Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms
Abstract
:1. Introduction
2. Alkaline Phosphatase Inhibit LPS-TLR4 Binding and TLR4-Mediated NF-κB Signaling
3. Alkaline Phosphatase Modulate Purinergic Signaling
4. Alkaline Phosphatase Modulate Pro-Inflammatory Metabolism
5. Alkaline Phosphatase-Phosphate Complexes Trigger Autophagy and Endocytosis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Substrate | Bacterial ALP (CmAP) [82] | Bovine intestinal ALP (BAP) [83] | Human Intestinal ALP [6,84,85,86] | Pig Intestinal ALP [87] |
---|---|---|---|---|
Relative Hydrolytic Activity | Relative Hydrolytic Activity | Hydrolytic Activity | Relative Hydrolytic Activity | |
p-NPP | 1.0 | 1.0 | + | − |
5′-AMP | 0.9 | 0.8–1.0 | + | 0.5 |
3′-AMP | − | 1.0 | − | − |
2′-AMP | − | 1.0 | − | − |
(2′,3′)AMP | 0.2 | − | − | − |
ADP | 0.2 | − | + | 0.9 |
ATP | 0.1 | 0.8–1.05 | + | 1.0 |
dATP | − | 1.05 | − | − |
dAMP | − | 1.1 | − | − |
dGTP | − | 1.05 | − | − |
dGMP | − | 1.1 | − | − |
2′- and 3′-GMP | − | 0.9 | − | − |
5′-GMP | 0.4 | 0.9–1.0 | − | 0.54 |
GDP | − | − | − | 0.85 |
GTP | − | − | − | 1.08 |
dCMP | − | 0.9 | − | − |
2′- and 3′-CMP | − | 1.1 | − | − |
5′-CMP | 0.8 | 0.8–1.2 | − | − |
dCTP | − | 1.05 | − | − |
UTP | − | − | + | 0.7 |
UDP | − | 1.0 | + | 0.54 |
5′-UMP | 0.3 | 0.8–1.3 | + | 0.4 |
2′- and 3′-UMP | − | 1.0 | − | − |
5′-dCMP | 0.8 | − | + | − |
dTTP | − | 1.0 | − | − |
5′-TMP | − | 0.9 | + | 0.2 |
TDP | − | − | + | 0.23 |
TTP | − | − | + | 0.33 |
5′-IMP | − | 0.9 | − | − |
ApAp | − | 0.6 | − | − |
poly C | − | 0.6 | − | − |
poly I | − | 0.6 | − | − |
PPi | − | 1.0 | + | − |
PPPi | − | 0.9 | − | − |
NADP | 0.2 | − | − | |
(2′,3′)cAMP | 0.0 | − | − | − |
(3′,5′)cAMP | 0.0 | − | − | − |
UDPglc | 0.2 | − | − | − |
α-Glycerophosphate | 0.6 | − | − | − |
β-Glycerophosphate | 0.2 | 0.9–1.0 | − | − |
Polymetaphosphate | − | 0.9 | − | − |
Ribose 5-phosphate | − | 0.7 | − | − |
Ethanolamine phosphate | − | 0.7 | + | − |
Glucose 1-phosphate | − | 0.6–0.9 | − | − |
Glucose 6-phosphate | − | 0.9 | − | − |
Histidinol phosphate | − | 0.8–0.9 | − | − |
Riboflavine 5′-phosphate | − | 0.7 | − | − |
o-Carboxyphenyl phosphate | − | 0.25 | − | − |
α-Naphthyl phosphate | − | 1.5 | − | − |
β-Naphthyl phosphate | − | 1.0 | − | − |
2,4-Dinitrophenyl phosphate | − | 1.0 | − | − |
Fructose 1,6-diphosphate | − | 0.6 | − | − |
Phosphoenol pyruvate | − | 0.42 | − | − |
4-Methylumbelliferyl phosphate | − | 1.0 | − | − |
N-Acetylcysteamine S-phosphate | − | 0.7 | − | − |
S-(Carboxymethyl) phosphorothioate | − | 0.7 | − | − |
S-[2-(Methoxy carbonyl) ethyl] phosphorothioate | − | 0.7 | − | − |
Cysteamine S- phosphate | − | 0.73 | − | − |
Phosphorylcholine (PC) | − | − | + | − |
Pyridoxal phosphate (PLP, pyridoxal 5′-phosphate) | − | − | + | − |
egg phosphatidate and dioleoyl, distearoyl, dipalmitoyl, dimyristoyl and dilauroyl phosphatidates). | − | − | + | − |
LPS | + | − | + | + |
References
