Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review
Abstract
:1. Introduction
2. Metabolic Dysfunction and OA
2.1. Metabolic Syndrome and Its Association with OA
2.2. Adipokines, Inflammation, and OA Pathogenesis
2.3. Role of the Infrapatellar Fat Pad in OA Inflammation
2.4. Impact of Insulin Resistance and Dyslipidemia on Joint Health
3. The GM and OA
3.1. Gut Dysbiosis as a Contributing Factor to OA Development
3.2. Mechanisms Underlying the Influence of GM on OA Pathophysiology
4. Interplay between Metabolic Dysfunction, GM, and OA
4.1. Crosstalk between Metabolic Signaling Pathways and GM in OA
4.2. Impact of Diet and Lifestyle Factors on Metabolic Health, GM, and OA Risk
4.3. Gut Barrier Function and Its Role in Mediating the Relationship between Metabolic Dysfunction and OA
5. Therapeutic Approaches
5.1. Lifestyle Interventions for Improving Metabolic Health and Modifying GM Composition
5.2. Pharmacological and Non-Pharmacological Interventions Targeting Metabolic Dysfunction and GM in OA
5.3. Probiotics, Prebiotics, and Synbiotics as Potential Therapeutic Agents for OA Management
6. Future Directions and Research Perspectives
6.1. Identifying Novel Biomarkers for Predicting OA Risk and Treatment Response
6.2. Personalized Approaches for Targeting Metabolic Dysfunction and GM in OA
6.3. Integration of Multiomics Data to Better Understand the Complex Interplay between Metabolism, GM, and OA
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Coaccioli, S.; Sarzi-Puttini, P.; Zis, P.; Rinonapoli, G.; Varrassi, G. Osteoarthritis: New Insight on Its Pathophysiology. J. Clin. Med. 2022, 11, 6013. [Google Scholar] [CrossRef] [PubMed]
- Koonce, R.C.; Bravman, J.T. Obesity and Osteoarthritis: More than Just Wear and Tear. J. Am. Acad. Orthop. Surg. 2013, 21, 161–169. [Google Scholar] [CrossRef]
- Vincent, T.L.; Alliston, T.; Kapoor, M.; Loeser, R.F.; Troeberg, L.; Little, C.B. Osteoarthritis Pathophysiology: Therapeutic Target Discovery May Require a Multifaceted Approach. Clin. Geriatr. Med. 2022, 38, 193–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.G.; Seale, P.; Furman, D. The Infrapatellar Fat Pad in Inflammaging, Knee Joint Health, and Osteoarthritis. NPJ Aging 2024, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.-J. Osteoarthritis: Toward a Comprehensive Understanding of Pathological Mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, W.; Wang, H.L.; Dai, L.L.; Zong, W.H.; Wang, Y.Z.; Bi, J.; Han, W.; Dong, G.J. Gut Microbiota and Obesity-Associated Osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1257–1265. [Google Scholar] [CrossRef]
- Arora, V.; Singh, G.; O-Sullivan, I.; Ma, K.; Natarajan Anbazhagan, A.; Votta-Velis, E.G.; Bruce, B.; Richard, R.; van Wijnen, A.J.; Im, H.J. Gut-Microbiota Modulation: The Impact of Thegut-Microbiotaon Osteoarthritis. Gene 2021, 785, 145619. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Z.; Sheng, P.; Mobasheri, A. The Role of Metabolism in Chondrocyte Dysfunction and the Progression of Osteoarthritis. Ageing Res. Rev. 2021, 66, 101249. [Google Scholar] [CrossRef]
- Zhuo, Q.; Yang, W.; Chen, J.; Wang, Y. Metabolic Syndrome Meets Osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 729–737. [Google Scholar] [CrossRef]
- Palazzo, C.; Nguyen, C.; Lefevre-Colau, M.M.; Rannou, F.; Poiraudeau, S. Risk Factors and Burden of Osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 134–138. [Google Scholar] [CrossRef]
- Ho, J.; Mak, C.C.H.; Sharma, V.; To, K.; Khan, W. Mendelian Randomization Studies of Lifestyle-Related Risk Factors for Osteoarthritis: A PRISMA Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 11906. [Google Scholar] [CrossRef] [PubMed]
- Cresci, G.A.; Bawden, E. Gut Microbiome: What We Do and Don’t Know. Nutr. Clin. Pr. 2015, 30, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Kitano, S.; Puah, G.R.Y.; Kittelmann, S.; Hwang, I.Y.; Chang, M.W. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem. Rev. 2023, 123, 31–72. [Google Scholar] [CrossRef] [PubMed]
- Heintz-Buschart, A.; Wilmes, P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018, 26, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Clardy, J.; Xavier, R.J. Gut Microbiome Lipid Metabolism and Its Impact on Host Physiology. Cell Host Microbe 2023, 31, 173–186. [Google Scholar] [CrossRef]
