The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical and Paraclinical Characteristics
3.2. Inflammatory Markers and Disease Severity
3.3. Predictive Models for Severe CVD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Muniesa, P.; Mártinez-González, M.-A.; Hu, F.B.; Després, J.-P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 27 July 2024).
- Roman, G. Obesity and health-related lifestyle factors in the general population in Romania: A cross sectional study. Acta Endocrinol. 2015, 11, 64–72. [Google Scholar] [CrossRef]
- Ferrante, A.W. Obesity-induced inflammation: A metabolic dialogue in the language of inflammation. J. Intern. Med. 2007, 262, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef]
- Lasselin, J.; Magne, E.; Beau, C.; Ledaguenel, P.; Dexpert, S.; Aubert, A.; Layé, S.; Capuron, L. Adipose inflammation in obesity: Relationship with circulating levels of inflammatory markers and association with surgery-induced weight loss. J. Clin. Endocrinol. Metab. 2014, 99, E53–E61. [Google Scholar] [CrossRef]
- Unamuno, X.; Gómez-Ambrosi, J.; Rodríguez, A.; Becerril, S.; Frühbeck, G.; Catalán, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018, 48, e12997. [Google Scholar] [CrossRef]
- Heindel, J.J.; Lustig, R.H.; Howard, S.; Corkey, B.E. Obesogens: A unifying theory for the global rise in obesity. Int. J. Obes. 2024, 48, 449–460. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κBsignaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Russo, L.; Lumeng, C.N. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018, 155, 407–417. [Google Scholar] [CrossRef]
- Debnath, M.; Agrawal, S.; Agrawal, A.; Dubey, G.P. Metaflammatory responses during obesity: Pathomechanism and treatment. Obes. Res. Clin. Pr. 2016, 10, 103–113. [Google Scholar] [CrossRef]
- Bindlish, S.; Ng, J.; Ghusn, W.; Fitch, A.; Bays, H.E. Obesity, thrombosis, venous disease, lymphatic disease, and lipedema: An obesity medicine association (OMA) clinical practice statement (CPS) 2023. Obes. Pillars 2023, 8, 100092. [Google Scholar] [CrossRef] [PubMed]
- Wensveen, F.M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 2015, 45, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Matei, S.C.; Dumitru, C.Ș.; Radu, D. Measuring the Quality of Life in Patients with Chronic Venous Disease before and Short Term after Surgical Treatment-A Comparison between Different Open Surgical Procedures. J. Clin. Med. 2022, 11, 7171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McArdle, M.; Hernandez-Vila, E.A. Management of Chronic Venous Disease. Tex. Heart Inst. J. 2017, 44, 347–349. [Google Scholar] [CrossRef]
- Matei, S.C.; Matei, M.; Anghel, F.M.; Carabenciov, E.; Murariu, M.S.; Olariu, S. Utility of routine laboratory tests in the assessment of chronic venous disease progression in female patients. Exp. Ther. Med. 2022, 24, 571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matei, S.C.; Matei, M.; Anghel, F.M.; Derban, M.D.; Olariu, A.; Olariu, S. Impact of statin treatment on patients diagnosed with chronic venous disease. Morphological analysis of the venous wall and clinical implications. Phlebology 2022, 37, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, A.; Kakkos, S.; Baekgaard, N.; Comerota, A.; de Maeseneer, M.; Eklof, B.; Giannoukas, A.D.; Lugli, M.; Maleti, O.; Myers, K.; et al. Management of chronic venous disorders of the lower limbs. Guidelines According to Scientific Evidence. Part I. Int. Angiol. A J. Int. Union. Angiol. 2018, 37, 181–254. [Google Scholar] [CrossRef]
