The Expression of Kisspeptins and Matrix Metalloproteinases in Extragenital Endometriosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Immunofluorescence
2.2. RNA Extraction and Quantitative Polymerase Chain Reaction
2.3. Scratch Testing
2.4. Cell Invasion Assays
2.5. Analysis and Statistics
3. Results
3.1. Immunohistochemistry
3.2. KISS1, KISS1R, MMP-2, and MMP-9 mRNA Gene Expressions in Ectopic and Normal Endometriums
3.3. Scratch Testing
3.4. Cell Invasion Assays
3.5. Immunocytochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP-1 | Activating protein-1 |
eEC | Endometrial epithelial cells |
eSF | Stromal fibroblasts |
GnRH | Gonadotropin-releasing hormone |
HPG axis | Hypothalamic–pituitary–gonadal axis |
KISS1 | Kisspeptin |
KISS1R | Kisspeptin receptor |
LH | Luteinizing hormone |
MMP | Matrix metallopeptidase |
NFκB | Nuclear factor kappa B |
Sp1 | Specificity protein 1 |
TIMP | Tissue inhibitor of metalloproteinase |
VEGF | Vascular endothelial growth factor |
References
- Smolarz, B.; Szyłło, K.; Romanowicz, H. Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). Int. J. Mol. Sci. 2021, 22, 10554. [Google Scholar] [CrossRef] [PubMed]
- Kianpour, M.; Nematbakhsh, M.; Ahmadi, S.M. Serum and peritoneal fluid levels of vascular endothelial growth factor in women with endometriosis. Int. J. Fertil. Steril. 2013, 7, 96–99. [Google Scholar] [PubMed]
- Berlanda, N.; Versellini, P.; Fedele, L. The outcomes of repeat surgery for recurrent symptomatic endometriosis. Curr. Opin. Obstet. Gynecol. 2010, 22, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.; Dos Anjos Cordeiro, J.M.; da Silva Santana, L.; Santos, B.R.; Barbosa, E.M.; da Silva, T.Q.M.; Correa, J.M.X.; Niella, R.V.; Lavor, M.S.L.; da Silva, E.B.; et al. Kisspeptin/Kiss1r system and angiogenic and immunological mediators at the maternal-fetal interface of domestic cats. Biol. Reprod. 2021, 105, 217–231. [Google Scholar] [CrossRef]
- Xie, Q.; Kang, Y.; Zhang, C.; Xie, Y.; Wang, C.; Liu, J.; Yu, C.; Zhao, H.; Huang, D. The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction. Front. Endocrinol. 2022, 13, 925206. [Google Scholar] [CrossRef]
- Pitsos, M.; Kanakas, N. The role of matrix metalloproteinases in the pathogenesis of endometriosis. Reprod. Sci. 2009, 16, 717–726. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef]
- Timologou, A.; Zafrakas, M.; Grimbizis, G.; Miliaras, D.; Kotronis, K.; Stamatopoulos, P.; Tarlatzis, B.C. Immunohistochemical expression pattern of metastasis suppressors KAI1 and KISS1 in endometriosis and normal endometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 199, 110–115. [Google Scholar] [CrossRef]
- Barbe, A.M.; Berbets, A.M.; Davydenko, I.S.; Koval, H.D.; Yuzko, V.O.; Yuzko, O.M. Expression and Significance of Matrix Metalloproteinase-2 and Matrix Metalloproteinas-9 in Endometriosis. J. Med. Life. 2020, 13, 314–320. [Google Scholar] [CrossRef]
- Nisolle, M.; Donnez, J. Reprint of: Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil. Steril. 2019, 112 (Suppl. S1), e125–e136. [Google Scholar] [CrossRef]
