Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy
Abstract
:1. Introduction
2. Angiogenesis
3. Vascular Distribution of Femoral Head
4. How to Regulate Angiogenesis to Affect ANFH
4.1. VEGF
4.2. HIF
4.3. Other Factors
Therapy | Methodology | Functional Output | Period Studied | Reference |
---|---|---|---|---|
Drug | Platelet-derived growth factor-bb (PDGF-BB) | Mediates the self-renewal of MSCs and maintains their osteogenic ability, stabilizing the newly formed vascular tubes by recruiting MSCs for improving intraosseous vascular integration | 2023 | [94] |
Transgenic technology combined with stem cell therapy | Transplantation of PDGF-BB transgenic BMSCs | Enhances bone regeneration and angiogenesis in the treatment of early-stage ANFH | 2021 | [95] |
Drug | Cartilage oligomeric matrix protein angiopoietin-1 (COMP-Ang1) alone or in combination with bone morphogenetic protein-2 (BMP-2) | Promotes angiogenesis and bone remodeling | 2009, 2014 | [96,97] |
Drug | Metformin | Induces the expression of Ang1 | 2020 | [98] |
- | Bone morphogenetic protein in combination with other pro-angiogenic factors (VEGF, HIF-1α, COMP-Ang, basic fibroblast growth factor (bFGF)) | Promotes osteogenesis and angiogenesis | 2010–2018 | [64,65,92,97,99,100,101] |
Drug | Deferoxamine (DFO) | Increases the expression of HIF-1α, VEGF, BMP-2, and OCN to improve angiogenesis and bone repair | 2015 | [87] |
Drug | Vitamin K2 | Increases the level of angiogenesis-related proteins and enhances angiogenesis | 2016 | [106] |
Physiotherapy | Low-intensity pulsed ultrasound (LIPUS) | Promotes the increase in BMP-2 and VEGF expression, thereby enhancing osteogenesis, neovascularization, and the biomechanical strength of the femoral head | 2015 | [103] |
Physiotherapy | Microbubble-mediated ultrasound (MUS) | Promotes the increase in BMP-2, thereby enhancing osteogenesis and angiogenesis | 2018 | [69] |
Physiotherapy | Shockwave treatment | Increases the levels of VEGF, FGF, and vWF and promotes angiogenesis | 2011 | [107] |
4.4. EC Metabolism
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.-Y.; Rao, S.-S.; Yue, T.; Tan, Y.-J.; Yin, H.; Chen, L.-J.; Luo, M.-J.; Wang, Z.; Wang, Y.-Y.; Hong, C.-G.; et al. Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. Sci. Adv. 2022, 8, eabg8335. [Google Scholar] [CrossRef] [PubMed]
- Moya-Angeler, J. Current concepts on osteonecrosis of the femoral head. World J. Orthop. 2015, 6, 590–601. [Google Scholar] [CrossRef]
- Mont, M.A.; Hungerford, D.S. Non-traumatic avascular necrosis of the femoral head. J. Bone Jt. Surg. 1995, 77, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Lespasio, M.J.; Sodhi, N.; Mont, M.A. Osteonecrosis of the Hip: A Primer. Perm. J. 2019, 2019, 23. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, K.; Chen, H.; Kaufman, M.; Sverdlov, I.; Stein, E.M.; Park-Min, K. Glucocorticoid-induced osteonecrosis in systemic lupus erythematosus patients. Clin. Transl. Med. 2021, 11, e526. [Google Scholar] [CrossRef]
