Collagen–Platelet-Rich Plasma Mixed Hydrogels as a pBMP2 Delivery System for Bone Defect Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Cultures
2.3. Assessment of Matrix Cytocompatibility
2.4. Kinetics of Plasmid DNA Release
2.5. Real-Time PCR
2.6. ELISA Assay
2.7. Alizarin Red Staining
2.8. In Vivo Study
2.9. Micro-CT
2.10. Histological Assay
2.11. Statistical Analysis
3. Results
3.1. Col/PRP Materials Formation
3.2. Biocompatibility of Matrices In Vitro
3.3. Biocompatibility of Materials In Vivo
3.4. Transfection Efficiency of ADSCs with TF/pBMP2 Polyplexes Impregnated into Col/PRP Materials
3.5. Kinetics of pBMP2 Release from Matrices
3.6. Osteogenic Differentiation of ADSCs After Incubation with Col/PRP-TF/pBMP2 Materials
3.7. Bone Regeneration In Vivo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho-Shui-Ling, A.; Bolander, J.; Rustom, L.E.; Johnson, A.W.; Luyten, F.P.; Picart, C. Bone Regeneration Strategies: Engineered Scaffolds, Bioactive Molecules and Stem Cells Current Stage and Future Perspectives. Biomaterials 2018, 180, 143–162. [Google Scholar] [CrossRef]
- Wubneh, A.; Tsekoura, E.K.; Ayranci, C.; Uludağ, H. Current State of Fabrication Technologies and Materials for Bone Tissue Engineering. Acta Biomater. 2018, 80, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Feng, Q.; Wang, M.; Guo, X.; Zheng, Q. Porous Nano-HA/Collagen/PLLA Scaffold Containing Chitosan Microspheres for Controlled Delivery of Synthetic Peptide Derived from BMP-2. J. Control. Release 2009, 134, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Zima, A. Hydroxyapatite-Chitosan Based Bioactive Hybrid Biomaterials with Improved Mechanical Strength. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2018, 193, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Khvorostina, M.A.; Mironov, A.V.; Nedorubova, I.A.; Bukharova, T.B.; Vasilyev, A.V.; Goldshtein, D.V.; Komlev, V.S.; Popov, V.K. 3D Printed Gene-Activated Sodium Alginate Hydrogel Scaffolds. Gels 2022, 8, 421. [Google Scholar] [CrossRef] [PubMed]
- Lungu, A.; Titorencu, I.; Albu, M.G.; Florea, N.M.; Vasile, E.; Iovu, H.; Jinga, V.; Simionescu, M. The Effect of BMP-4 Loaded in 3D Collagen-Hyaluronic Acid Scaffolds on Biocompatibility Assessed with MG 63 Osteoblast-like Cells. Dig. J. Nanomater. Biostruct. 2011, 6, 1897–1908. [Google Scholar]
- Nedorubova, I.A.; Bukharova, T.B.; Mokrousova, V.O.; Khvorostina, M.A.; Vasilyev, A.V.; Nedorubov, A.A.; Grigoriev, T.E.; Zagoskin, Y.D.; Chvalun, S.N.; Kutsev, S.I.; et al. Comparative Efficiency of Gene-Activated Matrices Based on Chitosan Hydrogel and PRP Impregnated with BMP2 Polyplexes for Bone Regeneration. Int. J. Mol. Sci. 2022, 23, 14720. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Li, R.; Bai, H.; Zhu, Z.; Zhu, L.; Zhu, C.; Che, Z.; Liu, H.; Wang, J.; et al. Collagen-Based Biomaterials for Bone Tissue Engineering. Mater. Des. 2021, 210, 110049. [Google Scholar] [CrossRef]