- Rader, B.A. Alkaline Phosphatase, an Unconventional Immune Protein. Front. Immunol. 2017, 8, 897. [Google Scholar] [CrossRef] [PubMed]
- Bilski, J.; Mazur-Bialy, A.; Wojcik, D.; Zahradnik-Bilska, J.; Brzozowski, B.; Magierowski, M.; Mach, T.; Magierowska, K.; Brzozowski, T. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediat. Inflamm. 2017, 2017, 9074601. [Google Scholar] [CrossRef] [PubMed]
- Presbitero, A.; Mancini, E.; Brands, R.; Krzhizhanovskaya, V.V.; Sloot, P.M.A. Supplemented Alkaline Phosphatase Supports the Immune Response in Patients Undergoing Cardiac Surgery: Clinical and Computational Evidence. Front. Immunol. 2018, 9, 2342. [Google Scholar] [CrossRef] [PubMed]
- Rosin, D.L.; Perry Hall, J.; Zheng, S.; Huang, L.; Campos-Bilderback, S.; Sandoval, R.; Bree, A.; Beaumont, K.; Miller, E.; Larsen, J.; et al. Human Recombinant Alkaline Phosphatase (Ilofotase Alfa) Protects against Kidney Ischemia-Reperfusion Injury in Mice and Rats through Adenosine Receptors. Front. Med. 2022, 9, 2342. [Google Scholar] [CrossRef]
- Bessueille, L.; Briolay, A.; Como, J.; Mebarek, S.; Mansouri, C.; Gleizes, M.P.; El Jamal, A.; Buchet, R.; Dumontet, C.; Matera, E.; et al. Tissue-Nonspecific Alkaline Phosphatase Is an Anti-Inflammatory Nucleotidase. Bone 2020, 133, 115262. [Google Scholar] [CrossRef]
- Gao, C.; Koko, M.Y.F.; Ding, M.; Hong, W.; Li, J.; Dong, N.; Hui, M. Intestinal Alkaline Phosphatase (IAP, IAP Enhancer) Attenuates Intestinal Inflammation and Alleviates Insulin Resistance. Front. Immunol. 2022, 13, 927272. [Google Scholar] [CrossRef]
- Briolay, A.; Bessueille, L.; Magne, D. TNAP: A New Multitask Enzyme in Energy Metabolism. Int. J. Mol. Sci. 2021, 22, 10470. [Google Scholar] [CrossRef]
- Santos, G.M.; Ismael, S.; Morais, J.; Araújo, J.R.; Faria, A.; Calhau, C.; Marques, C. Intestinal Alkaline Phosphatase: A Review of This Enzyme Role in the Intestinal Barrier Function. Microorganisms 2022, 10, 746. [Google Scholar] [CrossRef]
- Jiang, T.; Zeng, Q.; He, J. Do Alkaline Phosphatases Have Great Potential in the Diagnosis, Prognosis, and Treatment of Tumors? Transl. Cancer Res. 2023, 12, 2932–2945. [Google Scholar] [CrossRef]
- Steenvoorden, T.S.; Rood, J.A.J.; Bemelman, F.J.; Armstrong Jr, R.; Leuvenink, H.G.D.; van der Heijden, J.W.; Vogt, L. Alkaline Phosphatase Treatment of Acute Kidney Injury—An Update. Nephrol. Dial. Transplant. 2024, 39, 1239–1247. [Google Scholar] [CrossRef]
- Wojcik-Grzybek, D.; Hubalewska-Mazgaj, M.; Surmiak, M.; Sliwowski, Z.; Dobrut, A.; Mlodzinska, A.; Wojcik, A.; Kwiecien, S.; Magierowski, M.; Mazur-Bialy, A.; et al. The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa. Int. J. Mol. Sci. 2022, 23, 2964. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Carroll-Portillo, A.; Coffman, C.; Ritz, N.L.; Lin, H.C. Intestinal Alkaline Phosphatase Exerts Anti-Inflammatory Effects against Lipopolysaccharide by Inducing Autophagy. Sci. Rep. 2020, 10, 3107. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, A.E.; Rotjan, R.D.; Kagan, J.C. Lipopolysaccharide Detection by the Innate Immune System May Be an Uncommon Defence Strategy Used in Nature. Open Biol. 2022, 12, 220146. [Google Scholar] [CrossRef]