- Matei, S.C.; Matei, M.; Anghel, F.M.; Murariu, M.S.; Olariu, S. Cryostripping-A Safe and Efficient Alternative Procedure in Chronic Venous Disease Treatment. J. Clin. Med. 2022, 11, 5028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matei, S.C.; Radu-Teodorescu, D.; Murariu, M.S.; Dumitru, C.Ș.; Olariu, S. Cryostripping Versus Conventional Safenectomy in Chronic Venous Disease Treatment: A Single CenterRetrospective Cohort Study. Chirurgia 2024, 119, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Zegarra, T.I.; Tadi, P. CEAP classification of venous disorders. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Zierle-Ghosh, A.; Jan, A. Physiology, Body Mass Index. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rodríguez, E.; Arias-Mendoza, A.; Amezcua-Guerra, L.M. C-reactive protein: The quintessential marker of systemic inflammation in coronary artery disease—Advancing toward precision medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef]
- Davies, H.O.; Popplewell, M.; Singhal, R.; Smith, N.; Bradbury, A.W. Obesity and lower limb venous disease—The epidemic of phlebesity. Phlebology 2017, 32, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Fung, E.; Xu, A.; Lan, H.Y. C-reactive protein and ageing. Clin. Exp. Pharmacol. Physiol. 2017, 44 (Suppl. S1), 9–14. [Google Scholar] [CrossRef] [PubMed]
- Gomez, I.; Benyahia, C.; Le Dall, J.; Payré, C.; Louedec, L.; Leséche, G.; Lambeau, G.; Longrois, D.; Norel, X. Absence of inflammatory conditions in human varicose saphenous veins. Inflamm. Res. 2013, 62, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.; Yetkin, E. Increased inflammatory status in chronic venous insufficiency patients. Phlebology 2017, 32, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Raffetto, J.D. Pathophysiology of Chronic Venous Disease and Venous Ulcers. Surg. Clin. N. Am. 2018, 98, 337–347. [Google Scholar] [CrossRef]
- Di Vincenzo, A.; Granzotto, M.; Trevellin, E.; Purificati, C.; Vecchiato, M.; Foletto, M.; Pesavento, M.; Vettor, R.; Rossato, M. Bariatric surgery modulates plasma levels of antibodies against angiotensin II type 1 and endothelin 1 type A receptor in severe obesity. J. Endocrinol. Investig. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015, 3, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Guria, S.; Hoory, A.; Das, S.; Chattopadhyay, D.; Mukherjee, S. Adipose tissue macrophages and their role in obesity-associated insulin resistance: An overview of the complex dynamics at play. Biosci. Rep. 2023, 43, BSR20220200. [Google Scholar] [CrossRef]
- Wong, L.Y.F.; Leung, R.Y.H.; Ong, K.L.; Cheung, B.M.Y. Plasma levels of fibrinogen and C-reactive protein are related to interleukin-6 gene −572C>G polymorphism in subjects with and without hypertension. J. Hum. Hypertens. 2007, 21, 875–882. [Google Scholar] [CrossRef]