- Trevelline, B.K.; Kohl, K.D. The Gut Microbiome Influences Host Diet Selection Behavior. Proc. Natl. Acad. Sci. USA 2022, 119, e2117537119. [Google Scholar] [CrossRef]
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the Gut Microbiome and Mucosal Immune System. Mil. Med. Res. 2017, 4, 14. [Google Scholar] [CrossRef]
- Wiertsema, S.P.; van Bergenhenegouwen, J.; Garssen, J.; Knippels, L.M.J. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients 2021, 13, 886. [Google Scholar] [CrossRef]
- Lau, W.L.; Tran, T.; Rhee, C.M.; Kalantar-Zadeh, K.; Vaziri, N.D. Diabetes and the Gut Microbiome. Semin. Nephrol. 2021, 41, 104–113. [Google Scholar] [CrossRef]
- Sharma, S.; Tripathi, P. Gut Microbiome and Type 2 Diabetes: Where We Are and Where to Go? J. Nutr. Biochem. 2019, 63, 101–108. [Google Scholar] [CrossRef]
- Zhang, L.; Wen, C. Osteocyte Dysfunction in Joint Homeostasis and Osteoarthritis. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Le Clanche, S.; Bonnefont-Rousselot, D.; Sari-Ali, E.; Rannou, F.; Borderie, D. Inter-relations between osteoarthritis and metabolic syndrome: A common link? Biochimie 2016, 121, 238–252. [Google Scholar] [CrossRef]
- Macchione, I.G.; Lopetuso, L.R.; Ianiro, G.; Napoli, M.; Gibiino, G.; Rizzatti, G.; Petito, V.; Gasbarrini, A.; Scaldaferri, F. Akkermansia Muciniphila: Key Player in Metabolic and Gastrointestinal Disorders. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8075–8083. [Google Scholar] [CrossRef]
- Yu, X.H.; Yang, Y.Q.; Cao, R.R.; Bo, L.; Lei, S.F. The Causal Role of Gut Microbiota in Development of Osteoarthritis. Osteoarthr. Cartil. 2021, 29, 1741–1750. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, J.; Li, B.; Zeng, B.; Chou, C.H.; Zheng, X.; Xie, J.; Li, H.; Hao, Y.; Chen, G.; et al. Faecal Microbiota Transplantation from Metabolically Compromised Human Donors Accelerates Osteoarthritis in Mice. Ann. Rheum. Dis. 2020, 79, 646–656. [Google Scholar] [CrossRef]
- Kuang, X.; Chiou, J.; Lo, K.; Wen, C. Magnesium in Joint Health and Osteoarthritis. Nutr. Res. 2021, 90, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Schott, E.M.; Farnsworth, C.W.; Grier, A.; Lillis, J.A.; Soniwala, S.; Dadourian, G.H.; Bell, R.D.; Doolittle, M.L.; Villani, D.A.; Awad, H.; et al. Targeting the Gut Microbiome to Treat the Osteoarthritis of Obesity. JCI Insight 2018, 3, e95997. [Google Scholar] [CrossRef] [PubMed]
- Sampath, S.J.P.; Venkatesan, V.; Ghosh, S.; Kotikalapudi, N. Obesity, Metabolic Syndrome, and Osteoarthritis—An Updated Review. Curr. Obes. Rep. 2023, 12, 308–331. [Google Scholar] [CrossRef]
- Singh, A.; Fraser, B.; Venn, A.; Blizzard, L.; Jones, G.; Ding, C.; Antony, B. Trajectory of Metabolic Syndrome and Its Association with Knee Pain in Middle-Aged Adults. Diabetes Metab. Syndr. 2023, 17, 102916. [Google Scholar] [CrossRef]
- Xie, C.; Chen, Q. Adipokines: New Therapeutic Target for Osteoarthritis? Curr. Rheumatol. Rep. 2019, 21, 71. [Google Scholar] [CrossRef]
- Zeng, N.; Yan, Z.-P.; Chen, X.-Y.; Ni, G.-X. Infrapatellar Fat Pad and Knee Osteoarthritis. Aging Dis. 2020, 11, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Maleitzke, T.; Geissler, S.; Hildebrandt, A.; Fleckenstein, F.N.; Niemann, M.; Fischer, H.; Perka, C.; Duda, G.N.; Winkler, T. Source and Hub of Inflammation: The Infrapatellar Fat Pad and Its Interactions with Articular Tissues during Knee Osteoarthritis. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2022, 40, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Greif, D.N.; Kouroupis, D.; Murdock, C.J.; Griswold, A.J.; Kaplan, L.D.; Best, T.M.; Correa, D. Infrapatellar Fat Pad/Synovium Complex in Early-Stage Knee Osteoarthritis: Potential New Target and Source of Therapeutic Mesenchymal Stem/Stromal Cells. Front. Bioeng. Biotechnol. 2020, 8, 860. [Google Scholar] [CrossRef] [PubMed]
- Mathiessen, A.; Conaghan, P.G. Synovitis in Osteoarthritis: Current Understanding with Therapeutic Implications. Arthritis Res. Ther. 2017, 19, 18. [Google Scholar] [CrossRef]