- Komazin, G.; Maybin, M.A.; Woodard, R.W.; Scior, T.; Schwudke, D.; Schombel, U.; Gisch, N.; Mamat, U.; Meredith, T.C. Substrate Structure-Activity Relationship Reveals a Limited Lipopolysaccharide Chemotype Range for Intestinal Alkaline Phosphatase. J. Biol. Chem. 2019, 294, 19405–19423. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, F.; Lei, M. MiR-25 Inhibits Sepsis-Induced Cardiomyocyte Apoptosis by Targetting PTEN. Biosci. Rep. 2018, 38, BSR20171511. [Google Scholar] [CrossRef] [PubMed]
- Erlich, J.R.; To, E.E.; Luong, R.; Liong, F.; Liong, S.; Oseghale, O.; Miles, M.A.; Bozinovski, S.; Brooks, R.D.; Vlahos, R.; et al. Glycolysis and the Pentose Phosphate Pathway Promote LPS-Induced NOX2 Oxidase- and IFN-β-Dependent Inflammation in Macrophages. Antioxidants 2022, 11, 1488. [Google Scholar] [CrossRef]
- Griffiths, H.R.; Gao, D.; Pararasa, C. Redox Regulation in Metabolic Programming and Inflammation. Redox Biol. 2017, 12, 50–57. [Google Scholar] [CrossRef]
- Yang, Y.; Wandler, A.M.; Postlethwait, J.H.; Guillemin, K. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates. Front. Immunol. 2012, 3, 314. [Google Scholar] [CrossRef]
- Jablonska, P.; Kutryb-Zajac, B.; Mierzejewska, P.; Jasztal, A.; Bocian, B.; Lango, R.; Rogowski, J.; Chlopicki, S.; Smolenski, R.T.; Slominska, E.M. The New Insight into Extracellular NAD+ Degradation-the Contribution of CD38 and CD73 in Calcific Aortic Valve Disease. J. Cell. Mol. Med. 2021, 25, 5884–5898. [Google Scholar] [CrossRef]
- Martín-Reyes, F.; Bernal, M.; Rodríguez-Díaz, C.; Rodríguez-de, D.; Ho-Plagaro, A.; Rodríguez-Pacheco, F.; Camacho-Martel, L.; Camargo-Camero, R.; Rodríguez-González, F.J.; Alcain-Martínez, G.; et al. Mitochondrial Stress Links Environmental Triggers with Pro-Inflammatory Signaling in Crohn’s Disease. Antioxidants 2023, 12, 2105. [Google Scholar] [CrossRef] [PubMed]
- Vuerich, M.; Mukherjee, S.; Robson, S.C.; Longhi, M.S. Control of Gut Inflammation by Modulation of Purinergic Signaling. Front. Immunol. 2020, 11, 1882. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhao, M.; Sun, H.; Hu, L.; Chen, Y.; Fan, Z. Roles of Mitochondria in Neutrophils. Front. Immunol. 2022, 13, 934444. [Google Scholar] [CrossRef]
- Harroun, S.G.; Vallée-Bélisle, A. Methods to Characterise Enzyme Kinetics with Biological and Medicinal Substrates: The Case of Alkaline Phosphatase. Chem. Methods 2023, 3, e202200067. [Google Scholar] [CrossRef]
- Liu, J.; Iwata, K.; Zhu, K.; Matsumoto, M.; Matsumoto, K.; Asaoka, N.; Zhang, X.; Ibi, M.; Katsuyama, M.; Tsutsui, M.; et al. NOX1/NADPH Oxidase in Bone Marrow-Derived Cells Modulates Intestinal Barrier Function. Free Radic. Biol. Med. 2020, 147, 90–101. [Google Scholar] [CrossRef]
- Taylor, J.P.; Tse, H.M. The Role of NADPH Oxidases in Infectious and Inflammatory Diseases. Redox Biol. 2021, 48, 102159. [Google Scholar] [CrossRef]
