Apigenin as a Promising Agent for Enhancing Female Reproductive Function and Treating Associated Disorders
Abstract
:1. Introduction
2. Origin and Characteristics Which Determine the Physiological Effects of Apigenin
3. Potential Benefits of Apigenin for Female Reproductive Health
3.1. Apigenin Affects Ovarian and Reproductive States
3.2. Apigenin Affects Ovarian and Uterine Cell Functions
3.3. Apigenin Affects Oocytes and Embryos
3.4. Apigenin Affects Reproductive Hormones
3.5. Apigenin Affects Response of Ovarian Cells to Adverse External Factors
4. Molecular Mechanisms and Signaling Targets of Apigenin on Female Reproductive Organs
5. Therapeutic Application of Apigenin in Reproductive Biology and Medicine
6. Limitations and Future Perspectives of Apigenin in Reproductive Function and Medicine
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yue, R.-F.; Jin, Z.; He, L.-M.; Shen, R.; Du, D.; Tang, Y.-Z. Efficiency comparison of apigenin-7-O-glucoside and trolox in antioxidative stress and anti-inflammatory properties. J. Pharm. Pharmacol. 2020, 72, 1645–1656. [Google Scholar] [CrossRef] [PubMed]
- Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep. 2017, 3, 423–446. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Hu, Y.; Peng, S.; Zeng, N.; Shi, L. Apigenin exerts protective effect and restores ovarian function in dehydroepiandrosterone induced polycystic ovary syndrome rats: A biochemical and histological analysis. Ann. Med. 2022, 54, 578–587. [Google Scholar] [CrossRef]
- Miao, C.; Zhao, Y.; Chen, Y.; Wang, R.; Ren, N.; Chen, B.; Dong, P.; Zhang, Q. Investigation of He’s Yang Chao recipe against oxidative stress-related mitophagy and pyroptosis to improve ovarian function. Front. Endocrinol. 2023, 14, 1077315. [Google Scholar] [CrossRef]
- Ahmed, M.; Riaz, U.; Lv, H.; Yang, L. A Molecular Perspective and Role of NAD+ in Ovarian Aging. Int. J. Mol. Sci. 2024, 25, 4680. [Google Scholar] [CrossRef]
- Ma, L.; Shen, W.; Zhang, J.; Ma, L.; Shen, W.; Shen, W.; Ma, L.; Zhang, J.; Zhang, J. The Life Cycle of the Ovary. In Ovarian Aging; Springer: Berlin/Heidelberg, Germany, 2023; pp. 7–33. [Google Scholar]
- Das, P.K.; Mukherjee, J.; Banerjee, D. Female Reproductive Physiology. In Textbook of Veterinary Physiology; Springer: Singapore, 2023; pp. 513–568. [Google Scholar]
- Alam, W.; Rocca, C.; Khan, H.; Hussain, Y.; Aschner, M.; De Bartolo, A.; Amodio, N.; Angelone, T.; Cheang, W.S. Current status and future perspectives on therapeutic potential of apigenin: Focus on metabolic-syndrome-dependent organ dysfunction. Antioxidants 2021, 10, 1643. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, C.; Liu, Y.; Kuang, N.; Xu, L.; Xu, Z.; Wang, H.; Liu, R. The therapeutic effect of Loranthus parasiticus lignan derivatives on collagen-induced arthritis in rats through the SHBG/NFκB pathway. Inflammopharmacology 2024, 32, 873–883. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Sadeer, N.B.; Hussain, M.; Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W. Therapeutical properties of apigenin: A review on the experimental evidence and basic mechanisms. Int. J. Food Prop. 2023, 26, 1914–1939. [Google Scholar] [CrossRef]
- Malik, S.; Saeed, S.; Saleem, A.; Khan, M.I.; Khan, A.; Akhtar, M.F. Alternative treatment of polycystic ovary syndrome: Pre-clinical and clinical basis for using plant-based drugs. Front. Endocrinol. 2024, 14, 1294406. [Google Scholar] [CrossRef]
- Gurung, R.B.; Pandey, R.P.; Sohng, J.K. Role of apigenin in cancer prevention. In Apigenin and Naringenin; Nova Publisher: New York, NY, USA, 2016; p. 107. [Google Scholar]
- Zeng, L.; Zhang, G.; Lin, S.; Gong, D. Inhibitory mechanism of apigenin on α-glucosidase and synergy analysis of flavonoids. J. Agric. Food Chem. 2016, 64, 6939–6949. [Google Scholar] [CrossRef] [PubMed]
- Bahramsoltani, R.; Ahmadian, R.; Daglia, M.; Rahimi, R. Petroselinum crispum (Mill.) Fuss (Parsley): An updated review of the traditional uses, phytochemistry, and pharmacology. J. Agric. Food Chem. 2024, 72, 956–972. [Google Scholar] [CrossRef]