- Hines, J.T.; Jo, W.-L.; Cui, Q.; Mont, M.A.; Koo, K.-H.; Cheng, E.Y.; Goodman, S.B.; Ha, Y.-C.; Hernigou, P.; Jones, L.C.; et al. Osteonecrosis of the Femoral Head: An Updated Review of ARCO on Pathogenesis, Staging and Treatment. J. Korean Med. Sci. 2021, 36, e177. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Jin, Y.; Chu, Y.; Wu, H.; Li, X.; Deng, Z.; Feng, S.; Chen, N.; Luo, Z.; Zheng, X.; et al. Single-cell transcriptome analysis reveals aberrant stromal cells and heterogeneous endothelial cells in alcohol-induced osteonecrosis of the femoral head. Commun. Biol. 2022, 5, 324. [Google Scholar] [CrossRef] [PubMed]
- Çolak, S.; Erdil, A.; Gevrek, F. Effects of systemic Anatolian propolis administration on a rat-irradiated osteoradionecrosis model. J. Appl. Oral Sci. 2023, 31, e20230231. [Google Scholar] [CrossRef]
- George, G.; Lane, J.M. Osteonecrosis of the Femoral Head. JAAOS Glob. Res. Rev. 2022, 6, e21.00176. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, J.; Zhang, N.; Zhao, J.; Zhao, S. Exploring of exosomes in pathogenesis, diagnosis and therapeutic of osteonecrosis of the femoral head: The mechanisms and signaling pathways. Biomed. Mater. 2024, 19, 052006. [Google Scholar] [CrossRef]
- Ha, A.S.; Chang, E.Y.; Bartolotta, R.J.; Bucknor, M.D.; Chen, K.C.; Ellis, H.B.; Flug, J.; Leschied, J.R.; Ross, A.B.; Sharma, A.; et al. ACR Appropriateness Criteria® Osteonecrosis: 2022 Update. J. Am. Coll. Radiol. 2022, 19, S409–S416. [Google Scholar] [CrossRef] [PubMed]
- Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and Therapeutic Aspects of Angiogenesis. Cell 2011, 146, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.Y.; Kwon, S.M. Angiogenesis and Its Therapeutic Opportunities. Mediat. Inflamm. 2013, 2013, 127170. [Google Scholar] [CrossRef]
- Fallah, A.; Sadeghinia, A.; Kahroba, H.; Samadi, A.; Heidari, H.R.; Bradaran, B.; Zeinali, S.; Molavi, O. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed. Pharmacother. 2019, 110, 775–785. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, H.; Wang, Q.; Feng, Y.; Zhang, C. Inhibition of PERK Signaling Prevents Against Glucocorticoid-induced Endotheliocyte Apoptosis and Osteonecrosis of the Femoral Head. Int. J. Biol. Sci. 2020, 16, 543–552. [Google Scholar] [CrossRef]
- Yao, X.; Yu, S.; Jing, X.; Guo, J.; Sun, K.; Guo, F.; Ye, Y. PTEN inhibitor VO-OHpic attenuates GC-associated endothelial progenitor cell dysfunction and osteonecrosis of the femoral head via activating Nrf2 signaling and inhibiting mitochondrial apoptosis pathway. Stem Cell Res. Ther. 2020, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Kerachian, M.A.; Harvey, E.J.; Cournoyer, D.; Chow, T.Y.K.; Séguin, C. Avascular Necrosis of the Femoral Head: Vascular Hypotheses. Endothelium 2006, 13, 237–244. [Google Scholar] [CrossRef]
- Zhao, J.; He, W.; Zheng, H.; Zhang, R.; Yang, H. Bone Regeneration and Angiogenesis by Co-transplantation of Angiotensin II–Pretreated Mesenchymal Stem Cells and Endothelial Cells in Early Steroid-Induced Osteonecrosis of the Femoral Head. Cell Transplant. 2022, 31, 09636897221086965. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, D.; Li, C.; Zhou, S.; Tian, D.; Xiao, D.; Zhang, H.; Gao, F.; Huang, J. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biol. Int. 2017, 41, 1379–1390. [Google Scholar] [CrossRef]