- Banskota, S.; Wang, H.; Kwon, Y.H.; Gautam, J.; Haq, S.; Grondin, J.; Steinberg, G.R.; Khan, W.I. Inhibition of NADPH Oxidase (NOX) 2 Mitigates Colitis in Mice with Impaired Macrophage AMPK Function. Biomedicines 2023, 11, 1443. [Google Scholar] [CrossRef]
- Lee, H.; Jose, P.A. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front. Pharmacol. 2021, 12, 670076. [Google Scholar] [CrossRef]
- Moghadam, Z.M.; Henneke, P.; Kolter, J. From Flies to Men: ROS and the NADPH Oxidase in Phagocytes. Front. Cell Dev. Biol. 2021, 9, 628991. [Google Scholar] [CrossRef]
- Ye, Y.; Jian, Z.; Jin, T.; Li, Y.; Zhang, Z.; Zhou, X.; Xiong, X.; Gu, L. NOX2-Mediated Reactive Oxygen Species Are Double-Edged Swords in Focal Cerebral Ischemia in Mice. J. Neuroinflamm. 2022, 19, 184. [Google Scholar] [CrossRef]
- Phan, T.K.; Williams, S.A.; Bindra, G.K.; Lay, F.T.; Poon, I.K.H.; Hulett, M.D. Phosphoinositides: Multipurpose Cellular Lipids with Emerging Roles in Cell Death. Cell Death Differ. 2019, 26, 781–793. [Google Scholar] [CrossRef]
- Orekhov, A.N.; Nikiforov, N.G.; Omelchenko, A.V.; Sinyov, V.V.; Sobenin, I.A.; Vinokurov, A.Y.; Orekhova, V.A. The Role of Mitochondrial Mutations in Chronification of Inflammation: Hypothesis and Overview of Own Data. Life 2022, 12, 1153. [Google Scholar] [CrossRef]
- Pettengill, M.A.; Matute, J.D.; Tresenriter, M.; Hibbert, J.; Burgner, D.; Richmond, P.; Millán, J.L.; Ozonoff, A.; Strunk, T.; Currie, A.; et al. Human Alkaline Phosphatase Dephosphorylates Microbial Products and Is Elevated in Preterm Neonates with a History of Late-Onset Sepsis. PLoS ONE 2017, 12, e0175936. [Google Scholar] [CrossRef]
- Yu, Y.; Rong, K.; Yao, D.; Zhang, Q.; Cao, X.; Rao, B.; Xia, Y.; Lu, Y.; Shen, Y.; Yao, Y.; et al. The Structural Pathology for Hypophosphatasia Caused by Malfunctional Tissue Non-Specific Alkaline Phosphatase. Nat. Commun. 2023, 14, 4048. [Google Scholar] [CrossRef]
- Peters, E.; Schirris, T.; van Asbeck, A.H.; Gerretsen, J.; Eymael, J.; Ashikov, A.; Adjobo-Hermans, M.J.W.; Russel, F.; Pickkers, P.; Masereeuw, R. Effects of a Human Recombinant Alkaline Phosphatase during Impaired Mitochondrial Function in Human Renal Proximal Tubule Epithelial Cells. Eur. J. Pharmacol. 2017, 796, 149–157. [Google Scholar] [CrossRef]
- Engelmann, C.; Adebayo, D.; Oria, M.; De Chiara, F.; Novelli, S.; Habtesion, A.; Davies, N.; Andreola, F.; Jalan, R. Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure. Sci. Rep. 2020, 10, 389. [Google Scholar] [CrossRef]
- Ramasamy, S.; Nguyen, D.D.; Eston, M.A.; Alam, S.N.; Moss, A.K.; Ebrahimi, F.; Biswas, B.; Mostafa, G.; Chen, K.T.; Kaliannan, K.; et al. Intestinal Alkaline Phosphatase Has Beneficial Effects in Mouse Models of Chronic Colitis. Inflamm. Bowel Dis. 2010, 17, 532–542. [Google Scholar] [CrossRef]
- Lee, C.; Chun, J.; Hwang, S.W.; Kang, S.J.; Im, J.P.; Kim, J.S. The Effect of Intestinal Alkaline Phosphatase on Intestinal Epithelial Cells, Macrophages and Chronic Colitis in Mice. Life Sci. 2014, 100, 118–124. [Google Scholar] [CrossRef]