- Seow, S.R.; Mat, S.; Ahmad Azam, A.; Rajab, N.F.; Safinar Ismail, I.; Singh, D.K.A.; Shahar, S.; Tan, M.P.; Berenbaum, F. Impact of Diabetes Mellitus on Osteoarthritis: A Scoping Review on Biomarkers. Expert. Rev. Mol. Med. 2024, 26, e8. [Google Scholar] [CrossRef]
- Wei, G.; Lu, K.; Umar, M.; Zhu, Z.; Lu, W.W.; Speakman, J.R.; Chen, Y.; Tong, L.; Chen, D. Risk of Metabolic Abnormalities in Osteoarthritis: A New Perspective to Understand Its Pathological Mechanisms. Bone Res. 2023, 11, 63. [Google Scholar] [CrossRef]
- Li, Q.; Wen, Y.; Wang, L.; Chen, B.; Chen, J.; Wang, H.; Chen, L. Hyperglycemia-Induced Accumulation of Advanced Glycosylation End Products in Fibroblast-like Synoviocytes Promotes Knee Osteoarthritis. Exp. Mol. Med. 2021, 53, 1735–1747. [Google Scholar] [CrossRef]
- DeGroot, J.; Verzijl, N.; Wenting-Van Wijk, M.J.G.; Jacobs, K.M.G.; van El, B.; van Roermund, P.M.; Bank, R.A.; Bijlsma, J.W.J.; TeKoppele, J.M.; Lafeber, F.P.J.G. Accumulation of Advanced Glycation End Products as a Molecular Mechanism for Aging as a Risk Factor in Osteoarthritis. Arthritis Rheum. 2004, 50, 1207–1215. [Google Scholar] [CrossRef]
- Martinez-Huedo, M.A.; Villanueva, M.; de Andres, A.L.; Hernandez-Barrera, V.; Carrasco-Garrido, P.; Gil, A.; Martinez, D.; Jiménez-Garcia, R. Trends 2001 to 2008 in Incidence and Immediate Postoperative Outcomes for Major Joint Replacement among Spanish Adults Suffering Diabetes. Eur. J. Orthop. Surg. Traumatol. 2013, 23, 53–59. [Google Scholar] [CrossRef]
- King, K.B.; Findley, T.W.; Williams, A.E.; Bucknell, A.L. Veterans with Diabetes Receive Arthroplasty More Frequently and at a Younger Age. Clin. Orthop. Relat. Res. 2013, 471, 3049–3054. [Google Scholar] [CrossRef]
- Goldring, M.B.; Goldring, S.R. Osteoarthritis. J. Cell Physiol. 2007, 213, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; López de Figueroa, P.; Blanco, F.J.; Mendes, A.F.; Caramés, B. Insulin Decreases Autophagy and Leads to Cartilage Degradation. Osteoarthr. Cartil. 2016, 24, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Van Gemert, Y.; Kruisbergen, N.N.L.; Blom, A.B.; van den Bosch, M.H.J.; van der Kraan, P.M.; Pieterman, E.J.; Princen, H.M.G.; van Lent, P.L.E.M. IL-1β Inhibition Combined with Cholesterol-Lowering Therapies Decreases Synovial Lining Thickness and Spontaneous Cartilage Degeneration in a Humanized Dyslipidemia Mouse Model. Osteoarthr. Cartil. 2023, 31, 340–350. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, Y.H.; Jhun, J.; Na, H.S.; Um, I.G.; Choi, J.W.; Woo, J.S.; Kim, S.H.; Shetty, A.A.; Kim, S.J.; et al. Oxidized LDL Accelerates Cartilage Destruction and Inflammatory Chondrocyte Death in Osteoarthritis by Disrupting the TFEB-Regulated Autophagy-Lysosome Pathway. Immune Netw. 2024, 24, e15. [Google Scholar] [CrossRef]
- Ferreira, H.B.; Melo, T.; Paiva, A.; Domingues, M.d.R. Insights in the Role of Lipids, Oxidative Stress and Inflammation in Rheumatoid Arthritis Unveiled by New Trends in Lipidomic Investigations. Antioxidants 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Ramires, L.C.; Santos, G.S.; Ramires, R.P.; da Fonseca, L.F.; Jeyaraman, M.; Muthu, S.; Lana, A.V.; Azzini, G.; Smith, C.S.; Lana, J.F. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int. J. Mol. Sci. 2022, 23, 1494. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, Y.; Wu, Z. Programming of Metabolic and Autoimmune Diseases in Canine and Feline: Linkage to the Gut Microbiome. Microb. Pathog. 2023, 185, 106436. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Y.; Yao, X.; Li, S.; Wang, G.; Huang, Y.; Yang, Y.; Zhang, A.; Liu, C.; Zhu, D.; et al. Characterizations of the Gut Bacteriome, Mycobiome, and Virome in Patients with Osteoarthritis. Microbiol. Spectr. 2023, 11, e0171122. [Google Scholar] [CrossRef]
- Liu, S.; Li, G.; Zhu, Y.; Xu, C.; Yang, Q.; Xiong, A.; Weng, J.; Yu, F.; Zeng, H. Analysis of Gut Microbiome Composition, Function, and Phenotype in Patients with Osteoarthritis. Front. Microbiol. 2022, 13, 980591. [Google Scholar] [CrossRef]
- Ning, Y.; Hu, M.; Gong, Y.; Huang, R.; Xu, K.; Chen, S.; Zhang, F.; Liu, Y.; Chen, F.; Chang, Y.; et al. Comparative Analysis of the Gut Microbiota Composition between Knee Osteoarthritis and Kashin-Beck Disease in Northwest China. Arthritis Res. Ther. 2022, 24, 129. [Google Scholar] [CrossRef]