- Ahn-Jarvis, J.H.; Parihar, A.; Doseff, A.I. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants 2019, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.; Shikha, D.; Thakur, M.; Aneja, A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J. Food Biochem. 2022, 46, e13950. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017, 13, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Lee, J.-A.; Ha, S.K.; Kim, Y.-C.; Choi, I. Effects of friedelin on the intestinal permeability and bioavailability of apigenin. Pharmacol. Rep. 2017, 69, 1044–1048. [Google Scholar] [CrossRef]
- Lai, F.; Schlich, M.; Pireddu, R.; Fadda, A.M.; Sinico, C. Nanocrystals as effective delivery systems of poorly water-soluble natural molecules. Curr. Med. Chem. 2019, 26, 4657–4680. [Google Scholar] [CrossRef]
- Chen, P.; Chen, F.; Guo, Z.; Lei, J.; Zhou, B. Recent advancement in bioeffect, metabolism, stability, and delivery systems of apigenin, a natural flavonoid compound: Challenges and perspectives. Front. Nutr. 2023, 10, 1221227. [Google Scholar] [CrossRef]
- Waheed, A.; Zameer, S.; Ashrafi, K.; Ali, A.; Sultana, N.; Aqil, M.; Sultana, Y.; Iqbal, Z. Insights into Pharmacological Potential of Apigenin through Various Pathways on a Nanoplatform in Multitude of Diseases. Curr. Pharm. Des. 2023, 29, 1326–1340. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Pan, C.-S.; Li, Q.; Zhang, H.-L.; Yan, L.; Anwaier, G.; Wang, X.-Y.; Yan, L.-L.; Fan, J.-Y.; Li, D. The ameliorating effects of bushen huatan granules and kunling wan on polycystic ovary syndrome induced by dehydroepiandrosterone in rats. Front. Physiol. 2021, 12, 525145. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Gan, R.; Li, H.; Yang, M.; McClements, D.J.; Gao, R.; Sun, Q. Absorption, metabolism, and bioactivity of vitexin: Recent advances in understanding the efficacy of an important nutraceutical. Crit. Rev. Food Sci. Nutr. 2021, 61, 1049–1064. [Google Scholar] [CrossRef]
- Meresman, G.F.; Götte, M.; Laschke, M.W. Plants as source of new therapies for endometriosis: A review of preclinical and clinical studies. Hum. Reprod. Update 2021, 27, 367–392. [Google Scholar] [CrossRef]
- Tang, F.; Yan, H.-L.; Wang, L.-X.; Xu, J.-F.; Peng, C.; Ao, H.; Tan, Y.-Z. Review of natural resources with vasodilation: Traditional medicinal plants, natural products, and their mechanism and clinical efficacy. Front. Pharmacol. 2021, 12, 627458. [Google Scholar] [CrossRef]
- Bucur, C.; Petrea, S.; Gaspar, B.; Pop, L.; Varlas, V.; Hasegan, A.; Stoian, M.; Gorecki, G.P.; Bacalbasa, N. Ovarian cancer prevention and screening–where do we stand today? J. Mind Med. Sci. 2024, 11, 99–105. [Google Scholar] [CrossRef]
- Nimal, S.; Kumbhar, N.; Saruchi; Rathore, S.; Naik, N.; Paymal, S.; Gacche, R.N. Apigenin and its combination with Vorinostat induces apoptotic-mediated cell death in TNBC by modulating the epigenetic and apoptotic regulators and related miRNAs. Sci. Rep. 2024, 14, 9540. [Google Scholar] [CrossRef]
- Zamanian, M.Y.; Golmohammadi, M.; Abdullaev, B.; García, M.O.; Alazbjee, A.A.A.; Kumar, A.; Mohaamed, S.S.; Hussien, B.M.; Khalaj, F.; Hodaei, S.M. A narrative review on therapeutic potential of naringenin in colorectal cancer: Focusing on molecular and biochemical processes. Cell Biochem. Funct. 2024, 42, e4011. [Google Scholar] [CrossRef]
- Brice-Ytsma, H.; Chidley, N. Herbal Medicine in Treating Gynaecological Conditions Volume 2: Specific Conditions and Management Through the Practical Usage of Herbs; Aeon Books: New York, NY, USA, 2024. [Google Scholar]
- Mohammadi, T.; hosseinchi Gharehaghaj, M.; Novin, A.A. Effects of apigenin and trans-ferulic acid on microscopic and oxidative stress parameters in the semen of water buffalo bulls during cryopreservation. Cryobiology 2024, 115, 104868. [Google Scholar] [CrossRef]
- Kumar, B.S.; Manasa, V.; Ramesh, H.; Nandi, S.; Kumar, V.G. Molecular targets of phyto-bioactive compounds in female reproductive system of mammals: A review. Indian J. Anim. Res. 2023, 57, 261–272. [Google Scholar] [CrossRef]
- Safari, M.; Parsaie, H.; Sameni, H.R.; Aldaghi, M.R.; Zarbakhsh, S. Anti-oxidative and anti-apoptotic effects of apigenin on number of viable and apoptotic blastomeres, zona pellucida thickness and hatching rate of mouse embryos. Int. J. Fertil. Steril. 2018, 12, 257. [Google Scholar] [PubMed]