- Eelen, G.; Treps, L.; Li, X.; Carmeliet, P. Basic and Therapeutic Aspects of Angiogenesis Updated. Circ. Res. 2020, 127, 310–329. [Google Scholar] [CrossRef]
- Kretschmer, M.; Rüdiger, D.; Zahler, S. Mechanical Aspects of Angiogenesis. Cancers 2021, 13, 4987. [Google Scholar] [CrossRef] [PubMed]
- del Toro, R.; Prahst, C.; Mathivet, T.; Siegfried, G.; Kaminker, J.S.; Larrivee, B.; Breant, C.; Duarte, A.; Takakura, N.; Fukamizu, A.; et al. Identification and functional analysis of endothelial tip cell–enriched genes. Blood 2010, 116, 4025–4033. [Google Scholar] [CrossRef]
- Thurston, G.; Kitajewski, J. VEGF and Delta-Notch: Interacting signalling pathways in tumour angiogenesis. Br. J. Cancer 2008, 99, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Makanya, A.N.; Hlushchuk, R.; Djonov, V.G. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 2009, 12, 113–123. [Google Scholar] [CrossRef]
- Vimalraj, S.; Saravanan, S.; Anuradha, D.; Chatterjee, S. Models to investigate intussusceptive angiogenesis: A special note on CRISPR/Cas9 based system in zebrafish. Int. J. Biol. Macromol. 2019, 123, 1229–1240. [Google Scholar] [CrossRef]
- De Spiegelaere, W.; Casteleyn, C.; Broeck, W.V.D.; Plendl, J.; Bahramsoltani, M.; Simoens, P.; Djonov, V.; Cornillie, P. Intussusceptive Angiogenesis: A Biologically Relevant Form of Angiogenesis. J. Vasc. Res. 2012, 49, 390–404. [Google Scholar] [CrossRef]
- Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 2019, 16, 469–493. [Google Scholar] [CrossRef] [PubMed]
- Maniotis, A.J.; Folberg, R.; Hess, A.; Seftor, E.A.; Gardner, L.M.; Pe’Er, J.; Trent, J.M.; Meltzer, P.S.; Hendrix, M.J. Vascular Channel Formation by Human Melanoma Cells in Vivo and in Vitro: Vasculogenic Mimicry. Am. J. Pathol. 1999, 155, 739–752. [Google Scholar] [CrossRef]
- Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med. 2011, 17, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-H.; Miao, Y.; Zhu, X.-Z.; Li, G.-Y. Assessment of the local blood supply when femoral neck fracture occurs:advances in the anatomy research and its clinical application. Zhongguo Gu Shang China J. Orthop. Traumatol. 2023, 36, 294–298. [Google Scholar] [CrossRef]
- Jedral, T.; Anyzewski, P.; Ciszek, B.; Benke, G. Vascularization of the hip joint in the human fetuses. Folia Morphol. 1996, 55, 293–294. [Google Scholar]
- Grose, A.W.; Gardner, M.J.; Sussmann, P.S.; Helfet, D.L.; Lorich, D.G. The surgical anatomy of the blood supply to the femoral head. J. Bone Jt. Surgery. Br. Vol. 2008, 90B, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Khanchandani, P.; Borkar, R.M.; Ambati, C.R.; Roy, A.; Han, X.; Bhoskar, R.N.; Ragampeta, S.; Gannon, F.; Mysorekar, V.; et al. Avascular Necrosis of Femoral Head: A Metabolomic, Biophysical, Biochemical, Electron Microscopic and Histopathological Characterization. Sci. Rep. 2017, 7, 10721. [Google Scholar] [CrossRef] [PubMed]
- Grüneboom, A.; Hawwari, I.; Weidner, D.; Culemann, S.; Müller, S.; Henneberg, S.; Brenzel, A.; Merz, S.; Bornemann, L.; Zec, K.; et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 2019, 1, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Kusumbe, A.P.; Ramasamy, S.K.; Adams, R.H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 2014, 507, 323–328, Erratum in Nature 2014, 513, 574. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Kusumbe, A.P.; Cai, H.; Wan, Q.; Chen, J. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 1434–1446. [Google Scholar] [CrossRef] [PubMed]