- Wei, Z.; Li, F.; Pi, G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front. Cell Infect. Microbiol. 2022, 12, 812596. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, A.; Wang, Q. Dysbiosis of the Gut Microbiome Is a Risk Factor for Osteoarthritis in Older Female Adults: A Case Control Study. BMC Bioinform. 2021, 22, 299. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Liu, K.; Li, J.; Zhang, Y.; Zhang, W.; Doherty, M.; Yang, Z.; Yang, T.; Yang, Y.; Weng, Q.; et al. Gut-Joint Axis in Knee Synovitis: Gut Fungal Dysbiosis and Altered Fungi-Bacteria Correlation Network Identified in a Community-Based Study. RMD Open 2023, 9, e003529. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yang, Z.; Li, J.; Zhang, Y.; Zhang, W.; Doherty, M.; Yang, T.; Yang, Y.; Li, H.; Wang, Y.; et al. Association between Gut Microbiome-Related Metabolites and Symptomatic Hand Osteoarthritis in Two Independent Cohorts. EBioMedicine 2023, 98, 104892. [Google Scholar] [CrossRef] [PubMed]
- Boer, C.G.; Radjabzadeh, D.; Medina-Gomez, C.; Garmaeva, S.; Schiphof, D.; Arp, P.; Koet, T.; Kurilshikov, A.; Fu, J.; Ikram, M.A.; et al. Intestinal Microbiome Composition and Its Relation to Joint Pain and Inflammation. Nat. Commun. 2019, 10, 4881. [Google Scholar] [CrossRef]
- Dahshan, D.; Gallagher, N.; Workman, A.; Perdue, J.; Aikens, J.; Schmicker, T.; Shuler, F.D. Targeting the Gut Microbiome for Inflammation and Pain Management in Orthopedic Conditions. Orthopedics 2022, 45, e226–e234. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Dalbeth, N.; Terkeltaub, R.; Yang, T.; Wang, Y.; Yang, Z.; Li, J.; Wu, Z.; Zeng, C.; et al. Association Between Gut Microbiota and Elevated Serum Urate in Two Independent Cohorts. Arthritis Rheumatol. 2022, 74, 682–691. [Google Scholar] [CrossRef]
- Cho, K.H.; Na, H.S.; Jhun, J.; Woo, J.S.; Lee, A.R.; Lee, S.Y.; Lee, J.S.; Um, I.G.; Kim, S.J.; Park, S.H.; et al. Lactobacillus (LA-1) and Butyrate Inhibit Osteoarthritis by Controlling Autophagy and Inflammatory Cell Death of Chondrocytes. Front. Immunol. 2022, 13, 930511. [Google Scholar] [CrossRef]
- Gleason, B.; Chisari, E.; Parvizi, J. Osteoarthritis Can Also Start in the Gut: The Gut-Joint Axis. Indian. J. Orthop. 2022, 56, 1150–1155. [Google Scholar] [CrossRef]
- Rushing, B.R.; McRitchie, S.; Arbeeva, L.; Nelson, A.E.; Azcarate-Peril, M.A.; Li, Y.Y.; Qian, Y.; Pathmasiri, W.; Sumner, S.C.J.; Loeser, R.F. Fecal Metabolomics Reveals Products of Dysregulated Proteolysis and Altered Microbial Metabolism in Obesity-Related Osteoarthritis. Osteoarthr. Cartil. 2022, 30, 81–91. [Google Scholar] [CrossRef]
- Collins, K.H.; Schwartz, D.J.; Lenz, K.L.; Harris, C.A.; Guilak, F. Taxonomic Changes in the Gut Microbiota Are Associated with Cartilage Damage Independent of Adiposity, High Fat Diet, and Joint Injury. Sci. Rep. 2021, 11, 14560. [Google Scholar] [CrossRef] [PubMed]
- Amin, U.; Jiang, R.; Raza, S.M.; Fan, M.; Liang, L.; Feng, N.; Li, X.; Yang, Y.; Guo, F. Gut-Joint Axis: Oral Probiotic Ameliorates Osteoarthritis. J. Tradit. Complement. Med. 2024, 14, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Piva, F.; Gervois, P.; Karrout, Y.; Sane, F.; Romond, M.B. Gut-Joint Axis: Impact of Bifidobacterial Cell Wall Lipoproteins on Arthritis Development. Nutrients 2023, 15, 4861. [Google Scholar] [CrossRef]
- Liu, Q.; Hao, H.; Li, J.; Zheng, T.; Yao, Y.; Tian, X.; Zhang, Z.; Yi, H. Oral Administration of Bovine Milk-Derived Extracellular Vesicles Attenuates Cartilage Degeneration via Modulating Gut Microbiota in DMM-Induced Mice. Nutrients 2023, 15, 747. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, M.P.; Rodrigues, A.M.; Canhao, H.; Marques, C.; Teixeira, D.; Calhau, C.; Branco, J. Cross-Talk between Diet-Associated Dysbiosis and Hand Osteoarthritis. Nutrients 2020, 12, 3469. [Google Scholar] [CrossRef]
- O-Sullivan, I.; Natarajan Anbazhagan, A.; Singh, G.; Ma, K.; Green, S.J.; Singhal, M.; Wang, J.; Kumar, A.; Dudeja, P.K.; Unterman, T.G.; et al. Lactobacillus Acidophilus Mitigates Osteoarthritis-Associated Pain, Cartilage Disintegration and Gut Microbiota Dysbiosis in an Experimental Murine OA Model. Biomedicines 2022, 10, 1298. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, C.; Xiang, T.; Dou, C.; Sun, D.; Dai, Q.; Ling, Z.; Xu, J.; Luo, F.; Chen, Y. Gold Nanoparticles Exhibit Anti-Osteoarthritic Effects via Modulating Interaction of the “Microbiota-Gut-Joint” Axis. J. Nanobiotechnology 2024, 22, 157. [Google Scholar] [CrossRef]