- Hekimoğlu, G.; Koç, S.; Daştan, A.İ.; Şevgin, K.; Tekayev, M.; Güler, E.M.; Sayir, N.; Canbaz, H.T.; Hacımustafaoğlu, F.; Pence, H.H. Ameliorative effects of apigenin on a rat model of endometriosis. Eur. Res. J. 2023, 9, 178–185. [Google Scholar] [CrossRef]
- Yao, L.; Fan, Z.; Han, S.; Sun, N.; Che, H. Apigenin attenuates the allergic reactions by competitively binding to ER with estradiol. Front. Pharmacol. 2020, 11, 1046. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kim, M.-Y.; Cho, J.Y. Apigenin: A therapeutic agent for treatment of skin inflammatory diseases and cancer. Int. J. Mol. Sci. 2023, 24, 1498. [Google Scholar] [CrossRef]
- Jang, J.Y.; Sung, B.; Kim, N.D. Role of induced programmed cell death in the chemopreventive potential of apigenin. Int. J. Mol. Sci. 2022, 23, 3757. [Google Scholar] [CrossRef]
- Asadi, A.; Goudarzi, F.; Ghanadian, M.; Mohammadalipour, A. Evaluation of the osteogenic effect of apigenin on human mesenchymal stem cells by inhibiting inflammation through modulation of NF-κB/IκBα. Res. Pharm. Sci. 2022, 17, 697–706. [Google Scholar] [CrossRef]
- Liang, J.; Gao, Y.; Feng, Z.; Zhang, B.; Na, Z.; Li, D. Reactive oxygen species and ovarian diseases: Antioxidant strategies. Redox Biol. 2023, 62, 102659. [Google Scholar] [CrossRef]
- Premrajan, P.; Variyar, E.J. Therapeutic Targets and Drug Leads for Reproductive Health. In Drugs from Nature: Targets, Assay Systems and Leads; Springer: Singapore, 2024; pp. 505–529. [Google Scholar]
- Souza, R.P.; Bonfim-Mendonça, P.d.S.; Gimenes, F.; Ratti, B.A.; Kaplum, V.; Bruschi, M.L.; Nakamura, C.V.; Silva, S.O.; Maria-Engler, S.S.; Consolaro, M.E. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxidative Med. Cell. Longev. 2017, 2017, 1512745. [Google Scholar] [CrossRef]
- Athar, F.; Karmani, M.; Templeman, N.M. Metabolic hormones are integral regulators of female reproductive health and function. Biosci. Rep. 2024, 44, BSR20231916. [Google Scholar] [CrossRef]
- Pratas, A.; Malhão, B.; Palma, R.; Mendonça, P.; Cervantes, R.; Marques-Ramos, A. Effects of apigenin on gastric cancer cells. Biomed. Pharmacother. 2024, 172, 116251. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.; Záhoranska, Z.; Tarko, A.; Popovska-Percinic, F.; Alwasel, S.; Harrath, A.H. Plant isoflavones can prevent adverse effects of benzene on porcine ovarian activity: An in vitro study. Environ. Sci. Pollut. Res. 2020, 27, 29589–29598. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Radosová, M.; Tarko, A.; Fabova, Z.; Martín-García, I.; Alonso, F. Abatement of the stimulatory effect of copper nanoparticles supported on titania on ovarian cell functions by some plants and phytochemicals. Nanomaterials 2020, 10, 1859. [Google Scholar] [CrossRef] [PubMed]
- Fabová, Z.; Kislíková, Z.; Loncová, B.; Bauer, M.; Harrath, A.; Sirotkin, A. MicroRNA miR-152 can support ovarian granulosa cell functions and modify apigenin actions. Domest. Anim. Endocrinol. 2023, 84, 106805. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.; Záhoranska, Z.; Tarko, A.; Fabova, Z.; Alwasel, S.; Halim Harrath, A. Plant polyphenols can directly affect ovarian cell functions and modify toluene effects. J. Anim. Physiol. Anim. Nutr. 2021, 105, 80–89. [Google Scholar] [CrossRef]
- Lotfi, M.-S.; Rassouli, F.B. Natural Flavonoid Apigenin, an Effective Agent Against Nervous System Cancers. Mol. Neurobiol. 2024, 61, 5572–5583. [Google Scholar] [CrossRef]
- Agnihotri, P.; Saquib, M.; Biswas, S. Targeting TNF-α-induced expression of TTR and RAGE in rheumatoid arthritis: Apigenin’s mediated therapeutic approach. Cytokine 2024, 179, 156616. [Google Scholar]
- Yao, X.; Guo, P.; Li, Y.-H.; Guo, H.; Jin, Z.; Lui, W.; Yuan, J.; Gao, Q.; Wang, L.; Li, Y. Apigenin delays postovulatory oocyte aging by reducing oxidative stress through SIRT1 upregulation. Theriogenology 2024, 218, 89–98. [Google Scholar] [CrossRef]
- Pavithra, R.; Khan, M.R.; Khan, M.S. Recent advancements in natural compounds for cancer therapy and prevention. Phytochem. Rev. 2024, 1–25. [Google Scholar] [CrossRef]