- Pierpont, Y.N.; Dinh, T.P.; Salas, R.E.; Johnson, E.L.; Wright, T.G.; Robson, M.C.; Payne, W.G. Obesity and surgical wound healing: A current review. ISRN Obes. 2014, 2014, 638936. [Google Scholar] [CrossRef]
- Alma, A.; Marconi, G.D.; Rossi, E.; Magnoni, C.; Paganelli, A. Obesity and Wound Healing: Focus on Mesenchymal Stem Cells. Life 2023, 13, 717. [Google Scholar] [CrossRef] [PubMed]
- Pence, B.D.; Woods, J.A. Exercise, Obesity, and Cutaneous Wound Healing: Evidence from Rodent and Human Studies. Adv. Wound Care 2014, 3, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Deol, Z.K.; Lakhanpal, S.; Franzon, G.; Pappas, P.J. Effect of obesity on chronic venous insufficiency treatment outcomes. J. Vasc. Surg. Venous Lymphat. Disord. 2020, 8, 617–628.e1. [Google Scholar] [CrossRef]
- Bossart, S.; Boesch, P.F.; Keo, H.H.; Staub, D.; Uthoff, H. Endovenous Thermal Ablation for Treatment of Symptomatic Saphenous Veins-Does the Body Weight Matter? J. Clin. Med. 2023, 12, 5438. [Google Scholar] [CrossRef]
- Matei, S.C.; Dumitru, C.S.; Fakhry, A.M.; Ilijevski, N.; Pešić, S.; Petrović, J.; Crăiniceanu, Z.P.; Murariu, M.S.; Olariu, S. Bacterial Species Involved in Venous Leg Ulcer Infections and Their Sensitivity to Antibiotherapy-An Alarm Signal Regarding the Seriousness of Chronic Venous Insufficiency C6 Stage and Its Need for Prompt Treatment. Microorganisms 2024, 12, 472. [Google Scholar] [CrossRef]
- Matei, S.C.; Matei, M.; Anghel, F.M.; Olariu, A.; Olariu, S. Great saphenous vein giant aneurysm. Acta Phlebol. 2022, 23, 87–92. [Google Scholar] [CrossRef]
- He, J.; Ma, F.; Yao, J.; Premaratne, S.; Gao, H.; Xu, Z.; Li, J.; You, T.; Du, X.; Xu, H.; et al. Dietary Effects on Chronic Venous Disease. Ann. Vasc. Surg. 2023, 88, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Schastlivtsev, I.; Lobastov, K.; Barinov, V.; Kanzafarova, I. Diosmin 600 in adjunction to rivaroxaban reduces the risk of post-thrombotic syndrome after femoropopliteal deep vein thrombosis: Results of the RIDILOTT DVT study. Int. Angiol. 2020, 39, 361–371. [Google Scholar] [CrossRef]
- Rabe, E.; Partsch, H.; Hafner, J.; Lattimer, C.; Mosti, G.; Neumann, M.; Urbanek, T.; Huebner, M.; Gaillard, S.; Carpentier, P. Indications for medical compression stockings in venous and lymphatic disorders: An evidence-based consensus statement. Phlebology 2018, 33, 163–184. [Google Scholar] [CrossRef]
- Kanber, E.M. Comparison of Foam and Liquid Sclerotherapy for the Treatment of Lower Extremity Varicose Veins and Telangiectasia in Obese Patients. Cureus 2023, 15, e42571. [Google Scholar] [CrossRef]
- Belcaro, G.; Cesarone, M.R.; Cox, D.; Scipione, C.; Scipione, V.; Dugall, M.; Hu, S.; Corsi, M.; Feragalli, B.; Cotellese, R. Improvements in edema and microcirculation in chronic venous insufficiency with Pycnogenol® or elastic compression. Minerva Surg. 2024, 79, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Jünger, M.; Steins, A.; Hahn, M.; Häfner, H.M. Microcirculatory dysfunction in chronic venous insufficiency (CVI). Microcirculation 2000, 7 Pt 2, S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Cesarone, M.R.; Belcaro, G.; Agus, G.B.; Ippolito, E.; Dugall, M.; Hosoi, M.; Corsi, M.; Cotellese, R.; Feragalli, B.; Scipione, C.; et al. Chronic venous insufficiency and venous microangiopathy: Management with compression and Pycnogenol. Minerva Cardioangiol. 2019, 67, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Santiago, F. Quality of Life in Chronic Venous Disease: Bridging the Gap Between Patients and Physicians. Clin. Drug Investig. 2023, 43 (Suppl. S1), 3–8. [Google Scholar] [CrossRef]
