients with SBO. | PE, CT, Surgery | [13] |
I-FABP | Japan | Septic shock patients (57) from which 16 with intestinal ischemia Total: 57 | Cohort, Prospective, Single Center | Blood | ELISA | 19.9 ng/mL | 61.5% | 86.4% | Elevated I-FABP at ICU admission can serve as a 28-day mortality predictor in adult patients. | Laboratory findings, CT, Surgery | [14] |
I-FABP | Japan | Suspected PI (70), from which 27 confirmed Total: 70 | Cohort, Prospective, Single center | Blood | ELISA | PI: 9.7 ng/mL | PI: 70.4% | PI: 86% | High I-FABP value, in combination with other indicators, can be clinically useful for pathologic PI. | PE, Laboratory Findings, CT, Surgery | [15] |
I-FABP | NL | Experimental IR (27). Control group: 5 Total: 32 | Cohort, Experimental, Cross Sectional, Single center | AVD | ELISA | 60I: 1.3 ng/mL | 60I: 90% | 60I: 100% | Systemic I-FABP levels appear valuable in detecting irreversible intestinal ischemia-reperfusion damage. | Histopathologic findings, immunohistochemistry | [16] |
I-FABP L-Lactate CPK D-Lactate | NL | AAP (120) from which 23 with II. Control group: 21 Total: 120 | Cohort Prospective | Blood | ELISA SLBT KSM | / 2.2 mmol/L / / | / 78% / / | / 48% / / | I-FABP, L-Lactate, and D-Lactate levels were higher in patients with proven or likely ischemia. | PE, Laboratory findings CT, Laparotomy, Histopathologic findings | [17] |
I-FABP D-dimer Leu | Turkey | AAP (57), from which 30 with AMI. Control Group: 20 Total: 77 | Cohort, Prospective, Single Center | Blood | ELISA | AMI: 90 pg/mL 130 μg/mL 11,042 mm3 | AMI: 90% 93% 90% | AMI: 100% 100% 100% | I-FABP level is a more reliable parameter for diagnosis of AMI compared to Leu and D-dimer elevation. | Histopathological findings, Surgery | [18] |
I-FABP D-lactate CPK CRP LDH WBC | China | AAP (272), from which 39 with II. Control group: 37 Total: 309 | Cohort, Prospective, Singe Center | Blood | ELISA | 93.03 ng/mL 34.28 μg/mL / / / / | II: 76.2% 66.7% 31.7% 68.9% 61.6% 61.6% | II: 74.8% 85.9% 79.2% 34.2% 77.3% 36.5% | Serum I-FABP and D-lactate can improve the diagnosis of II in patients with acute abdomen who are at risk. | Histopathologic findings, CT angiography | [19] |
I-FABP IL-6, L-Lactate | Canada | AMI (13) Control group: 5 Total: 18 | Cohort, Prospective, Single Center | Urine Blood | ELISA | U: 2.52 ng/mL B: 0.04 ng/mL 0.04 ng/mL 3.20 ng/mL | U: 91.7% B: 92.3% 100% 58.3% | U: 80% B: 40% 60% 75% | Urine I-FABP is a noninvasive biomarker with high specificity and sensitivity for AMI | PE, Laboratory findings, Histopathologic findings, Surgery | [20] |
I-FABP Citrulline Arginine | France | NOMI (33) patients. Control group: 28 Total: 61 | Prospective, observational Multicenter | Blood | ELISA IE CHR IE CHR | 3114 pg/mL / / | 70% / / | 85% / / | Elevated I-FABP was significantly associated with intestinal necrosis. | PE, Laboratory Findings, CT, GI Endoscopy, Laparatomy. | [21] |
I-FABP | USA | AMSBO (21), from which 14 underwent laparotomy Total: 21 | Cohort, Prospective, Single Center | Urine Blood | ELISA | / | U: 100% B: 100% | U: 83% B: 78% | I-FABP is a sensitive marker for ischemia in mechanical small bowel obstruction. | PE, Laboratory findings Laparotomy, CT | [22] |
I-FABP L-FABP I-BABP | NL | AAP (52) from which 22 with II. Control group: 24 Total: 52 | Cohort, Prospective, Single center | Urine Blood | ELISA | U: 551 pg/mL B: 268 pg/mL U: 180 ng/mL B: 78 ng/mL U: 5 ng/mL B: 7 ng/mL | U: 90% B: 68% U: 80% B: 59% U: 70% B: 64% | U: 89% B: 71% U: 78% B: 88% U: 89% B: 64% | Plasma and urine, I-FABP and L-FABP, and urinary I-BABP levels can improve early diagnosis of II. | Laparotomy, Histopathologic findings, Surgery, Autopsy | [23] |