- Kranjčević, J.-K.; Čonkaš, J.; Ozretić, P. The Role of Estrogen and Estrogen Receptors in Head and Neck Tumors. Cancers 2024, 16, 1575. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, Y.-H. Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules 2024, 29, 1570. [Google Scholar] [CrossRef] [PubMed]
- Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother. 2019, 116, 109004. [Google Scholar] [CrossRef] [PubMed]
- Alrumaihi, F.; Almatroodi, S.A.; Alharbi, H.O.A.; Alwanian, W.M.; Alharbi, F.A.; Almatroudi, A.; Rahmani, A.H. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024, 29, 2007. [Google Scholar] [CrossRef] [PubMed]
- Saroha, B.; Kumar, A. Recent Advances of Flavonoids and Their Applications. In The Flavonoids; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 17–32. [Google Scholar]
- Kim, Y.; Kim, J.; Son, S.-R.; Kim, J.-Y.; Choi, J.-H.; Jang, D.S. Chemical Constituents of the Flowers of Pueraria lobata and Their Cytotoxic Properties. Plants 2022, 11, 1651. [Google Scholar] [CrossRef]
- Tang, A.Q.; Cao, X.C.; Tian, L.; He, L.; Liu, F. Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3-derived sphere-forming cells. Mol. Med. Rep. 2015, 11, 2221–2226. [Google Scholar] [CrossRef]
- Suhas, K.; Parida, S.; Gokul, C.; Srivastava, V.; Prakash, E.; Chauhan, S.; Singh, T.U.; Panigrahi, M.; Telang, A.G.; Mishra, S.K. Casein kinase 2 inhibition impairs spontaneous and oxytocin-induced contractions in late pregnant mouse uterus. Exp. Physiol. 2018, 103, 621–628. [Google Scholar] [CrossRef]
- Dean, M.; Austin, J.; Jinhong, R.; Johnson, M.E.; Lantvit, D.D.; Burdette, J.E. The flavonoid apigenin is a progesterone receptor modulator with in vivo activity in the uterus. Horm. Cancer 2018, 9, 265–277. [Google Scholar] [CrossRef]
- Najafi, A.; Mohammadi, H.; Sharifi, S.D.; Rahimi, A. Apigenin supplementation substantially improves rooster sperm freezability and post-thaw function. Sci. Rep. 2024, 14, 4527. [Google Scholar] [CrossRef]
- Požgajová, M.; Klongová, L.; Kovár, M.; Navrátilová, A. Cell Protection by Oxidative Stress Mitigation Using Substances with Bioactive Properties. In The Power of Antioxidants—Unleashing Nature’s Defense Against Oxidative Stress [Working Title]; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Pasdaran, A.; Grice, I.D.; Hamedi, A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev. Res. 2024, 85, e22180. [Google Scholar] [CrossRef]
- Charrière, K.; Schneider, V.; Perrignon-Sommet, M.; Lizard, G.; Benani, A.; Jacquin-Piques, A.; Vejux, A. Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. Int. J. Mol. Sci. 2024, 25, 5041. [Google Scholar] [CrossRef]
- Chaudhary, P.; Janmeda, P.; Pareek, A.; Chuturgoon, A.A.; Sharma, R.; Pareek, A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed. Pharmacother. 2024, 173, 116294. [Google Scholar] [CrossRef]
- Ali, D.; Okla, M.; Abuelreich, S.; Vishnubalaji, R.; Ditzel, N.; Hamam, R.; Kowal, J.M.; Sayed, A.; Aldahmash, A.; Alajez, N.M. Apigenin and Rutaecarpine reduce the burden of cellular senescence in bone marrow stromal stem cells. Front. Endocrinol. 2024, 15, 1360054. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, J.; Li, S.; Wang, X.; Liang, Z.; Xu, X.; Xu, X.; Hu, Z.; Lin, Y.; Chen, H. Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer. Mol. Med. Rep. 2015, 11, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Darabi, P.; Khazali, H.; Mehrabani Natanzi, M. Therapeutic potentials of the natural plant flavonoid apigenin in polycystic ovary syndrome in rat model: Via modulation of pro-inflammatory cytokines and antioxidant activity. Gynecol. Endocrinol. 2020, 36, 582–587. [Google Scholar] [CrossRef]
- Suh, Y.-A.; Jo, S.-Y.; Lee, H.-Y.; Lee, C. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int. J. Oncol. 2015, 46, 1405–1411. [Google Scholar] [CrossRef]
- Chen, S.S.; Michael, A.; Butler-Manuel, S.A. Advances in the treatment of ovarian cancer—A potential role of anti-inflammatory phytochemicals. Discov. Med. 2012, 13, 7–17. [Google Scholar]