- Sun, C.R.; Liu, M.Y.; Ni, Q.H.; Cai, F.; Tang, F.; Yu, Z.Y.; Zhang, J.B.; Zhang, L.; Zhang, W.W.; Li, C.M. Clinical Guidelines on Compression Therapy in Venous Diseases. Ann. Vasc. Surg. 2024, in press. [CrossRef]
Variables | Category | Mean (SD) or N (%) | ||||
---|---|---|---|---|---|---|
Total N = 619 (100%) | Mild N = 251 (40.55%) | Moderate N = 214 (34.57%) | Severe N = 154 (24.88%) | p-Value | ||
Age | 57.92 (10.39) | 54.51 (8.66) | 56.30 (9.64) | 65.73 (10.01) | <0.001 a,*** | |
Sex | Female | 423 (68.34%) | 186 (74.10%) | 128 (59.81%) | 109 (70.78%) | 0.003 b,** |
Male | 196 (31.66%) | 65 (25.90%) | 86 (40.19%) | 45 (29.22%) | ||
BMI | 28.60 (4.76) | 26.75 (3.44) | 30.04 (5.26) | 29.65(4.92) | <0.001 a,*** | |
Obesity | I | 142 (22.94%) | 40 (15.93%) | 68 (31.77%) | 34 (22.07%) | <0.001 b,*** |
II | 72 (11.63%) | 1 (0.39%) | 45 (21.02%) | 26 (16.88%) | <0.001 b,*** | |
III | 5 (0.08%) | 0 (0%) | 1 (0.46%) | 4 (2.59%) | <0.001 b,*** | |
RBC | 4.603 (0.475) | 4.622 (0.423) | 4.682 (0.428) | 4.464 (0.578) | <0.001 a,*** | |
WBC | 7.307 (2.198) | 6.926 (1.886) | 7.465 (2.309) | 7.710 (2.416) | <0.001 a,*** | |
ANC | 4.539 (1.883) | 3.979 (1.484) | 4.693 (1.787) | 5.240 (2.287) | <0.001 a,*** | |
ALC | 1.965 (0.732) | 2.084 (0.755) | 1.979 (0.668) | 1.750 (0.738) | <0.001 a,*** | |
AEC | 0.220 (0.213) | 0.196 (0.168) | 0.229 (0.215) | 0.246 (0.265) | 0.127 a | |
ABC | 0.045 (0.026) | 0.041 (0.023) | 0.048 (0.026) | 0.046 (0.029) | 0.031 a,* | |
AMC | 0.432 (0.214) | 0.411 (0.192) | 0.440 (0.205) | 0.456 (0.255) | 0.212 a | |
PLT | 249.060 (77.334) | 251.125 (73.047) | 236.397 (71.062) | 263.292 (89.292) | 0.009 a,** | |
ESR | 16.651 (12.100) | 9.701 (4.681) | 18.074 (11.495) | 26 (14.198) | <0.001 a,*** | |
CRP | 10.442 (11.397) | 5.098 (4.540) | 9.052 (6.749) | 21.083 (16.251) | <0.001 a,*** | |
Fibrinogen | 363.142 (105.666) | 318.980 (78.868) | 374.383 (110.757) | 419.500 (106.230) | <0.001 a,*** | |
PT | 12.398 (7.999) | 12.518 (10.614) | 12.240 (6.133) | 12.420 (4.684) | 0.64 b | |
INR | 1.070 (0.379) | 1.029 (0.177) | 1.079 (0.498) | 1.123 (0.422) | 0.024 b | |
aPTT | 31.442 (5.434) | 31.668 (5.241) | 31.443 (4.757) | 31.072 (6.530) | 0.210 a | |
CK | 117.735 (64.964) | 127.802 (63.474) | 118.934 (64.956) | 99.662 (63.974) | <0.001 a,*** | |
CK-MB | 18.473 (13.298) | 17.908 (10.511) | 18.341 (15.181) | 19.577 (14.529) | 0.971 a | |
Fasting glucose | 103.513 (16.057) | 102.035 (16.560) | 100.766 (12.918) | 109.740 (17.545) | <0.001 a,*** | |
ALT | 29.562 (16.191) | 31.195 (19.058) | 31.677 (15.515) | 23.961 (9.380) | <0.001 a,*** | |
AST | 23.078 (13.464) | 23.818 (18.807) | 23.574 (8.483) | 21.181 (7.016) | 0.054 a |
Risk Factor | Severe Form | |||
---|---|---|---|---|
Spearman Correlation | Univariate Logistic Regression | |||
Rho | p-Value | cOR(95%CI) | p-Value | |
Age | 0.411 | <0.001 *** | 1.116(1.092–1.142) | <0.001 *** |