- Nash, K.T.; Phadke, P.A.; Navenot, J.M.; Hurst, D.R.; Accavitti-Loper, M.A.; Sztul, E.; Vaidya, K.S.; Frost, A.R.; Kappes, J.C.; Peiper, S.C.; et al. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J. Natl. Cancer Inst. 2007, 99, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Ye, J.; Li, M.; Zhu, Z. The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target. Biomolecules 2021, 11, 1739. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Ye, L.; Mason, M.D.; Jiang, W.G. The Kiss-1/Kiss-1R complex as a negative regulator of cell motility and cancer metastasis (Review). Int. J. Mol. Med. 2013, 32, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Ohtaki, T.; Shintani, Y.; Honda, S. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001, 411, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Tombulturk, F.K.; Soydas, T.; Sarac, E.Y. Regulation of MMP 2 and MMP 9 expressions modulated by AP-1 (c-jun) in wound healing: Improving role of Lucilia sericata in diabetic rats. Acta Diabetol. 2019, 56, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, C.; Wang, X.Y. MicroRNA-129 and -335 Promote Diabetic Wound Healing by Inhibiting Sp1-Mediated MMP-9 Expression. Diabetes 2018, 67, 1627–1638. [Google Scholar] [CrossRef]
- Li, Y.F.; Xu, X.B.; Chen, X.H.; Wei, G.; He, B.; Wang, J.D. The nuclear factor-κB pathway is involved in matrix metalloproteinase-9 expression in RU486-induced endometrium breakdown in mice. Hum. Reprod. 2012, 27, 2096–2106. [Google Scholar] [CrossRef]
- West, A.; Vojta, P.J.; Welch, D.R.; Weissman, B.E. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1). Genomics 1998, 54, 145–148. [Google Scholar] [CrossRef]
- Rodichkina, V.R.; Kleimenova, T.S.; Drobintseva, A.O. Immunohistochemical verification of kisspeptins and their receptor in human fetal organs during prenatal development. Russ. J. Dev. Biol. 2017, 48, 169–175. [Google Scholar] [CrossRef]
- Takino, T.; Koshikawa, N.; Miyamori, H.; Tanaka, M.; Sasaki, T.; Okada, Y.; Seiki, M.; Sato, H. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 2003, 22, 4617–4626. [Google Scholar] [CrossRef]
- Baba, T.; Kang, H.S.; Hosoe, Y.; Kharma, B.; Abiko, K.; Matsumura, N.; Hamanishi, J.; Yamaguchi, K.; Yoshioka, Y.; Koshiyama, M.; et al. Menstrual cyclic change of metastin/GPR54 in endometrium. Med. Mol. Morphol. 2015, 48, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Skorupskaite, K.; George, J.T.; Anderson, R.A. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum. Reprod. Update 2014, 20, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Abdelkareem, A.O.; Alotaibi, F.T.; AlKusayer, G.M.; Ait-Allah, A.S.; Rasheed, S.M.; Helmy, Y.A.; Allaire, C.; Peng, B.; Yong, P.J.; Bedaiwy, M.A. Immunoreactivity of Kisspeptin and Kisspeptin Receptor in Eutopic and Ectopic Endometrial Tissue of Women With and Without Endometriosis. Reprod. Sci. 2020, 27, 1731–1741. [Google Scholar] [CrossRef] [PubMed]
- Kleimenova, T.S.; Drobintseva, A.O.; Polyakova, V.O.; Tsypurdeyeva, A.A. Expression of kisspeptin and matrix metalloproteinases in human endometrial culture: A study of invasive and migratory properties. J. Obstet. Women’s Dis. 2019, 68, 43–50. [Google Scholar] [CrossRef]
- Domnina, A.P.; Petrosyan, M.A. Cellular composition of cultures derived from endometrial tissue. Cell Tissue Biol. 2020, 62, 231–237. [Google Scholar]
- Paltsev, M.A.; Polyakova, V.O.; Kvetnoy, I.M.; Anderson, G.; Kvetnaia, T.V.; Linkova, N.S.; Paltseva, E.M.; Rubino, R.; De Cosmo, S.; De Cata, A.; et al. Morphofunctional and signaling molecules overlap of pineal gland and thymus: Role and significance in aging. Oncotarget 2016, 7, 11972–11983. [Google Scholar] [CrossRef]