- Wang, S.; He, Y.; Wang, J.; Luo, E. Re-exploration of immunotherapy targeting EMT of hepatocellular carcinoma: Starting from the NF-κB pathway. Biomed. Pharmacother. 2024, 174, 116566. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Sadiya, M.; Kolkar, K.P.; Mammadova, S.S.; Chalannavar, R.K.; Baijnath, H.; Lavanya, L.; Munhoz, A.N.R. Triple Negative Breast Cancer (TNBC): Signalling pathways-Role of plant-based inhibitors. Open Access Res. J. Biol. Pharm. 2024, 10, 028–071. [Google Scholar] [CrossRef]
- Shah, M.; Dave, B.; Bhagat, S.; Rao, H.; Khadela, A.; Parikh, N. A comprehensive review comparing conventional versus traditional remedies in the treatment of endometriosis with futuristic insights. Future J. Pharm. Sci. 2024, 10, 35. [Google Scholar] [CrossRef]
- Vanessa, L.W.X. Role of Estrogenic Biomarkers in the Prediction of Disease Risk/Survival in Postmenopausal Women. Ph.D. Thesis, National University of Singapore, Singapore, 2014. [Google Scholar]
- Chavda, V.P.; Chaudhari, A.Z.; Balar, P.C.; Gholap, A.; Vora, L.K. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother. Res. 2024, 38, 3060–3079. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Woo, E.-R.; Lee, D.G. Effect of apigenin isolated from Aster yomena against Candida albicans: Apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling. J. Ethnopharmacol. 2019, 231, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A. Apigenin, Catechins and Soy Isoflavones as a Natural Treatment for Polycystic Ovarian Syndrome. In Herbal Medicine Applications for Polycystic Ovarian Syndrome; CRC Press: Boca Raton, FL, USA, 2023; pp. 227–252. [Google Scholar]
- Nehru, S.; Guru, A.; Pachaiappan, R.; Hatamleh, A.A.; Al-Dosary, M.A.; Arokiyaraj, S.; Sundaramurthy, A.; Arockiaraj, J. Co-encapsulation and release of apigenin and ascorbic acid in polyelectrolyte multilayer capsules for targeted polycystic ovary syndrome. Int. J. Pharm. 2024, 651, 123749. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Sadia, H.; Iqbal, M.J.; Shamas, S.; Malik, K.; Ahmed, R.; Raza, S.; Butnariu, M.; Cruz-Martins, N.; Sharifi-Rad, J. Apigenin role as cell-signaling pathways modulator: Implications in cancer prevention and treatment. Cancer Cell Int. 2021, 21, 189. [Google Scholar] [CrossRef]
- Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an anticancer agent. Phytother. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef]
- Soyman, Z.; Kelekçi, S.; Veysel, S.; Şevket, O.; Bayindir, N.; Hafize, U. Effects of apigenin on experimental ischemia/reperfusion injury in the rat ovary. Balk. Med. J. 2017, 34, 444–449. [Google Scholar] [CrossRef]
- Pal, M.K.; Jaiswar, S.P.; Dwivedi, A.; Goyal, S.; Dwivedi, V.N.; Pathak, A.K.; Kumar, V.; Sankhwar, P.L.; Ray, R.S. Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): A ROS dependent mitochondrial mediated apoptosis in ovarian cancer. Anti-Cancer Agents Med. Chem. 2017, 17, 1721–1732. [Google Scholar] [CrossRef]
- Lim, R.; Barker, G.; Wall, C.A.; Lappas, M. Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Mol. Hum. Reprod. 2013, 19, 451–462. [Google Scholar] [CrossRef]
- Qi, Y.; Ding, Z.; Yao, Y.; Ma, D.; Ren, F.; Yang, H.; Chen, A. Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis. Exp. Ther. Med. 2019, 17, 1670–1676. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Bakhoda, M.R.; Bahmanpour, Z.; Ilkhani, K.; Zarrabi, A.; Makvandi, P.; Khan, H.; Mazaheri, S.; Darvish, M.; Mirzaei, H. Apigenin as tumor suppressor in cancers: Biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front. Chem. 2020, 8, 829. [Google Scholar] [CrossRef]
- Shipa, A.M.; Kahilo, K.A.; Elshazly, S.A.; Taher, E.S.; Nasr, N.E.; Alotaibi, B.S.; Almadaly, E.A.; Assas, M.; Abdo, W.; Abouzaid, T.K. Protective Effect of Petroselinum Crispum Methanolic Extract against Acrylamide-induced Reproductive Toxicity in Male Rats through NF-ĸB, Kinesin, steroidogenesis Pathways. Reprod. Toxicol. 2024, 126, 108586. [Google Scholar] [CrossRef] [PubMed]
- Ittiudomrak, T.; Puthong, S.; Roytrakul, S.; Chanchao, C. α-Mangostin and apigenin induced cell cycle arrest and programmed cell death in SKOV-3 ovarian cancer cells. Toxicol. Res. 2019, 35, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.-Y.; Zhu, X.-J.; Zhang, Y.-N.; Zhou, F.-F.; Yang, X.-F. Protective effects of apigenin on LPS-induced endometritis via activating Nrf2 signaling pathway. Microb. Pathog. 2018, 123, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xia, C.; Cao, Z.; Zheng, J.Z.; Reed, E.; Jiang, B.-H. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005, 19, 342–353. [Google Scholar] [CrossRef]