I-FABP D-lactate Citrulline | France | AMI (50) Control group: 79 Total: 129 | Cohort, prospective, Multicenter | Blood | ELISA KSM IE CHR | 974 ng/L 0.012 mmol/L 16.6 μmol/L | 15% 98% 56% | 95% 17% 84% | I-FABP, D-lactate, and Citrulline failed to differentiate AMI from acute abdominal controls. | PE, Laboratory Findings, CT, IRA, Laparotomy, Histopathologic findings | [24] |
D-dimer | Sweden | AAP (101), from which 9 with acute SMA occlusion. Control group (92) Total: 101 | Cohort, Prospective, Single center | Blood | QIMFA | 0.3 mg/L | 100% | 36% | D-dimer testing may be useful for the exclusion of patients with suspected acute SMA occlusion | PE, Laboratory findings, CT, Laparotomy, Histopathologic findings | [25] |
D-dimer | Turkey | Nontraumatic acute abdominal gastrointestinal disorders (159), from which 33 had II. Control group (166) Total: 159 | Cohort Prospective, Single center | Blood | ELISA | / | 85% | 41% | An elevated D-dimer level on admission had a high sensitivity for identifying patients with intestinal ischemia, although it had a low specificity. | Laboratory findings, Laparotomy | [26] |
D-dimer | Sweden | AAP (71), from which 10 with II. Control group (61) Total: 71 | Cohort, Prospective, Single center | Blood | 1.QIMFA 2.LTIA 3.TINIA 4.AUTO Dimer | 0.3 mg/L 0.6 mg/L 0.9 mg/L | 100% 80% 60% | 44% 75% 82% | D-dimer may be used as an exclusion test for intestinal ischemia but lacks specificity. | PE, Laboratory findings, CT, Laparotomy, Histopathologic findings | [27] |
D-dimer | China | Suspected for BN (274), from which 99 with necrosis, Control group (158) Total: 274 | Cohort, Retrospective, Single Center | Blood | QIMFA | RI: 1.65 mg/L BN: 1965 mg/L | 84% 84% | 70% 45.6% | Combination of D-dimer and peritoneal irritational signals could help generate reliable NPV. | PE, Laboratory findings, CT, Histopathology findings, Surgery | [28] |
D-dimer | Taiwan | AAP (67) from which 23 with AMI. Control group (44) Total: 67 | Cohort, Prospective, Single Center | Blood | LTIA | 1.0 μg FEU/mL | 96% | 18% | Measurement of D-dimer levels can be of value for a small decrease in the likelihood of AMI, when the result is low. | PE, Laboratory findings, CT, Laparotomy, Histopathologic findings | [29] |
D-dimer | Sweden | Suspect for acute bowel ischemia (14), from which 6 with AMI. Control group (8) Total: 14 | Pilot, Prospective, Multicenter | Blood | IMFA | / | / | / | In patients with suspected TEO of the SMA, D-dimer indicates presence of acute bowel ischemia, whatever the cause. | Laparotomy | [30] |
D-dimer | Turkey | Suspected for AMI (230) from which 23 with AMI confirmed. Control group (203) Total: 230 | Cohort, Cross-sectional, Single center | Blood | LTIA | / | AMI: 84.6% | AMI: 47.9% | Patients suspected of having AMI with unclear clinical results and patients with D-dimer levels above 1000 ng/mL and AF should undergo further evaluation. | PE, Laboratory findings, CT, | [31] |
D-dimer | Turkey | Suspected for AMI (47), from which 28 had AMI. Control group (19) Total: 47 | Cohort, Prospective, Single Center | Blood | QIMFA | 3.17 μg FEU/mL | 94.7% | 78.6% | D-dimer in combination with CTA is useful, highly sensitive test for early diagnosis of AMI | PE, Laboratory findings, CT, Laparotomy | [32] |
L-lactate | CH | Confirmed AMI (91) in which 209 lactate measurements were made Total: 91 | Retrospective, Single Center | Blood | SLBT | / | / | / | Serum lactate is of limited value, even when measured repeatedly in evaluation of severely ill patients with AMI | PE, Laboratory findings, Medical History, Histopathology findings, Surgery | [33] |