- Carbone, A.; Linkova, N.; Polyakova, V.; Mironova, E.; Hashimova, U.; Gadzhiev, A.; Safikhanova, K.; Kvetnaia, T.; Krylova, J.; Tarquinin, R.; et al. Melatonin and sirtuins in buccal epithelium: Potential biomarkers of aging and age-related pathologies. Int. J. Mol. Sci. 2020, 21, 8134. [Google Scholar] [CrossRef]
- Donnez, O.; Orellana, R.; Van Kerk, O.; Dehoux, J.P.; Donnez, J.; Dolmans, M.M. Invasion process of induced deep nodular endometriosis in an experimental baboon model: Similarities with collective cell migration? Fertil. Steril. 2015, 104, 491–497.e2. [Google Scholar] [CrossRef]
- Jun, E.; Oh, J.; Lee, S.; Jun, H.R.; Seo, E.H.; Jang, J.Y.; Kim, S.C. Method Optimization for Extracting High-Quality RNA From the Human Pancreas Tissue. Transl. Oncol. 2018, 11, 800–807. [Google Scholar] [CrossRef]
- da Conceição Braga, L.; Gonçalves, B.O.P.; Coelho, P.L.; da Silva Filho, A.L.; Silva, L.M. Identification of best housekeeping genes for the normalization of RT-qPCR in human cell lines. Acta Histochem. 2022, 124, 151821. [Google Scholar] [CrossRef]
- Ayakannu, T.; Taylor, A.H.; Willets, J.M.; Brown, L.; Lambert, D.G.; McDonald, J.; Davies, Q.; Moss, E.L.; Konje, J.C. Validation of endogenous control reference genes for normalizing gene expression studies in endometrial carcinoma. Mol. Hum. Reprod. 2015, 21, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Zhu, W.J.; Xie, B.G. Von Hippel-Lindau gene expression in human endometrium during menstrual cycle. Mol. Med. Rep. 2014, 9, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Hu, S.; Chen, Y.; Gao, L.; Liu, D.; Guo, H.; Yang, Y. Clinical significance of matrix metalloproteinase-2 in endometrial cancer: A systematic review and meta-analysis. Medicine 2018, 97, e10994. [Google Scholar] [CrossRef] [PubMed]
- Nieman, L.K. Selective progesterone receptor modulators and reproductive health. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Mari, B.; Stoll, I.; Anglard, P. Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J. Biol. Chem. 2002, 277, 25527–25536. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, S.; Murk, W.; Arici, A. Endometriosis and infertility: Epidemiology and evidence-based treatments. Ann. N. Y. Acad. Sci. 2008, 1127, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Tuttlies, F.; Keckstein, J.; Ulrich, U. ENZIAN-Score, eine Klassifikation der tief infiltrierenden Endometriose [ENZIAN-score, a classification of deep infiltrating endometriosis]. Zentralbl Gynakol. 2005, 127, 275–281. [Google Scholar] [CrossRef]
- De Clercq, K.; Hennes, A.; Vriens, J. Isolation of Mouse Endometrial Epithelial and Stromal Cells for In Vitro Decidualization. J. Vis. Exp. 2017, 121, 55168. [Google Scholar]
- Starzinski-Powitz, A.; Handrow-Metzmacher, H.; Kotzian, S. The putative role of cell adhesion molecules in endometriosis: Can we learn from tumour metastasis? Mol. Med. Today 1999, 5, 304–309. [Google Scholar] [CrossRef]
- Krasnyi, A.M.; Sadekova, A.A.; Sefihanov, T.G.; Vtorushina, V.V.; Krechetova, E.G.; Khilkevich, E.G.; Arakelyan, A.S.; Pavlovich, S.V. Soderzhanie tsitokinovIL-6, IL-8, TNF-α, IL-4 i uroven’ ékspressii makrofagami CD86 i CD163 v peritoneal’noĭ zhidkosti imeet obratnuiu korreliatsiiu so stepen’iu tiazhesti naruzhnogo genital’nogo éndometrioza [The content of cytokines IL-6, IL-8, TNF-α, IL-4 and the level of expression in macrophages CD86 and CD163 in peritoneal fluid has a reverse correlation with the degree of severity of external genital endometriosis]. Biomeditsinskaia Khimiia 2019, 65, 432–436. [Google Scholar]