- Rico-Llanos, G.A.; Borrego-González, S.; Moncayo-Donoso, M.; Becerra, J.; Visser, R. Collagen Type i Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers 2021, 13, 599. [Google Scholar] [CrossRef]
- Lin, X.; Patil, S.; Gao, Y.G.; Qian, A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front. Pharmacol. 2020, 11, 757. [Google Scholar] [CrossRef]
- dos Santos, R.G.; Santos, G.S.; Alkass, N.; Chiesa, T.L.; Azzini, G.O.; da Fonseca, L.F.; dos Santos, A.F.; Rodrigues, B.L.; Mosaner, T.; Lana, J.F. The Regenerative Mechanisms of Platelet-Rich Plasma: A Review. Cytokine 2021, 144, 155560. [Google Scholar] [CrossRef] [PubMed]
- Ra Hara, G.; Basu, T. Platelet-Rich Plasma in Regenerative Medicine. Biomed. Res. Ther. 2014, 1, 5. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Y.; Wang, A.; Zhu, Z.; Li, Y.; Zhu, C.; Che, Z.; Liu, T.; Liu, H.; Huang, L. Application of BMP in Bone Tissue Engineering. Front. Bioeng. Biotechnol. 2022, 10, 810880. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Peng, X.; Liu, X.; Mou, X.; Guo, Y.; Yang, L.; Chen, Y.; Zhou, Y.; Shi, Z.; Yang, Z.; et al. Advances in the Application of Bone Morphogenetic Proteins and Their Derived Peptides in Bone Defect Repair. Compos. Part B Eng. 2023, 262, 110805. [Google Scholar] [CrossRef]
- Halloran, D.; Durbano, H.W.; Nohe, A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J. Dev. Biol. 2020, 8, 28–30. [Google Scholar] [CrossRef]
- Kolk, A.; Boskov, M.; Haidari, S.; Tischer, T.; van Griensven, M.; Bissinger, O.; Plank, C. Comparative Analysis of Bone Regeneration Behavior Using Recombinant Human BMP-2 versus Plasmid DNA of BMP-2. J. Biomed. Mater. Res. Part A 2019, 107, 163–173. [Google Scholar] [CrossRef]
- Nedorubova, I.A.; Bukharova, T.B.; Vasilyev, A.V.; Goldshtein, D.V.; Kulakov, A.A. Non-Viral Delivery of the Bmp2 Gene for Bone Regeneration. Genes Cells 2020, 15, 33–39. [Google Scholar] [CrossRef]
- O’rorke, S.; Keeney, M.; Pandit, A. Non-Viral Polyplexes: Scaffold Mediated Delivery for Gene Therapy. Prog. Polym. Sci. 2010, 35, 441–458. [Google Scholar] [CrossRef]
- Bukharova, T.B.; Volkov, A.V.; Antonov, E.N.; Vihrova, E.B.; Popova, A.V.; Popov, V.K.; Goldstein, D.V.; Technologies, I. Tissue-Engineered Construction Made of Adipose Derived Multipotent Mesenchymal Stromal Cells, Polylactide Scaffolds and Platelet Gel. Cell Transplant. Tissue Eng. 2013, 8, 61–68. [Google Scholar]
- ISO 10993-2-2009; Standardization in the Russian Federation. Medical Devices. Biological Evaluation of Medical Devices. Part 2. Animal Welfare Requirements. ISO: Geneva, Switzerland, 2010.