- Ulici, V.; Kelley, K.L.; Azcarate-Peril, M.A.; Cleveland, R.J.; Sartor, R.B.; Schwartz, T.A.; Loeser, R.F. Osteoarthritis Induced by Destabilization of the Medial Meniscus Is Reduced in Germ-Free Mice. Osteoarthr. Cartil. 2018, 26, 1098–1109. [Google Scholar] [CrossRef]
- Guan, Z.; Jia, J.; Zhang, C.; Sun, T.; Zhang, W.; Yuan, W.; Leng, H.; Song, C. Gut Microbiome Dysbiosis Alleviates the Progression of Osteoarthritis in Mice. Clin. Sci. 2020, 134, 3159–3174. [Google Scholar] [CrossRef]
- Yin, Q.; Gu, J.; Ren, P.; Guan, Z.; Wang, Y.; Bai, R.; Liu, Y. Microbiome Dysbiosis by Antibiotics Protects Cartilage Degradation in OAOP Mice. J. Endocrinol. 2024, 261, e230330. [Google Scholar] [CrossRef]
- Fu, L.; Duan, H.; Cai, Y.; Chen, X.; Zou, B.; Yuan, L.; Liu, G. Moxibustion Ameliorates Osteoarthritis by Regulating Gut Microbiota via Impacting CAMP-Related Signaling Pathway. Biomed. Pharmacother. 2024, 170, 116031. [Google Scholar] [CrossRef] [PubMed]
- Prinz, E.; Schlupp, L.; Dyson, G.; Barrett, M.; Szymczak, A.; Velasco, C.; Izda, V.; Dunn, C.M.; Jeffries, M.A. OA Susceptibility in Mice Is Partially Mediated by the Gut Microbiome, Is Transferrable via Microbiome Transplantation and Is Associated with Immunophenotype Changes. Ann. Rheum. Dis. 2024, 83, 382–393. [Google Scholar] [CrossRef]
- Luo, S.; Chen, Z.; Deng, L.; Chen, Y.; Zhou, W.; Canavese, F.; Li, L. Causal Link between Gut Microbiota, Neurophysiological States, and Bone Diseases: A Comprehensive Mendelian Randomization Study. Nutrients 2023, 15, 3934. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef] [PubMed]
- Nedunchezhiyan, U.; Varughese, I.; Sun, A.R.; Wu, X.; Crawford, R.; Prasadam, I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front. Immunol. 2022, 13, 907750. [Google Scholar] [CrossRef]
- Mukherjee, A.; Das, B. The Role of Inflammatory Mediators and Matrix Metalloproteinases (MMPs) in the Progression of Osteoarthritis. Biomater. Biosyst. 2024, 13, 100090. [Google Scholar] [CrossRef]
- Molnar, V.; Matišić, V.; Kodvanj, I.; Bjelica, R.; Jeleč, Ž.; Hudetz, D.; Rod, E.; Čukelj, F.; Vrdoljak, T.; Vidović, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9208. [Google Scholar] [CrossRef]
- Liu, S.; Deng, Z.; Chen, K.; Jian, S.; Zhou, F.; Yang, Y.; Fu, Z.; Xie, H.; Xiong, J.; Zhu, W. Cartilage Tissue Engineering: From Proinflammatory and Anti-inflammatory Cytokines to Osteoarthritis Treatments. Mol. Med. Rep. 2022, 25, 99. [Google Scholar] [CrossRef]
- Luo, H.; Li, L.; Han, S.; Liu, T. The Role of Monocyte/Macrophage Chemokines in Pathogenesis of Osteoarthritis: A Review. Int. J. Immunogenet. 2024, 51, 130–142. [Google Scholar] [CrossRef]
- Ma Donald, I.J.; Liu, S.-C.; Huang, C.-C.; Kuo, S.-J.; Tsai, C.-H.; Tang, C.-H. Associations between Adipokines in Arthritic Disease and Implications for Obesity. Int. J. Mol. Sci. 2019, 20, 1505. [Google Scholar] [CrossRef]
- Liu, S.; Li, G.; Xu, H.; Wang, Q.; Wei, Y.; Yang, Q.; Xiong, A.; Yu, F.; Weng, J.; Zeng, H. “Cross-Talk” between Gut Microbiome Dysbiosis and Osteoarthritis Progression: A Systematic Review. Front. Immunol. 2023, 14, 1150572. [Google Scholar] [CrossRef]
- Shin, Y.; Han, S.; Kwon, J.; Ju, S.; Choi, T.G.; Kang, I.; Kim, S.S. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients 2023, 15, 4466. [Google Scholar] [CrossRef] [PubMed]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, L.; Yang, X.; Huang, J.; Wang, J.; Wu, X.; Shi, J. Recent Advances in Anti-Inflammation via AMPK Activation. Heliyon 2024, 10, e33670. [Google Scholar] [CrossRef]
- Soares, J.-B.; Pimentel-Nunes, P.; Roncon-Albuquerque, R.; Leite-Moreira, A. The Role of Lipopolysaccharide/Toll-like Receptor 4 Signaling in Chronic Liver Diseases. Hepatol. Int. 2010, 4, 659–672. [Google Scholar] [CrossRef]
- Lian, W.-S.; Wang, F.-S.; Chen, Y.-S.; Tsai, M.-H.; Chao, H.-R.; Jahr, H.; Wu, R.-W.; Ko, J.-Y. Gut Microbiota Ecosystem Governance of Host Inflammation, Mitochondrial Respiration and Skeletal Homeostasis. Biomedicines 2022, 10, 860. [Google Scholar] [CrossRef]