- Wang, X.M.; Ma, Z.Y.; Song, N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α and peritoneal fluid flora were associated with infertility in patients with endometriosis. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2513–2518. [Google Scholar] [PubMed]
- Sarhangi, N.; Mohseni, S.; Aminimoghaddam, S.; Hossein Rashidi, B.; Haghollahi, F.; Qorbani, M.; Mohammad Amoli, M.; Shahrabi-Farahani, M. The Association Analysis of Vascular Endothelial Growth Factor -2549 Insertion/Deletion Variant and Endometriosis Risk. Int. J. Mol. Cell. Med. 2019, 8, 63–68. [Google Scholar]
- Berkes, E.; Bokor, A.; Rigó, J. Az endometriosis korszerû laparoszkópos sebészi kezelése [Current treatment of endometriosis with laparoscopic surgery]. Orvosi Hetil. 2010, 151, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Fritel, X.; Collinet, P.; Revel-Delhom, C.; Canis, M. RPC Endométriose CNGOF-HAS: Objectif, méthode, organisation et limites [CNGOF-HAS Endometriosis guidelines: Aim, method, organisation and limits]. Gynecol. Obstet. Fertil. Senol. 2018, 46, 139–143. [Google Scholar] [PubMed]
- Londero, A.P.; Calcagno, A.; Grassi, T.; Marzinotto, S.; Orsaria, M.; Beltrami, C.A.; Marchesoni, D.; Mariuzzi, L. Survivin, MMP-2, MT1-MMP, and TIMP-2: Their impact on survival, implantation, and proliferation of endometriotic tissues. Virchows Arch. Int. J. Pathol. 2012, 461, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Uzan, C.; Cortez, A.; Dufournet, C.; Fauvet, R.; Siffroi, J.P.; Daraï, E. Eutopic endometrium and peritoneal, ovarian and bowel endometriotic tissues express a different profile of matrix metalloproteinases-2, -3 and -11, and of tissue inhibitor metalloproteinases-1 and -2. Virchows Arch. Int. J. Pathol. 2004, 445, 603–609. [Google Scholar] [CrossRef]
- Curran, S.; Dundas, S.R.; Buxton, J.; Leeman, M.F.; Ramsay, R.; Murray, G.I. Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 8229–8234. [Google Scholar] [CrossRef]
- Gonzalez-Avila, G.; Sommer, B.; Mendoza-Posada, D.A.; Ramos, C.; Garcia-Hernandez, A.A.; Falfan-Valencia, R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit. Rev. Oncol. Hematol. 2019, 137, 57–83. [Google Scholar] [CrossRef]
- Di Nezza, L.A.; Misajon, A.; Zhang, J.; Jobling, T.; Quinn, M.A.; Ostör, A.G.; Nie, G.; Lopata, A.; Salamonsen, L.A. Presence of active gelatinases in endometrial carcinoma and correlation of matrix metalloproteinase expression with increasing tumor grade and invasion. Cancer 2002, 94, 1466–1475. [Google Scholar] [CrossRef]
- Schröpfer, A.; Kammerer, U.; Kapp, M.; Dietl, J.; Feix, S.; Anacker, J. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines. BMC Cancer 2010, 10, 553. [Google Scholar] [CrossRef]
- Puljiz, M.; Puljiz, Z.; Vucemilo, T.; Ramić, S.; Knezević, F.; Culo, B.; Alvir, I.; Tomica, D.; Danolić, D. Prognostic significance of matrix metalloproteinases 2 and 9 in endometrial cancer. Coll. Antropol. 2012, 36, 1367–1372. [Google Scholar] [PubMed]