- Everts, P.A.; van Erp, A.; DeSimone, A.; Cohen, D.S.; Gardner, R.D. Platelet Rich Plasma in Orthopedic Surgical Medicine. Platelets 2021, 32, 163–174. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Liu, K.; Gao, F. Hydrogel Scaffolds in Bone Regeneration: Their Promising Roles in Angiogenesis. Front. Pharmacol. 2023, 14, 1050954. [Google Scholar] [CrossRef] [PubMed]
- Short, A.R.; Koralla, D.; Deshmukh, A.; Wissel, B.; Stocker, B.; Calhoun, M.; Dean, D.; Winter, J.O. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration. J. Mater. Chem. B 2015, 3, 7818–7830. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Liu, Y.; Cheng, D.; Yang, G.; Wu, W.; Du, H.; Jin, X.; Chen, Y.; Wang, Y.; Heng, B.C.; et al. A Novel Gene-Activated Matrix Composed of PEI/Plasmid-BMP2 Complexes and Hydroxyapatite/Chitosan-Microspheres Promotes Bone Regeneration. Nano Res. 2022, 15, 6348–6360. [Google Scholar] [CrossRef]
- Curtin, C.M.; Tierney, E.G.; Mcsorley, K.; Cryan, S.A.; Duffy, G.P.; O’Brien, F.J. Combinatorial Gene Therapy Accelerates Bone Regeneration: Non-Viral Dual Delivery of VEGF and BMP2 in a Collagen-Nanohydroxyapatite Scaffold. Adv. Healthc. Mater. 2015, 4, 223–227. [Google Scholar] [CrossRef]
- Kolk, A.; Tischer, T.; Koch, C.; Vogt, S.; Haller, B.; Smeets, R.; Kreutzer, K.; Plank, C.; Bissinger, O. A Novel Nonviral Gene Delivery Tool of BMP-2 for the Reconstitution of Critical-Size Bone Defects in Rats. J. Biomed. Mater. Res. Part A 2016, 104, 2441–2455. [Google Scholar] [CrossRef]
Gene | Primer Sequence *, 5′→3′ |
---|---|
Actβ | For: GAGATTACTGCCCTGGCTCC Rev: GCTCAGTAACAGTCCGCCTA |
BMP2 | For: ACTACCAGAAACGAGTGGGAA Rev: GCATCTGTTCTCGGAAAACCT |
Bglap | For: CCTAGCAGACACCATGAGGAC Rev: CAGGTCAGAGAGGCAGAATGC |
Gapdh | For: GCGAGATCCCGCTAACATCA Rev: CCCTTCCACGATGCCAAAGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meglei, A.Y.; Nedorubova, I.A.; Basina, V.P.; Chernomyrdina, V.O.; Nedorubov, A.A.; Kuznetsova, V.S.; Vasilyev, A.V.; Kutsev, S.I.; Goldshtein, D.V.; Bukharova, T.B. Collagen–Platelet-Rich Plasma Mixed Hydrogels as a pBMP2 Delivery System for Bone Defect Regeneration. Biomedicines 2024, 12, 2461. https://doi.org/10.3390/biomedicines12112461
Meglei AY, Nedorubova IA, Basina VP, Chernomyrdina VO, Nedorubov AA, Kuznetsova VS, Vasilyev AV, Kutsev SI, Goldshtein DV, Bukharova TB. Collagen–Platelet-Rich Plasma Mixed Hydrogels as a pBMP2 Delivery System for Bone Defect Regeneration. Biomedicines. 2024; 12(11):2461. https://doi.org/10.3390/biomedicines12112461
Chicago/Turabian StyleMeglei, Anastasiia Yurevna, Irina Alekseevna Nedorubova, Viktoriia Pavlovna Basina, Viktoria Olegovna Chernomyrdina, Andrey Anatolevich Nedorubov, Valeriya Sergeevna Kuznetsova, Andrey Vyacheslavovich Vasilyev, Sergey Ivanovich Kutsev, Dmitry Vadimovich Goldshtein, and Tatiana Borisovna Bukharova. 2024. "Collagen–Platelet-Rich Plasma Mixed Hydrogels as a pBMP2 Delivery System for Bone Defect Regeneration" Biomedicines 12, no. 11: 2461. https://doi.org/10.3390/biomedicines12112461
APA StyleMeglei, A. Y., Nedorubova, I. A., Basina, V. P., Chernomyrdina, V. O., Nedorubov, A. A., Kuznetsova, V. S., Vasilyev, A. V., Kutsev, S. I., Goldshtein, D. V., & Bukharova, T. B. (2024). Collagen–Platelet-Rich Plasma Mixed Hydrogels as a pBMP2 Delivery System for Bone Defect Regeneration. Biomedicines, 12(11), 2461. https://doi.org/10.3390/biomedicines12112461