- Lu, Z.-F.; Hsu, C.-Y.; Younis, N.K.; Mustafa, M.A.; Matveeva, E.A.; Al-Juboory, Y.H.O.; Adil, M.; Athab, Z.H.; Abdulraheem, M.N. Exploring the Significance of Microbiota Metabolites in Rheumatoid Arthritis: Uncovering Their Contribution from Disease Development to Biomarker Potential. APMIS acta Pathol. Microbiol. Immunol. Scand. 2024, 132, 382–415. [Google Scholar] [CrossRef]
- Chan, M.M.; Yang, X.; Wang, H.; Saaoud, F.; Sun, Y.; Fong, D. The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis. Nutrients 2019, 11, 1821. [Google Scholar] [CrossRef]
- Kinashi, Y.; Hase, K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front. Immunol. 2021, 12, 673708. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.H.; Ko, Y.F.; Hwang, T.L.; Young, J.D.; Ojcius, D.M. Gut Barrier Disruption and Chronic Disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Jin, X.; Guan, Z.; Liu, S.; Tao, K.; Luo, L. The Gut Microbiota Metabolite Capsiate Regulate SLC2A1 Expression by Targeting HIF-1alpha to Inhibit Knee Osteoarthritis-Induced Ferroptosis. Aging Cell 2023, 22, e13807. [Google Scholar] [CrossRef] [PubMed]
- Biver, E.; Berenbaum, F.; Valdes, A.M.; Araujo de Carvalho, I.; Bindels, L.B.; Brandi, M.L.; Calder, P.C.; Castronovo, V.; Cavalier, E.; Cherubini, A.; et al. Gut Microbiota and Osteoarthritis Management: An Expert Consensus of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Ageing Res. Rev. 2019, 55, 100946. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.O.; Bariguian, F.; Mobasheri, A. The Potential Role of Probiotics in the Management of Osteoarthritis Pain: Current Status and Future Prospects. Curr. Rheumatol. Rep. 2023, 25, 307–326. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Nallakumarasamy, A.; Jain, V.K. Gut Microbiome—Should We Treat the Gut and Not the Bones? J. Clin. Orthop. Trauma 2023, 39, 102149. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Ram, P.R.; Jeyaraman, N.; Yadav, S. The Gut-Joint Axis in Osteoarthritis. Cureus 2023, 15, e48951. [Google Scholar] [CrossRef]
- Alvarez-Herms, J.; Gonzalez, A.; Corbi, F.; Odriozola, I.; Odriozola, A. Possible Relationship between the Gut Leaky Syndrome and Musculoskeletal Injuries: The Important Role of Gut Microbiota as Indirect Modulator. AIMS Public. Health 2023, 10, 710–738. [Google Scholar] [CrossRef]
- Collins, K.H.; Paul, H.A.; Reimer, R.A.; Seerattan, R.A.; Hart, D.A.; Herzog, W. Relationship between Inflammation, the Gut Microbiota, and Metabolic Osteoarthritis Development: Studies in a Rat Model. Osteoarthr. Cartil. 2015, 23, 1989–1998. [Google Scholar] [CrossRef]
- Guido, G.; Ausenda, G.; Iascone, V.; Chisari, E. Gut Permeability and Osteoarthritis, towards a Mechanistic Understanding of the Pathogenesis: A Systematic Review. Ann. Med. 2021, 53, 2380–2390. [Google Scholar] [CrossRef]
- De Sire, A.; de Sire, R.; Petito, V.; Masi, L.; Cisari, C.; Gasbarrini, A.; Scaldaferri, F.; Invernizzi, M. Gut-Joint Axis: The Role of Physical Exercise on Gut Microbiota Modulation in Older People with Osteoarthritis. Nutrients 2020, 12, 574. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Biver, E. Interactions of the Microbiome with Pharmacological and Non-Pharmacological Approaches for the Management of Ageing-Related Musculoskeletal Diseases. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211009018. [Google Scholar] [CrossRef] [PubMed]
- Yerevanian, A.; Soukas, A.A. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr. Obes. Rep. 2019, 8, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.-F.; Bungau, S.G.; Tit, D.M.; Behl, T.; Uivaraseanu, B.; Marcu, M.F. Highlighting the Benefits of Rehabilitation Treatments in Hip Osteoarthritis. Medicina 2022, 58, 494. [Google Scholar] [CrossRef]
- Vitetta, L.; Coulson, S.; Linnane, A.W.; Butt, H. The Gastrointestinal Microbiome and Musculoskeletal Diseases: A Beneficial Role for Probiotics and Prebiotics. Pathogens 2013, 2, 606–626. [Google Scholar] [CrossRef]
- Das, T.K.; Pradhan, S.; Chakrabarti, S.; Mondal, K.C.; Ghosh, K. Current Status of Probiotic and Related Health Benefits. Appl. Food Res. 2022, 2, 100185. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, H.; Jiang, Q.; Zhu, Y.Z. The Gut Microbiome as Non-Invasive Biomarkers for Identifying Overweight People at Risk for Osteoarthritis. Microb. Pathog. 2021, 157, 104976. [Google Scholar] [CrossRef]