- Luo, H.; Jiang, B.-H.; King, S.M.; Chen, Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer 2008, 60, 800–809. [Google Scholar] [CrossRef]
- Sirotkin, A.V. Regulators of Ovarian Functions; Nova Science Publishers: New York, NY, USA, 2014. [Google Scholar]
- Kumar, A.; Banerjee, A.; Singh, D.; Thakur, G.; Kasarpalkar, N.; Gavali, S.; Gadkar, S.; Madan, T.; Mahale, S.; Allen, E. Estradiol: A steroid with multiple facets. Horm. Metab. Res. 2018, 50, 359–374. [Google Scholar] [CrossRef]
- Deligdisch-Schor, L. Hormone therapy effects on the uterus. In Hormonal Pathology of the Uterus; Springer: Cham, Switzerland, 2020; pp. 145–177. [Google Scholar]
- Lecomte, S.; Demay, F.; Pham, T.H.; Moulis, S.; Efstathiou, T.; Chalmel, F.; Pakdel, F. Deciphering the molecular mechanisms sustaining the estrogenic activity of the two major dietary compounds zearalenone and apigenin in ER-positive breast cancer cell lines. Nutrients 2019, 11, 237. [Google Scholar] [CrossRef]
- Scherbakov, A.; Shestakova, E.; Galeeva, K.; Bogush, T. Brca1 and estrogen receptor α expression regulation in breast cancer cells. Mol. Biol. 2019, 53, 442–451. [Google Scholar] [CrossRef]
- Yao, L.; Fan, Z.; Han, S.; Sun, N.; Che, H. Apigenin acts as a partial agonist action at estrogen receptors in vivo. Eur. J. Pharmacol. 2021, 906, 174175. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Z.; Huang, W.; Chen, K.; Li, J. The phytoestrogenic potential of flavonoid glycosides from Selaginella moellendorffii via ERα-dependent signaling pathway. J. Ethnopharmacol. 2023, 308, 116174. [Google Scholar] [CrossRef]
- Yin, Q.; Fischer, L.; Noethling, C.; Schaefer, W.R. In vitro-assessment of putative antiprogestin activities of phytochemicals and synthetic UV absorbers in human endometrial Ishikawa cells. Gynecol. Endocrinol. 2015, 31, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Liefers-Visser, J.; Meijering, R.; Reyners, A.; van der Zee, A.; De Jong, S. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer. Cancer Treat. Rev. 2017, 60, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.R.; Rahman, M.M.; Islam, M.N.; Fahim, M.M.H.; Rahman, M.A.; Kim, B. Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer. Biomed. Pharmacother. 2024, 174, 116497. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Ahmed, K.R.; Haque, F.; Park, M.N.; Kim, B. Recent advances in cellular signaling interplay between redox metabolism and autophagy modulation in cancer: An overview of molecular mechanisms and therapeutic interventions. Antioxidants 2023, 12, 428. [Google Scholar] [CrossRef]
- Gao, H.; Khawar, M.B.; Li, W. Autophagy in reproduction. In Autophagy: Biology and Diseases: Basic Science; Springer: Singapore, 2019; pp. 453–468. [Google Scholar]
- Jiang, L.; Yao, Z.-C.; Liu, M.-M.; Ma, R.-H.; Thakur, K. Apigetrin Promotes Cell Autophagy by Activating the Endoplasmic Reticulum Stress in Human Cervical Cancer Hela Cells. Curr. Top. Nutraceutical Res. 2022, 20, 56–63. [Google Scholar] [CrossRef]
- Ji, J.; Yu, Q.; Dai, W.; Wu, L.; Feng, J.; Zheng, Y.; Li, Y.; Guo, C. Apigenin alleviates liver fibrosis by inhibiting hepatic stellate cell activation and autophagy via TGF-β1/Smad3 and p38/PPARα pathways. PPAR Res. 2021, 2021, 6651839. [Google Scholar] [CrossRef]
- Zhang, X.; Bu, H.; Jiang, Y.; Sun, G.; Jiang, R.; Huang, X.; Duan, H.; Huang, Z.; Wu, Q. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 2019, 20, 2867–2874. [Google Scholar] [CrossRef]
- Samare-Najaf, M.; Neisy, A.; Samareh, A.; Moghadam, D.; Jamali, N.; Zarei, R.; Zal, F. The constructive and destructive impact of autophagy on both genders’ reproducibility, a comprehensive review. Autophagy 2023, 19, 3033–3061. [Google Scholar] [CrossRef]
- Mrazek, A.A. Preclinical Development of a Pharmacologic Agent for the Treatment of Recurrent Acute Pancreatitis. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2015. [Google Scholar]