- Shaco-Levy, R.; Sharabi, S.; Benharroch, D.; Piura, B.; Sion-Vardy, N. Matrix metalloproteinases 2 and 9, E-cadherin, and beta-catenin expression in endometriosis, low-grade endometrial carcinoma and non-neoplastic eutopic endometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 139, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.M.; Huang, H.Y.; Soong, Y.K.; Leung, P.; Wang, H.S. Kisspeptin regulation of human decidual stromal cells motility via FAK-Src intracellular tyrosine kinases. Hum. Reprod. 2019, 34, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
Antibody, Animal Host Corresponding to the Clone | Firm, Clone | Dilution | Concentration | The Time of Incubation | Reactivity |
---|---|---|---|---|---|
Anti-Kisspeptin 1 (KISS1), mouse monoclonal | abcam, EPR23770-189, | 1:1000 |
100 µg at 0.5 mg/mL | 60 min at room temperature | Human |
Anti-KISS1R, rabbit polyclonal | abcam, ab221859 | 1:200 |
100 µg at 0.5 mg/mL | 60 min at room temperature | Mouse, Human |
Anti-MMP-2, mouse monoclonal | abcam, 6E3F8 | 1:200 |
100 µg at 1 mg/mL | 30 min at room temperature | Mouse, Rat, Human |
Anti-MMP-9, rabbit monoclonal | abcam, EP1254 | 1:150 |
100 µg at 1 mg/mL | 60 min at room temperature | Rat, Human, Recombinant Fragment |
Anti-E-cadherin, mouse monoclonal | Novus Biologicals, NBP2-19051 | 1:50 |
100 µg at 1 mg/mL | 15 min at room temperature | Human, Mouse, Monkey |
Anti-Vimentin mouse monoclonal | Dako, M0725 | 1:400 | 60 min at room temperature | Black Ferret, African Green Monkey, Human, Mouse, Rat, Bovine, Swine, Domestic Sheep, Domestic Rabbit |
Gene | Sequence |
---|---|
KISS1 | Forward 5′-TCGCTGGTCATCTACGTCTGC-3′ |
Reverse 5′-GCTGGATGTAGTTGACGAACTTCG-3′ | |
KISS1R | Forward 5′-AACTCACTGGTTTCTTGGCAGCTA-3′ |
Reverse 5′-AGGAGTTCCAGTGTAGTTCGGCA-3′ | |
MMP-2 | Forward 5′-CCATCGAAGCAAAGGTGACAACCGTGA-3′ |
Reverse 5′-GGACTAGTGGCTGGAAGAGTGCTGGC-3′ | |
MMP-9 | Forward 5′-CCATCGATTAGAAGCAGGAGGACCCGA-3′ |
Reverse 5′-GGACTAGTTGGCTAACGCTGCTTTG-3′ |
Group | Relative mRNA Expression | |||
---|---|---|---|---|
KISS1 | KISS1R | MMP-9 | MMP-2 | |
Control | 1.27 ± 0.19 | 1.93 ± 0.20 | 0.33 ± 0.03 | 0.27 ± 0.04 |
Endometriosis stage I | 1.02 ± 0.13 | 1.80 ± 0.17 | 0.40 ± 0.06 | 0.35 ± 0.05 |
Endometriosis stage II | 0.36 ± 0.05 * | 0.40 ± 0.05 * | 1.07 ± 0.11 * | 0.79 ± 0.06 * |
Endometriosis stage III | 0.68 ± 0.09 * | 0.76 ± 0.09 * | 1.12 ± 0.14 * | 1.11 ± 0.12 * |
Endometriosis stage IV | 0.88 ± 0.12 | 0.89 ± 0.12 * | 1.41 ± 0.20 * | 1.17 ± 0.10 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleimenova, T.; Polyakova, V.; Linkova, N.; Drobintseva, A.; Medvedev, D.; Krasichkov, A. The Expression of Kisspeptins and Matrix Metalloproteinases in Extragenital Endometriosis. Biomedicines 2024, 12, 94. https://doi.org/10.3390/biomedicines12010094
Kleimenova T, Polyakova V, Linkova N, Drobintseva A, Medvedev D, Krasichkov A. The Expression of Kisspeptins and Matrix Metalloproteinases in Extragenital Endometriosis. Biomedicines. 2024; 12(1):94. https://doi.org/10.3390/biomedicines12010094
Chicago/Turabian StyleKleimenova, Tatiana, Victoria Polyakova, Natalia Linkova, Anna Drobintseva, Dmitriy Medvedev, and Alexander Krasichkov. 2024. "The Expression of Kisspeptins and Matrix Metalloproteinases in Extragenital Endometriosis" Biomedicines 12, no. 1: 94. https://doi.org/10.3390/biomedicines12010094
APA StyleKleimenova, T., Polyakova, V., Linkova, N., Drobintseva, A., Medvedev, D., & Krasichkov, A. (2024). The Expression of Kisspeptins and Matrix Metalloproteinases in Extragenital Endometriosis. Biomedicines, 12(1), 94. https://doi.org/10.3390/biomedicines12010094