Female sex | 0.030 | 0.453 | 1.165(0.787–1.745) | 0.453 |
BMI | 0.109 | 0.006 ** | 1.062(1.023–1.104) | 0.002 ** |
Predictive Factor | Severe Form | |||
---|---|---|---|---|
Spearman Correlation | Univariate Logistic Regression | |||
Rho | p-Value | cOR(95%CI) | p-Value | |
RBC | −0.148 | <0.001 *** | 0.435(0.292–0.643) | <0.001 *** |
WBC | 0.078 | <0.001 *** | 1.113(1.026–1.207) | 0.009 ** |
ANC | 0.189 | <0.001 *** | 1.288(1.169–1.424) | <0.001 *** |
ALC | −0.200 | <0.001 *** | 0.537(0.395–0.715) | <0.001 *** |
AEC | 0.027 | 0.497 | 2.003(0.889–4.400) | 0.086 |
AMC | 0.031 | 0.430 | 1.926(0.842–4.347) | <0.001 *** |
PLT | 0.093 | <0.001 *** | 1.003(1.001–1.005) | 0.009 ** |
ESR | 0.473 | <0.001 *** | 1.089(1.070–1.110) | <0.001 *** |
CRP | 0.456 | <0.001 *** | 1.140(1.112–1.171) | <0.001 *** |
Fibrinogen | 0.324 | <0.001 *** | 1.007(1.005–1.009) | <0.001 *** |
PT | 0.182 | <0.001 *** | 1.001(0.973–1.022) | <0.001 *** |
INR | 0.184 | <0.001 *** | 1.506(0.979–2.422) | 0.064 |
aPTT | −0.066 | 0.097 ** | 0.983(0.948–1.017) | 0.3298 |
CK | −0.207 | <0.001 *** | 0.993(0.989–0.996) | <0.001 *** |
CK-MB | −0.009 | 0.811 | 1.008(0.994–1.020) | 0.242 |
Fasting glucose | 0.186 | <0.001 *** | 1.032(1.020–1.044) | <0.001 *** |
ALT | −0.199 | <0.001 *** | 0.955(0.937–0.972) | <0.001 *** |
AST | −0.069 | <0.001 *** | 0.979(0.957–0.997) | 0.042 |
Variables | aOR(95% CI) | p-Value |
---|---|---|
Age | 1.101(1.072–1.130) | <0.001 *** |
BMI | 0.764(0.702–0.830) | <0.001 *** |
CRP | 1.218(1.164–1.275) | <0.001 *** |
Fibrinogen | 1.003(1.0002–1.0058) | 0.033 * |
ANC | 1.333(1.170–1.520) | <0.001 *** |
Variables | aOR(95% CI) | p-Value |
---|---|---|
Age | 1.040(1.019–1.061) | <0.001 *** |
BMI | 1.024(0.973–1.078) | 0.357 |
CRP | 1.133(1.083–1.184) | <0.001 *** |
Fibrinogen | 1.003(1.0011–1.0057) | 0.003 ** |
ANC | 1.246(1.110–1.399) | <0.001 *** |
BMI Distribution | Mild CVD (N = 251) | Moderate CVD (N = 214) | Severe CVD (N = 154) |
---|---|---|---|
Normal weight | 70 (27.89%) | 49 (22.89%) | 27 (17.53%) |
Overweight + Obese | 181 (72.11%) | 165 (77.1%) | 127 (82.46%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrascu, F.-M.; Matei, S.-C.; Margan, M.-M.; Ungureanu, A.-M.; Olteanu, G.-E.; Murariu, M.-S.; Olariu, S.; Marian, C. The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease. Biomedicines 2024, 12, 2524. https://doi.org/10.3390/biomedicines12112524
Petrascu F-M, Matei S-C, Margan M-M, Ungureanu A-M, Olteanu G-E, Murariu M-S, Olariu S, Marian C. The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease. Biomedicines. 2024; 12(11):2524. https://doi.org/10.3390/biomedicines12112524
Chicago/Turabian StylePetrascu, Flavia-Medana, Sergiu-Ciprian Matei, Mădălin-Marius Margan, Ana-Maria Ungureanu, Gheorghe-Emilian Olteanu, Marius-Sorin Murariu, Sorin Olariu, and Catalin Marian. 2024. "The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease" Biomedicines 12, no. 11: 2524. https://doi.org/10.3390/biomedicines12112524
APA StylePetrascu, F. -M., Matei, S. -C., Margan, M. -M., Ungureanu, A. -M., Olteanu, G. -E., Murariu, M. -S., Olariu, S., & Marian, C. (2024). The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease. Biomedicines, 12(11), 2524. https://doi.org/10.3390/biomedicines12112524