- Quesada, A.R.; Muñoz-Chápuli, R.; Medina, M. Angiogenesis and signal transduction in endothelial cells. Cell. Mol. Life Sci. 2004, 61, 2224–2243. [Google Scholar] [CrossRef]
- Kazerounian, S.; Lawler, J. Integration of pro- and anti-angiogenic signals by endothelial cells. J. Cell Commun. Signal. 2018, 12, 171–179. [Google Scholar] [CrossRef]
- Felmeden, D.C.; Blann, A.D.; Lip, G.Y.H. Angiogenesis: Basic pathophysiology and implications for disease. Eur. Hear. J. 2003, 24, 586–603. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; You, X.; Xing, W.; Zhang, Z.; Zou, W. Paracrine and endocrine actions of bone—The functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 2016, 17, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed]
- Varoga, D.; Drescher, W.; Pufe, M.; Groth, G.; Pufe, T. Differential Expression of Vascular Endothelial Growth Factor in Glucocorticoid-related Osteonecrosis of the Femoral Head. Clin. Orthop. Relat. Res. 2009, 467, 3273–3282. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yoo, J.-I.; Kang, Y.-J. Integrative analyses of genes related to femoral head osteonecrosis: An umbrella review of systematic reviews and meta-analyses of observational studies. J. Orthop. Surg. Res. 2022, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sakai, T.; Nishii, T.; Nakamura, N.; Takao, M.; Yoshikawa, H.; Sugano, N. Distribution of TRAP-positive cells and expression of HIF-1α, VEGF, and FGF-2 in the reparative reaction in patients with osteonecrosis of the femoral head. J. Orthop. Res. 2009, 27, 694–700. [Google Scholar] [CrossRef]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef]
- Suzuki, O.; Bishop, A.T.; Sunagawa, T.; Katsube, K.; Friedrich, P.F. VEGF-promoted surgical angiogenesis in necrotic bone. Microsurgery 2004, 24, 85–91. [Google Scholar] [CrossRef]
- Radke, S.; Battmann, A.; Jatzke, S.; Eulert, J.; Jakob, F.; Schütze, N. Expression of the angiomatrix and angiogenic proteins CYR61, CTGF, and VEGF in osteonecrosis of the femoral head. J. Orthop. Res. 2006, 24, 945–952. [Google Scholar] [CrossRef]
- Dor, Y.; Keshet, E. Ischemia-Driven Angiogenesis. Trends Cardiovasc. Med. 1997, 7, 289–294. [Google Scholar] [CrossRef]
- Ding, H.; Gao, Y.-S.; Hu, C.; Wang, Y.; Wang, C.-G.; Yin, J.-M.; Sun, Y.; Zhang, C.-Q. HIF-1α Transgenic Bone Marrow Cells Can Promote Tissue Repair in Cases of Corticosteroid-Induced Osteonecrosis of the Femoral Head in Rabbits. PLoS ONE 2013, 8, e63628. [Google Scholar] [CrossRef]
- Asahara, T.; Takahashi, T.; Masuda, H.; Kalka, C.; Chen, D.; Iwaguro, H.; Inai, Y.; Silver, M.; Isner, J.M. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999, 18, 3964–3972. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-Q.; Tan, Y.-Y.; Wong, R.; Wenden, A.; Zhang, L.-K.; Rabie, A.B.M. The role of vascular endothelial growth factor in ossification. Int. J. Oral Sci. 2012, 4, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Cornelia, R.; Swisher, S.; Kim, H. Regulation of VEGF expression by HIF-1α in the femoral head cartilage following ischemia osteonecrosis. Sci. Rep. 2012, 2, 650. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-J.; Cai, B.; Zhao, X.-Y.; Li, S.-Q.; Feng, W.; Liu, J.-G.; Li, D.-S. Repairing diabetic rats with bone defect by VEGF165 gene modified adipose-derived stem cells. Zhongguo Gu Shang China J. Orthop. Traumatol. 2017, 30, 545–551. [Google Scholar]