- Kaliannan, K.; Hamarneh, S.R.; Economopoulos, K.P.; Alam, S.N.; Moaven, O.; Patel, P.; Malo, N.S.; Ray, M.; Mahdi, M.; Muhammad, N.S.; et al. Intestinal Alkaline Phosphatase Prevents Metabolic Syndrome in Mice. Proc. Natl. Acad. Sci. USA 2013, 110, 7003–7008. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Jiang, Y.-X.; Zhang, M.-Y.; Huo, C.; Yang, Y.-C.; Ji, X.-L.; Qu, Y.-Q. Comprehensive Bioinformatics Analysis of Lipopolysaccharide-Induced Altered Autophagy in Acute Lung Injury and Construction of Underlying Competing Endogenous RNA Regulatory Mechanism. BioMed Res. Int. 2021, 2021, 6831770. [Google Scholar] [CrossRef]
- Zhang, Z.; Nam, H.K.; Crouch, S.; Hatch, N.E. Tissue Nonspecific Alkaline Phosphatase Function in Bone and Muscle Progenitor Cells: Control of Mitochondrial Respiration and ATP Production. Int. J. Mol. Sci. 2021, 22, 1140. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zanoni, I.; Cullen, T.W.; Goodman, A.L.; Kagan, J.C. Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria. Immunity 2015, 43, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, Z.; Zhou, X.; Li, H.; Zhao, L.; Lv, Y.; Guo, Y.; Shen, G.; He, Y.; Lei, P. SGRP78 Enhances Selective Autophagy of Monomeric TLR4 to Regulate Myeloid Cell Death. Cell Death Dis. 2022, 13, 587. [Google Scholar] [CrossRef] [PubMed]
- Lynes, M.; Narisawa, S.; Millán, J.L.; Widmaier, E.P. Interactions between CD36 and Global Intestinal Alkaline Phosphatase in Mouse Small Intestine and Effects of High-Fat Diet. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2011, 301, R1738–R1747. [Google Scholar] [CrossRef]
- Shu, H.; Peng, Y.; Hang, W.; Nie, J.; Zhou, N.; Wang, D.W. The Role of CD36 in Cardiovascular Disease. Cardiovasc. Res. 2020, 118, 115–129. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, J.-Y.; Lee, S.-M.; Chung, J.O.; Seo, J.-H.; Kim, S.; Kim, D.H.; Park, C.-H.; Ju, J.-K.; Joo, Y.-E.; et al. Lower Expression of Endogenous Intestinal Alkaline Phosphatase May Predict Worse Prognosis in Patients with Crohn’s Disease. BMC Gastroenterol. 2018, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2024, 20, 6008. [Google Scholar] [CrossRef]
- Chandel, N.S. NADPH—The Forgotten Reducing Equivalent. Cold Spring Harb. Perspect. Biol. 2021, 13, a040550. [Google Scholar] [CrossRef]
- Belambri, S.A.; Rolas, L.; Raad, H.; Hurtado-Nedelec, M.; Dang, P.M.-C.; El-Benna, J. NADPH Oxidase Activation in Neutrophils: Role of the Phosphorylation of Its Subunits. Eur. J. Clin. Investig. 2018, 48 (Suppl. S2), e12951. [Google Scholar] [CrossRef]
- Snyder, M.E.; Farber, D.L. The Phagocyte NOX2 NADPH Oxidase in Microbial Killing and Cell Signaling. Curr. Opin. Immunol. 2019, 60, 130–140. [Google Scholar] [CrossRef]