- Zou, N.; Wei, Y.; Li, F.; Yang, Y.; Cheng, X.; Wang, C. The inhibitory effects of compound Muniziqi granule against B16 cells and harmine induced autophagy and apoptosis by inhibiting Akt/mTOR pathway. BMC Complement. Altern. Med. 2017, 17, 517. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Zou, X.; Zhang, J.; Zheng, Z.; Wang, Z. Antioxidant apigenin relieves age-related muscle atrophy by inhibiting oxidative stress and hyperactive mitophagy and apoptosis in skeletal muscle of mice. J. Gerontol. Ser. A 2020, 75, 2081–2088. [Google Scholar] [CrossRef]
- Ahmad, A.; Kumari, P.; Ahmad, M. Apigenin attenuates edifenphos-induced toxicity by modulating ROS-mediated oxidative stress, mitochondrial dysfunction and caspase signal pathway in rat liver and kidney. Pestic. Biochem. Physiol. 2019, 159, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhong, Q.; Ma, R.; Ni, Z.; Thakur, K.; Zhang, J.; Wei, Z. Apigenin, a natural flavonoid, promotes autophagy and ferroptosis in human endometrial carcinoma Ishikawa cells in vitro and in vivo. Food Sci. Hum. Wellness 2023, 12, 2242–2251. [Google Scholar] [CrossRef]
- Ojo, O.A.; Nwafor-Ezeh, P.I.; Rotimi, D.E.; Iyobhebhe, M.; Ogunlakin, A.D.; Ojo, A.B. Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicol. Rep. 2023, 10, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Alimohammadi, M.; Faramarzi, F.; Alizadeh-Navaei, R.; Rafiei, A. The effects of apigenin administration on the inhibition of inflammatory responses and oxidative stress in the lung injury models: A systematic review and meta-analysis of preclinical evidence. Inflammopharmacology 2022, 30, 1259–1276. [Google Scholar] [CrossRef]
- Luo, E.-D.; Jiang, H.-M.; Chen, W.; Wang, Y.; Tang, M.; Guo, W.-M.; Diao, H.-Y.; Cai, N.-Y.; Yang, X.; Bian, Y. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front. Pharmacol. 2023, 13, 1065243. [Google Scholar] [CrossRef]
- Wahid, S.; Ramli, M.D.C.; Fazleen, N.E.; Naim, R.M.; Mokhtar, M.H. Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements. Life 2024, 14, 150. [Google Scholar] [CrossRef]
- Naseri, L.; Khazaei, M.R.; Khazaei, M. Potential therapeutic effect of bee pollen and metformin combination on testosterone and estradiol levels, apoptotic markers and total antioxidant capacity in a rat model of polycystic ovary syndrome. Int. J. Fertil. Steril. 2021, 15, 101. [Google Scholar]
- Gołąbek, A.; Kowalska, K.; Olejnik, A. Polyphenols as a diet therapy concept for endometriosis—Current opinion and future perspectives. Nutrients 2021, 13, 1347. [Google Scholar] [CrossRef]
- Fu, J.; Zeng, W.; Chen, M.; Huang, L.; Li, S.; Li, Z.; Pan, Q.; Lv, S.; Yang, X.; Wang, Y. Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma. Chem.-Biol. Interact. 2022, 361, 109966. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Alsahli, M.A.; Almatroudi, A.; Almogbel, M.A.; Khan, A.A.; Anwar, S.; Almatroodi, S.A. The potential role of apigenin in cancer prevention and treatment. Molecules 2022, 27, 6051. [Google Scholar] [CrossRef]
- Singh, D.; Khan, M.A.; Siddique, H.R. Apigenin, a plant flavone playing Noble roles in Cancer prevention via modulation of key cell signaling networks. Recent Pat. Anti-Cancer Drug Discov. 2019, 14, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Zhao, L.; Zhang, L.; Chen, Y.; Sun, G.; Li, J.; Zhang, N.; Xu, Y.; Chan, P.K.-S.; Zhong, R. Chemopreventive Role of Apigenin against the Synergistic Carcinogenesis of Human Papillomavirus and 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone. Biomedicines 2020, 8, 472. [Google Scholar] [CrossRef] [PubMed]
- Akash, S.; Bayıl, I.; Hossain, M.S.; Islam, M.R.; Hosen, M.E.; Mekonnen, A.B.; Nafidi, H.-A.; Bin Jardan, Y.A.; Bourhia, M.; Bin Emran, T. Novel computational and drug design strategies for inhibition of human papillomavirus-associated cervical cancer and DNA polymerase theta receptor by Apigenin derivatives. Sci. Rep. 2023, 13, 16565. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Wu, J.-X.; Yang, S.-F.; Yang, C.-K.; Chen, T.-H.; Hsiao, Y.-H. Anticancer effects and molecular mechanisms of apigenin in cervical cancer cells. Cancers 2022, 14, 1824. [Google Scholar] [CrossRef]