- Xu, Y.; Jiang, Y.; Xia, C.; Wang, Y.; Zhao, Z.; Li, T. Stem cell therapy for osteonecrosis of femoral head: Opportunities and challenges. Regen. Ther. 2020, 15, 295–304. [Google Scholar] [CrossRef]
- Rackwitz, L.; Eden, L.; Reppenhagen, S.; Reichert, J.C.; Jakob, F.; Walles, H.; Pullig, O.; Tuan, R.S.; Rudert, M.; Nöth, U. Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head. Stem Cell Res. Ther. 2012, 3, 7. [Google Scholar] [CrossRef]
- Kinnaird, T.; Stabile, E.; Burnett, M.; Lee, C.; Barr, S.; Fuchs, S.; Epstein, S. Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote In Vitro and In Vivo Arteriogenesis Through Paracrine Mechanisms. Circ. Res. 2004, 94, 678–685. [Google Scholar] [CrossRef]
- Jin, H.; Xia, B.; Yu, N.; He, B.; Shen, Y.; Xiao, L.; Tong, P. The effects of autologous bone marrow mesenchymal stem cell arterial perfusion on vascular repair and angiogenesis in osteonecrosis of the femoral head in dogs. Int. Orthop. 2012, 36, 2589–2596. [Google Scholar] [CrossRef]
- Chen, C.; Qu, Z.; Yin, X.; Shang, C.; Ao, Q.; Gu, Y.; Liu, Y. Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: A three-year follow-up study. Mol. Med. Rep. 2016, 14, 4209–4215. [Google Scholar] [CrossRef]
- Mao, Q.; Wang, W.; Xu, T.; Zhang, S.; Xiao, L.; Chen, D.; Jin, H.; Tong, P. Combination Treatment of Biomechanical Support and Targeted Intra-arterial Infusion of Peripheral Blood Stem Cells Mobilized by Granulocyte-Colony Stimulating Factor for the Osteonecrosis of the Femoral Head: A Randomized Controlled Clinical Trial. J. Bone Miner. Res. 2015, 30, 647–656. [Google Scholar] [CrossRef]
- Hang, D.; Wang, Q.; Guo, C.; Chen, Z.; Yan, Z. Treatment of Osteonecrosis of the Femoral Head with VEGF165 Transgenic Bone Marrow Mesenchymal Stem Cells in Mongrel Dogs. Cells Tissues Organs 2012, 195, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luan, S.; Yuan, Z.; Wang, S.; Fan, S.; Ma, C.; Wu, S. The Combined Use of Platelet-Rich Plasma Clot Releasate and Allogeneic Human Umbilical Cord Mesenchymal Stem Cells Rescue Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Stem Cells Int. 2022, 2022, 7432665. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Xie, X.; Tan, Z.; Yang, J.; Shen, B.; Zhou, Z.; Pei, F. Repairing defect and preventing collapse of femoral head in a steroid-induced osteonecrotic of femoral head animal model using strontium-doped calcium polyphosphate combined BM-MNCs. J. Mater. Sci. Mater. Med. 2015, 26, 80. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Zhong, Z.; Liu, Z.; Li, L.; Ling, Z.; Zou, X. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head. Exp. Ther. Med. 2018, 15, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-X.; Zhang, X.-P.; Xiao, G.-Y.; Hou, Y.; Cheng, L.; Si, M.; Wang, S.-S.; Li, Y.-H.; Nie, L. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 60, 298–307. [Google Scholar] [CrossRef]