- Jang, S.-E.; Hyam, S.R.; Han, M.J.; Kim, S.-Y.; Lee, B.-G.; Kim, D.-H. Lactobacillus brevis G-101 Ameliorates Colitis in Mice by Inhibiting NF-ΚB, MAPK and AKT Pathways and by Polarizing M1 Macrophages to M2-like Macrophages. J. Appl. Microbiol. 2013, 115, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wan, P.; Zhu, X.-D.; Ren, Y.-P.; Wang, C.; Yan, R.-W.; Guo, Y.; Bai, A.-P. Inhibition of NADPH Oxidase Activities Ameliorates DSS-Induced Colitis. Biochem. Pharmacol. 2018, 158, 126–133. [Google Scholar] [CrossRef]
- Shifrin, D.A.; McConnell, R.E.; Nambiar, R.; Higginbotham, J.N.; Coffey, R.J.; Tyska, M.J. Enterocyte Microvillus-Derived Vesicles Detoxify Bacterial Products and Regulate Epithelial-Microbial Interactions. Curr. Biol. 2012, 22, 627–631. [Google Scholar] [CrossRef]
- Klopf, J.; Brostjan, C.; Eilenberg, W.; Neumayer, C. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and Inflammatory Disease. Int. J. Mol. Sci. 2021, 22, 559. [Google Scholar] [CrossRef]
- Keir, H.R.; Chalmers, J.D. Neutrophil Extracellular Traps in Chronic Lung Disease: Implications for Pathogenesis and Therapy. Eur. Respir. Rev. 2022, 31, 210241. [Google Scholar] [CrossRef] [PubMed]
- Henager, S.H.; Henriquez, S.; Dempsey, D.R.; Cole, P.A. Analysis of Site-Specific Phosphorylation of PTEN by Using Enzyme-Catalyzed Expressed Protein Ligation. ChemBioChem 2019, 21, 64–68. [Google Scholar] [CrossRef]
- Zhang, K.K.; Burns, C.M.; Skinner, M.E.; Lombard, D.B.; Miller, R.A.; Endicott, S.J. PTEN Is Both an Activator and a Substrate of Chaperone-Mediated Autophagy. J. Cell Biol. 2023, 222, e202208150. [Google Scholar] [CrossRef]
- Chen, C.; Yan, W.; Tao, M.; Fu, Y. NAD+ Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants 2023, 12, 1230. [Google Scholar] [CrossRef]
- Cantó, C.; Menzies, K.J.; Auwerx, J. NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015, 22, 31–53. [Google Scholar] [CrossRef]
- Glatz, J.F.C.; Nabben, M.; Luiken, J.J.F.P. CD36 (SR-B2) as Master Regulator of Cellular Fatty Acid Homeostasis. Curr. Opin. Lipidol. 2022, 33, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Samovski, D.; Su, X.; Xu, Y.; Abumrad, N.A.; Stahl, P.D. Insulin and AMPK Regulate FA Translocase/CD36 Plasma Membrane Recruitment in Cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J. Lipid Res. 2012, 53, 709–717. [Google Scholar] [CrossRef]
- Luiken, J.J.F.P.; Nabben, M.; Neumann, D.; Glatz, J.F.C. Understanding the Distinct Subcellular Trafficking of CD36 and GLUT4 during the Development of Myocardial Insulin Resistance. Biochim. Biophys. Acta. Mol. Basis Dis. 2020, 1866, 165775. [Google Scholar] [CrossRef] [PubMed]
- Son, N.-H.; Basu, D.; Samovski, D.; Pietka, T.A.; Peche, V.S.; Willecke, F.; Fang, X.; Yu, S.-Q.; Scerbo, D.; Chang, H.R.; et al. Endothelial Cell CD36 Optimizes Tissue Fatty Acid Uptake. J. Clin. Investig. 2018, 128, 4329–4342. [Google Scholar] [CrossRef] [PubMed]