- Guss, J.D.; Ziemian, S.N.; Luna, M.; Sandoval, T.N.; Holyoak, D.T.; Guisado, G.G.; Roubert, S.; Callahan, R.L.; Brito, I.L.; van der Meulen, M.C.H.; et al. The Effects of Metabolic Syndrome, Obesity, and the Gut Microbiome on Load-Induced Osteoarthritis. Osteoarthr. Cartil. 2019, 27, 129–139. [Google Scholar] [CrossRef]
- Berthelot, J.M.; Sellam, J.; Maugars, Y.; Berenbaum, F. Cartilage-Gut-Microbiome Axis: A New Paradigm for Novel Therapeutic Opportunities in Osteoarthritis. RMD Open 2019, 5, e001037. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.J. Musculoskeletal Microbiology: The Utility of the Microbiome in Orthopedics. J. Orthop. Res. 2021, 39, 251–257. [Google Scholar] [CrossRef]
- Zemanova, N.; Omelka, R.; Mondockova, V.; Kovacova, V.; Martiniakova, M. Roles of Gut Microbiome in Bone Homeostasis and Its Relationship with Bone-Related Diseases. Biology 2022, 11, 1402. [Google Scholar] [CrossRef]
- Xu, T.; Yang, D.; Liu, K.; Gao, Q.; Liu, Z.; Li, G. Miya Improves Osteoarthritis Characteristics via the Gut-Muscle-Joint Axis According to Multi-Omics Analyses. Front. Pharmacol. 2022, 13, 816891. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yang, Z.; Li, J.; Zhang, Y.; Zhang, W.; Doherty, M.; Yang, T.; Li, H.; Yang, Y.; Li, C.; et al. Multi-Omics Analyses Of Gut Microbiome, Host Metabolism And Symptomatic Hand Osteoarthritis Conducted Within The Xiangya Osteoarthritis Study. Osteoarthr. Cartil. 2023, 31, S61–S62. [Google Scholar] [CrossRef]
Main Findings | Species/Model | Intervention | Outcome | Refs. |
---|---|---|---|---|
The study highlighted the implications of GM for metabolic disorders and autoimmune diseases in canine and feline, including OA. | Canine, Feline | None | Overview of GM’s role in pet diseases | [47] |
Alterations in the GM, including specific bacterial species, fungal species, and viral operational taxonomic units (vOTUs), differed between OA patients and healthy individuals. | Human | None | Revealed GM alterations in OA | [48] |
The study identified differences in GM composition and functionality between OA patients and controls. | Human | None | Indicated the GM’s role in OA development | [49] |
The study compared the GM structure between patients with knee OA and Kashin–Beck disease (KBD), identifying distinct microbial signatures associated with each condition. | Human | None | Revealed distinct GM in OA vs. KBD | [50] |
The study revealed significant alterations in the GM composition and function in older female adults with OA compared to controls. | Human | None | Potential GM targets for OA treatment | [51] |
A case–control study identified dysbiosis of the GM as a risk factor for OA in older female adults, suggesting potential GM targets for therapy. | Human | None | Identified GM dysbiosis as an OA risk factor | [52] |
Gut fungal dysbiosis and an altered fungi–bacteria correlation network were associated with knee synovitis in a community-based study. | Human | None | Association between gut fungal microbiota and knee synovitis | [53] |
The study found associations between GM-related metabolites and symptomatic hand OA in two independent cohorts. | Human | None | Association of GM metabolites with hand OA | [54] |
The abundance of several GM species was associated with OA pathogenesis. | Human | None | Association between GM and OA | [25] |
The abundance of Streptococcus species in the gut was associated with increased knee pain in a large population-based cohort study. | Human | None | Association between GM and joint pain | [55] |
The study explored the use of GM alterations for inflammation and pain management in orthopedic conditions, including OA. | Human | Probiotics, Prebiotics | Management of inflammation and pain in OA | [56] |
The study investigated the association between GM and elevated serum urate levels, finding significant alterations in GM functions related to tryptophan metabolism in individuals with symptomatic hand OA (SHOA). | Human | None | Association between GM functions and urate levels | [57] |