- Adel, M.; Zahmatkeshan, M.; Akbarzadeh, A.; Rabiee, N.; Ahmadi, S.; Keyhanvar, P.; Rezayat, S.M.; Seifalian, A.M. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnol. Rep. 2022, 34, e00730. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Guo, J.; Liu, Z.; Zhou, R.; Guo, F.; Li, K.; Mu, Y. The effects of flavonoid apigenin on male reproductive health: Inhibition of spermatogonial proliferation through downregulation of Prmt7/Akt3 pathway. Int. J. Mol. Sci. 2021, 22, 12209. [Google Scholar] [CrossRef]
- Behairy, A.; Hashem, M.M.; Abo-El-Sooud, K.; El-Metwally, A.E.; Hassan, B.A.; Abd-Elhakim, Y.M. Quercetin abates aluminum trioxide nanoparticles and lead acetate induced altered sperm quality, testicular oxidative damage, and sexual hormones disruption in male rats. Antioxidants 2022, 11, 2133. [Google Scholar] [CrossRef]
- Montano, L.; Maugeri, A.; Volpe, M.G.; Micali, S.; Mirone, V.; Mantovani, A.; Navarra, M.; Piscopo, M. Mediterranean diet as a shield against male infertility and cancer risk induced by environmental pollutants: A focus on flavonoids. Int. J. Mol. Sci. 2022, 23, 1568. [Google Scholar] [CrossRef]
- Horn, B.; Yu, W. Nutritional influences on reproduction: A functional approach. In Integrative and Functional Medical Nutrition Therapy: Principles and Practices; Humana: Cham, Switzerland, 2020; pp. 533–561. [Google Scholar]
- Artini, P.G.; Scarfò, G.; Marzi, I.; Fusi, J.; Obino, M.E.; Franzoni, F.; Zappelli, E.; Chelucci, E.; Martini, C.; Cela, V. Oxidative stress-related signaling pathways predict oocytes’ fertilization in vitro and embryo quality. Int. J. Mol. Sci. 2022, 23, 13442. [Google Scholar] [CrossRef]
- Estakhri, F.; Panjehshahin, M.R.; Tanideh, N.; Gheisari, R.; Mahmoodzadeh, A.; Azarpira, N.; Gholijani, N. The effect of kaempferol and apigenin on allogenic synovial membrane-derived stem cells therapy in knee osteoarthritic male rats. Knee 2020, 27, 817–832. [Google Scholar] [CrossRef]
- Zarbakhsh, S. Effect of antioxidants on preimplantation embryo development in vitro: A review. Zygote 2021, 29, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.B.; Robker, R.L.; Rose, R.D. Obesity and oocyte quality: Significant implications for ART and emerging mechanistic insights. Biol. Reprod. 2022, 106, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Alesi, S.; Villani, A.; Mantzioris, E.; Takele, W.W.; Cowan, S.; Moran, L.J.; Mousa, A. Anti-inflammatory diets in fertility: An evidence review. Nutrients 2022, 14, 3914. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Cho, M.; Do, Y.; Park, J.-K.; Bae, S.-J.; Joo, J.; Ha, K.-T. Autophagy as a therapeutic target of natural products enhancing embryo implantation. Pharmaceuticals 2021, 15, 53. [Google Scholar] [CrossRef]
- Altalhi, T.; Cruz, J.N. Nutraceuticals: Sources, Processing Methods, Properties, and Applications; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Ehigiator, B.; Loveth Iyanyi, U.; Mobisson, K.S.; Ukata, O. In vivo and in silico investigation of effects of ethanol extract of moringa oleifera leaves on female fertility, using fruit flies and molecular docking. J. Clin. Basic Res. 2023, 7, 1–6. [Google Scholar] [CrossRef]
- Ali, F.; Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review. Int. J. Food Prop. 2017, 20, 1197–1238. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirotkin, A.V.; Harrath, A.H. Apigenin as a Promising Agent for Enhancing Female Reproductive Function and Treating Associated Disorders. Biomedicines 2024, 12, 2405. https://doi.org/10.3390/biomedicines12102405
Sirotkin AV, Harrath AH. Apigenin as a Promising Agent for Enhancing Female Reproductive Function and Treating Associated Disorders. Biomedicines. 2024; 12(10):2405. https://doi.org/10.3390/biomedicines12102405
Chicago/Turabian StyleSirotkin, Alexander V., and Abdel Halim Harrath. 2024. "Apigenin as a Promising Agent for Enhancing Female Reproductive Function and Treating Associated Disorders" Biomedicines 12, no. 10: 2405. https://doi.org/10.3390/biomedicines12102405
APA StyleSirotkin, A. V., & Harrath, A. H. (2024). Apigenin as a Promising Agent for Enhancing Female Reproductive Function and Treating Associated Disorders. Biomedicines, 12(10), 2405. https://doi.org/10.3390/biomedicines12102405