- Samovski, D.; Dhule, P.; Pietka, T.; Jacome-Sosa, M.; Penrose, E.; Son, N.-H.; Flynn, C.R.; Shoghi, K.I.; Hyrc, K.L.; Goldberg, I.J.; et al. Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling. Diabetes 2018, 67, 1272–1284. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, J.; Taylor, T.G.; Venable, P.W.; Rhodes, N.J.; Gil, R.; Warren, M.E.; Wende, A.R.; Abel, E.D.; Cox, J.D.; Spitzer, K.W.; et al. Metabolic Determinants of Electrical Failure in Ex-Vivo Canine Model of Cardiac Arrest: Evidence for the Protective Role of Inorganic Pyrophosphate. PLoS ONE 2013, 8, e57821. [Google Scholar] [CrossRef]
- Balabanova, L.; Bakholdina, S.; Buinovskaya, N.; Noskova, Y.; Kolpakova, O.; Vlasova, V.; Bondarev, G.; Seitkalieva, A.; Son, O.; Tekutyeva, L. LPS-Dephosphorylating Cobetia Amphilecti Alkaline Phosphatase of PhoA Family Divergent from the Multiple Homologues of Cobetia Spp. Microorganisms 2024, 12, 631. [Google Scholar] [CrossRef]
- Wallroth, A.; Haucke, V. Phosphoinositide Conversion in Endocytosis and the Endolysosomal System. J. Biol. Chem. 2017, 293, 1526–1535. [Google Scholar] [CrossRef]
- Tang, Z.; Takahashi, Y.; He, H.; Hattori, T.; Chen, C.; Liang, X.; Chen, H.; Young, M.M.; Wang, H.-G. TOM40 Targets Atg2 to Mitochondria-Associated ER Membranes for Phagophore Expansion. Cell Rep. 2019, 28, 1744–1757.e5. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, L.; Tang, C.; Wang, H.; Wei, Y. Autophagy-Inflammation Interplay during Infection: Balancing Pathogen Clearance and Host Inflammation. Front. Pharmacol. 2022, 13, 832750. [Google Scholar] [CrossRef]
- Wen, T.; Thapa, N.; Cryns, V.L.; Anderson, R.A. Regulation of Phosphoinositide Signaling by Scaffolds at Cytoplasmic Membranes. Biomolecules 2023, 13, 1297. [Google Scholar] [CrossRef] [PubMed]
- Birgisdottir, Å.B.; Johansen, T. Autophagy and Endocytosis—Interconnections and Interdependencies. J. Cell Sci. 2020, 133, jcs228114. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Guo, J.; Xu, J.; Wang, J.; Liu, S.; Xu, B. Dynamic Continuum of Nanoscale Peptide Assemblies Facilitates Endocytosis and Endosomal Escape. Nano Lett. 2021, 21, 4078–4085. [Google Scholar] [CrossRef] [PubMed]
- Gentile, K.; Bhide, A.; Kauffman, J.; Ghosh, S.; Maiti, S.; Adair, J.; Lee, T.-H.; Sen, A. Enzyme Aggregation and Fragmentation Induced by Catalysis Relevant Species. Phys. Chem. Chem. Phys. 2021, 23, 20709–20717. [Google Scholar] [CrossRef] [PubMed]
- Groza, R.; Schmidt, K.V.; Müller, P.M.; Ronchi, P.; Schlack-Leigers, C.; Neu, U.; Puchkov, D.; Dimova, R.; Matthaeus, C.; Taraska, J.; et al. Adhesion Energy Controls Lipid Binding-Mediated Endocytosis. Nat. Commun. 2024, 15, 2767. [Google Scholar] [CrossRef]
- Hansen, G.H.; Niels-Christiansen, L.-L.; Immerdal, L.; Nystrøm, B.T.; Danielsen, E.M. Intestinal Alkaline Phosphatase: Selective Endocytosis from the Enterocyte Brush Border during Fat Absorption. AJP Gastrointest. Liver Physiol. 2007, 293, G1325–G1332. [Google Scholar] [CrossRef]
- Müller, G.; Müller, T.D. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023, 13, 994. [Google Scholar] [CrossRef]