L-lactate | DE | AAP (75), from which 38 with AMI. Total: 75 | Cohort, Retrospective, Single Center | Blood | SLBT | / | / | / | A linear association between serum lactate and extent of bowel ischemia could not be established. | PE, Laboratory findings, US, RTG, CT, Laparotomy | [34] |
L-lactate | CO | Confirmed for AMI (74) Total: 74 | Retrospective, Cross sectional, Single Center | Blood | SLBT | 3.8 mmol/L | 81% | 76% | A useful prognostic tool in terms of mortality in patients with AMI. | PE, Laboratory findings, Laparotomy | [35] |
L- lactate D-Dimer CRP NLR | Turkey | Confirmed for AMI (44) Total: 44 | Retrospective, Single Center | Blood | SLBT | L-Lactate: 3 mmol/L D-Dimer: 1.73 μg/mL FEU CRP: 19.4 mg/L NLR: 12.5 × 103/μL | L-Lactate: 90.91% D-Dimer: 83.33% CRP: 92.86% NLR: 69.23% | L-Lactate: 64.29% D-Dimer: 85.71% CRP: 69.23% NLR: 85.71% | CRP is an easily accessible, inexpensive, effective, and valuable addition to screening of various subtypes of AMI. | PE, Laboratory findings, Laparotomy | [36] |
L-lactate | France | AMI (137) Control group: 137 Total: 274 | Ancillary, retrospective, observational, Multicenter | Blood | SLBT | 5.1 mmol/L | 64% | 87% | No link was observed between lactate levels and the diagnosis or outcomes of AMI. | PE, Laboratory Findings, SAPS II score, Laparatomy | [37] |
IMA | Turkey | 7 patients with confirmed AMI. Control group: 7 Total: 14 | Case Control, Single Center | Blood | CABA | / | / | / | Statistically significant increase of IMA values was seen in AMI population | Laboratory Findings | [38] |
IMA | USA | Confirmed II (12), out of 26 patients for explorative laparotomy Control group: 14 Total: 26 | Pilot, Prospective, Single Center | Blood | CABA | / | 100% | 85.7% | The CABA tool can be a useful tool for clinicians in the risk stratification of II. | PE, Laboratory findings, Surgery | [39] |
αGST | Ireland | AAP (26) from which 12 with AMI. Control group: 14 Total: 26 | Cohort, Prospective, Single Center | Blood | ELISA | 4 ng/mL | 100% | 86% | αGST may reliably predict the presence or absence of AMI. | PE, Laboratory findings, Radiological findings, Surgery, Autopsy | [40] |
αGST | USA | Suspected for AMI (58), from which 35 were confirmed. Control group: 23 Total: 58 | Cohort, Prospective, Single Center | Blood | ELISA | / | 97% | 74% | A normal αGST and WBC may exclude presence of AMI. | PE, Laboratory findings, Radiological findings, Surgery | [41] |
IL-6 | Canada | Confirmed AMI patients compared with other diagnoses Total: 46 | Cohort, Prospective, Single Center | Blood | ELISA | 20.000 pg/mL | 38% | 100% | Serum IL-6 may prove useful in diagnosing patients with AMI | PE, Laboratory findings, Surgery | [42] |
Citrulline D-dimer L-lactate | Turkey | AAP (48), from which 23 with AMI. Control group: 25 Total: 48 | Cohort, Prospective, Single Center | Blood | IE CHR / / | 15.82 nmol/L 2126 μg/L 3.1 mmol/L | 39.13% 78.26% 39.13% | 100% 80% 96% | The measurement of plasma citrulline may improve our ability in differential diagnosis of patients with acute abdomen. | PE, Laboratory findings, Surgery | [43] |
PCT | France | MI or IC (128) with either, from which 34 with ischemic damages, 94 with ND. Total: 128 | Cohort, Retrospective, Multicenter | Blood | TRACE | ND: 2.473 ng/mL ETD: 3.884 ng/mL Mo: 7.87 ng/mL | ND: 94.6% ETD: 76.3% Mo: 72% | ND: 68% ETD: 84.2% Mo: 79.6% | PCT could be used as a marker for necrosis, especially in case of extended damage, and reflects a patient’s prognosis. | PE, Laboratory findings, Surgery, Histopathology findings | [44] |
NLR PLR CRP | Turkey | AMI (46) Control group: 46 Total: 92 | Cohort, Retrospective, Single Center | Blood | SLBT | 4.6 / / | 77% / / | 72% / / | Increased NLR and PLR were independent predictors of AMI. | PE, Laboratory findings, Surgery | [45] |