The study used Mendelian randomization to establish a causal link between specific GM taxa and the development of knee OA, identifying Methanobacteriaceae, Desulfovibrionales, and Ruminiclostridium to be associated with knee OA. | Human | None | Causal relationship between GM taxa and OA | [24] |
Live Lactobacillus acidophilus (LA-1) administration improved OA symptoms by modulating the GM and enhancing autophagy. | Mouse Model | Live LA-1 | Improved pain threshold and joint health | [58] |
Lactobacillus acidophilus treatment can reduce inflammatory knee joint pain and prevent further OA progression, possibly by modulating the GM. | Mouse Model | Lactobacillus acidophilus | Reduced pain and cartilage damage | [59] |
Taxonomic changes in the GM are associated with cartilage damage in a mouse model of OA, independent of adiposity, high-fat diet, and joint injury. | Mouse Model | None | Association between GM and cartilage health | [60] |
Gold nanoparticles (GNPs) exhibit anti-OA effects by modulating the microbiota–gut–joint axis, suggesting a novel therapeutic strategy for OA. | Mouse Model | GNPs | Alleviation of OA symptoms | [61] |
Oral probiotics can ameliorate OA by modulating the GM. | Mouse Model | Probiotics | Alleviation of OA symptoms | [62] |
The study investigated the protective potential of Bifidobacterium longum cell wall lipoproteins (Lpps) in preventing arthritis. | Mouse Model | Bifidobacterium longum Lpps | Prevention of arthritis | [63] |
Oral administration of bovine milk-derived extracellular vesicles can attenuate cartilage degradation by modulating the GM in a mouse model of OA. | Mouse Model | Milk-derived extracellular vesicles | Attenuation of cartilage degradation | [64] |
Fecal microbiota transplantation (FMT) from metabolically compromised human donors accelerates OA in mice. | Mouse Model | FMT | Acceleration of OA progression | [65] |
Lactobacillus acidophilus (LA) treatment reduced OA-associated pain and cartilage disintegration and improved GM dysbiosis in a murine model. | Mouse Model | Lactobacillus acidophilus | Reduction in pain and cartilage damage, improved GM | [66] |
GNPs alleviated OA by modulating the microbiota–gut–joint axis, increasing beneficial microbes and short-chain fatty acids, and reducing inflammation. | Mouse Model | GNPs | Alleviation of OA symptoms, modulation of GM | [67] |
OA induced by destabilization of the medial meniscus is reduced in germ-free (GF) mice. | Mouse Model | None | Reduction in OA severity in GF mice | [68] |
Antibiotic-induced GM dysbiosis alleviates the progression of OA in mice, potentially through reduced inflammation and improved bone parameters. | Mouse Model | Antibiotics | Alleviation of OA progression | [69] |
GM depletion protects against bone loss and cartilage degradation in an OA and OP mouse model, modulating the GM composition. | Mouse Model | Antibiotics | Protection against bone loss and cartilage degradation | [70] |
Moxibustion ameliorated OA by regulating GM and impacting the cAMP-related signaling pathway. | Mouse Model | Moxibustion | Amelioration of OA symptoms | [71] |
OA susceptibility in mice is partially mediated by the GM, which is transferable via microbiome transplantation and associated with immunophenotype changes. | Mouse Model | Microbiome Transplantation | Reduction in OA severity with microbiome transplantation | [72] |
The study provided evidence for a direct causal link between GM and bone diseases, including OA, mediated by neurophysiological states. | Human | None | A causal link between GM and bone diseases | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, J.; Hao, L.; Huang, G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024, 12, 2182. https://doi.org/10.3390/biomedicines12102182
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines. 2024; 12(10):2182. https://doi.org/10.3390/biomedicines12102182
Chicago/Turabian StyleLi, Hui, Jihan Wang, Linjie Hao, and Guilin Huang. 2024. "Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review" Biomedicines 12, no. 10: 2182. https://doi.org/10.3390/biomedicines12102182
APA StyleLi, H., Wang, J., Hao, L., & Huang, G. (2024). Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines, 12(10), 2182. https://doi.org/10.3390/biomedicines12102182