- Sloot, Y.J.E.; Rabold, K.; Netea, M.G.; Smit, J.W.A.; Hoogerbrugge, N.; Netea-Maier, R.T. Effect of PTEN Inactivating Germline Mutations on Innate Immune Cell Function and Thyroid Cancer-Induced Macrophages in Patients with PTEN Hamartoma Tumor Syndrome. Oncogene 2019, 38, 3743–3755. [Google Scholar] [CrossRef]
- Paclet, M.-H.; Laurans, S.; Dupré-Crochet, S. Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front. Cell Dev. Biol. 2022, 10, 945749. [Google Scholar] [CrossRef]
- Tlili, A.; Pintard, C.; Hurtado-Nedelec, M.; Liu, D.; Marzaioli, V.; Thieblemont, N.; Dang, P.M.-C.; El-Benna, J. ROCK2 Interacts with P22phox to Phosphorylate P47phox and to Control NADPH Oxidase Activation in Human Monocytes. Proc. Natl. Acad. Sci. USA 2023, 120, e2209184120. [Google Scholar] [CrossRef]
- Mantegazza, A.R.; Savina, A.; Vermeulen, M.; Pérez, L.; Geffner, J.; Hermine, O.; Rosenzweig, S.D.; Faure, F.; Amigorena, S. NADPH Oxidase Controls Phagosomal PH and Antigen Cross-Presentation in Human Dendritic Cells. Blood 2008, 112, 4712–4722. [Google Scholar] [CrossRef] [PubMed]
- Plisova, E.Y.; Balabanova, L.A.; Ivanova, E.P.; Kozhemyako, V.B.; Mikhailov, V.V.; Agafonova, E.V.; Rasskazov, V.A. A highly active alkaline phosphatase from the marine bacterium Cobetia. Mar Biotechnol (NY) 2005, 7, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Reid, T.W.; Wilson, I.B. 17 E. coli Alkaline Phosphatase. In The Enzymes; Academic Press: Cambridge, MA, USA, 1971; Volume 4, pp. 373–415. [Google Scholar] [CrossRef]
- Tsutomu, I.; Makoto, M.; Oshikatsu, S.; Tsugikazu, T. Phosphorylcholine as a unique substrate for human intestinal alkaline phosphatase. Int. J. Biochem. 1994, 26, 273–277. [Google Scholar] [CrossRef]
- Tuin, A.; Poelstra, K.; de Jager-Krikken, A. Role of alkaline phosphatase in colitis in man and rats. Gut 2009, 58, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.L. Alkaline phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal. 2006, 2, 335–341. [Google Scholar] [CrossRef]
- Kiffer-Moreira, T.; Sheen, C.R.; da Silva Gasque, K.C.; Bolean, M.; Ciancaglini, P.; van Elsas, A.; Hoylaerts, M.F.; Millán, J.L. Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS ONE 2014, 9, e89374. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balabanova, L.; Bondarev, G.; Seitkalieva, A.; Son, O.; Tekutyeva, L. Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms. Biomedicines 2024, 12, 2502. https://doi.org/10.3390/biomedicines12112502
Balabanova L, Bondarev G, Seitkalieva A, Son O, Tekutyeva L. Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms. Biomedicines. 2024; 12(11):2502. https://doi.org/10.3390/biomedicines12112502
Chicago/Turabian StyleBalabanova, Larissa, Georgii Bondarev, Aleksandra Seitkalieva, Oksana Son, and Liudmila Tekutyeva. 2024. "Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms" Biomedicines 12, no. 11: 2502. https://doi.org/10.3390/biomedicines12112502
APA StyleBalabanova, L., Bondarev, G., Seitkalieva, A., Son, O., & Tekutyeva, L. (2024). Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms. Biomedicines, 12(11), 2502. https://doi.org/10.3390/biomedicines12112502