NLR RDW WBC MPV | Turkey | Underwent laparotomy or bowel resection (70) for AMI. Control group: 123 Total: 193 | Cohort, Retrospective, Single Center | Blood | SLBT | 9.9 13% 14.4 /μL 10.5 fL | 74.3% 67.1% 57.1% 60% | 82.9% 82.1% 69.3% 71.5% | High NLR value seems to be a valuable diagnostic marker of AMI. | PE, Laboratory findings, Surgery, Histopathology findings | [46] |
NLR WBC CRP RDW MPV | Turkey | Abdominal pain (182), from which 58 AMI, 62 NVBN. Control group: 62 Total: 182 | Cohort Retrospective, Cross-sectional Multicenter | Blood | SLBT | AMI-CG: 5.21 AMI-NVBN: 7.85 | AMI-CG: 74.14% AMI-NVBN: 50.00% | AMI-CG: 88.71% AMI-NVBN: 66.13% | NLR aids in the diagnosis of AMI and can be used to distinguish from NVBN. | PE, Laboratory findings, Surgery | [47] |
MPV | Turkey | AMI (95) Control group: 90 Total: 185 | Cohort, Retrospective, Single Center | Blood | SLBT | 8.1 fL | 83% | 80% | High mean platelet volume values support the diagnosis of AMI. | PE, Laboratory findings, Surgery | [48] |
MPV | Turkey | AMI (41) Control group: 82 Total: 123 | Cohort, Case control, Retrospective, Single Center | Blood | SLBT | 8.6 fL | 70% | 53% | MPV may be used as an indicator of AMI only if the patient has no concomitant diseases. | PE, Laboratory findings, Radiological findings, Surgery | [49] |
MPV | Turkey | AMI (15), comparing survival versus dead Control group: 15 Total: 30 | Cohort, Retrospective, Single Center | Blood | SLBT | / | / | / | MPV can be beneficial in predicting patients with poor prognosis and in the planning of reoperations. | PE, Laboratory findings, Surgery | [50] |
MPV | Turkey | AMI (61), comparing survival versus dead Control group: 26 Total: 61 | Cohort, Retrospective, Single Center | Blood | SLBT | / | 60% | 73.08% | Elevated MPV is associated with a worse outcome in patients with AMI. | PE, Laboratory findings, Surgery | [51] |
PLR NLR | France | AMI (106) Total: 106 | Cohort, Retrospective, Single Center | Blood | SLBT | / | / | / | PLR, but not NLR, is a predictive factor of 30-day mortality in patients with AMI. | PE, Laboratory findings, CT, Surgery | [52] |
RDW WBC LDH BUN | Turkey | AAP (169), from which AMI (49) Control group: 110 Total: 159 | Cohort, Case-control, Retrospective, Single Center | Blood | SLBT | 15.04% 12,900 /μL 299.5 U/L 19.9 mg/dL | 40.8% 71.4% 87.8% 71.4% | 81.2% 81.2% 76% 60.4% | RDW on admission is of marginal help to diagnose AMI patients with abdominal pain | PE, Laboratory findings, CT, Surgery | [53] |
DNI IG WBC LDH CRP | Turkey | AMI (85) Control Group: 163 Total: 248 | Cohort, Retrospective, Single Center | Blood | SLBT | 1.4 0.225 8.59 214 12.6 | 70.6 74.1 60 70.6 64.7 | 96.9 98.2 62.6 60.7 64.4 | IG and DNI are reliable markers that do not require additional expenses | PE, Laboratory findings, Surgery | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafirovski, A.; Zafirovska, M.; Kuhelj, D.; Pintar, T. The Impact of Biomarkers on the Early Detection of Acute Mesenteric Ischemia. Biomedicines 2024, 12, 85. https://doi.org/10.3390/biomedicines12010085
Zafirovski A, Zafirovska M, Kuhelj D, Pintar T. The Impact of Biomarkers on the Early Detection of Acute Mesenteric Ischemia. Biomedicines. 2024; 12(1):85. https://doi.org/10.3390/biomedicines12010085
Chicago/Turabian StyleZafirovski, Aleksandar, Marija Zafirovska, Dimitrij Kuhelj, and Tadeja Pintar. 2024. "The Impact of Biomarkers on the Early Detection of Acute Mesenteric Ischemia" Biomedicines 12, no. 1: 85. https://doi.org/10.3390/biomedicines12010085
APA StyleZafirovski, A., Zafirovska, M., Kuhelj, D., & Pintar, T. (2024). The Impact of Biomarkers on the Early Detection of Acute Mesenteric Ischemia. Biomedicines, 12(1), 85. https://doi.org/10.3390/biomedicines12010085