- Li, B.; Lei, Y.; Hu, Q.; Li, D.; Zhao, H.; Kang, P. Porous copper- and lithium-doped nano-hydroxyapatite composite scaffold promotes angiogenesis and bone regeneration in the repair of glucocorticoids-induced osteonecrosis of the femoral head. Biomed. Mater. 2021, 16, 065012. [Google Scholar] [CrossRef]
- Peyravian, N.; Milan, P.B.; Kebria, M.M.; Mashayekhan, S.; Ghasemian, M.; Amiri, S.; Hamidi, M.; Shavandi, A.; Moghtadaei, M. Designing and synthesis of injectable hydrogel based on carboxymethyl cellulose/carboxymethyl chitosan containing QK peptide for femoral head osteonecrosis healing. Int. J. Biol. Macromol. 2024, 270, 132127. [Google Scholar] [CrossRef]
- Ma, H.-Z.; Zeng, B.-F.; Li, X.-L. Upregulation of VEGF in Subchondral Bone of Necrotic Femoral Heads in Rabbits with Use of Extracorporeal Shock Waves. Calcif. Tissue Int. 2007, 81, 124–131. [Google Scholar] [CrossRef]
- Xu, D.-F.; Qu, G.-X.; Yan, S.-G.; Cai, X.-Z. Microbubble-Mediated Ultrasound Outweighs Low-Intensity Pulsed Ultrasound on Osteogenesis and Neovascularization in a Rabbit Model of Steroid-Associated Osteonecrosis. BioMed Res. Int. 2018, 2018, 4606791. [Google Scholar] [CrossRef]
- Shan, H.; Lin, Y.; Yin, F.; Pan, C.; Hou, J.; Wu, T.; Xia, W.; Zuo, R.; Cao, B.; Jiang, C.; et al. Effects of astragaloside IV on glucocorticoid-induced avascular necrosis of the femoral head via regulating Akt-related pathways. Cell Prolif. 2023, 56, e13485. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Chen, L.; Xu, T.; Ming, R.; Hu, Z.; Fang, L.; Wang, X.; Li, Q.; Sun, C.; et al. Tongluo Shenggu capsule promotes angiogenesis to ameliorate glucocorticoid-induced femoral head necrosis via upregulating VEGF signaling pathway. Phytomedicine 2023, 110, 154629. [Google Scholar] [CrossRef] [PubMed]
- Dasci, M.F.; Sarac, E.Y.; Yurttas, A.G.; Atci, T.; Uslu, M.; Acar, A.; Gulec, M.A.; Alagoz, E. The effects of thymoquinone on steroid-induced femoral head osteonecrosis: An experimental study in rats. Jt. Dis. Relat. Surg. 2022, 33, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Du, T.; Yang, X.; Zhang, W.; Wang, G.; Liu, X.; Li, T.; Jiang, Z. Desferoxamine protects against glucocorticoid-induced osteonecrosis of the femoral head via activating HIF-1α expression. J. Cell. Physiol. 2020, 235, 9864–9875. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Ge, Z.; Ji, W.; Li, J. Exosomes Secreted from Hypoxia-Preconditioned Mesenchymal Stem Cells Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Promoting Angiogenesis in Rats. BioMed Res. Int. 2021, 2021, 6655225. [Google Scholar] [CrossRef]
- Li, R.; Chen, C.; Zheng, R.Q.; Zou, L.; Hao, G.L.; Zhang, G.C. Influences of hucMSC-exosomes on VEGF and BMP-2 expression in SNFH rats. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2935–2943. [Google Scholar]
- Wu, H.; Chen, G.; Zhang, G.; Lv, Q.; Gu, D.; Dai, M. Mechanism of vascular endothelial cell-derived exosomes modified with vascular endothelial growth factor in steroid-induced femoral head necrosis. Biomed. Mater. 2023, 18, 025017. [Google Scholar] [CrossRef]
- Corrado, C.; Fontana, S. Hypoxia and HIF Signaling: One Axis with Divergent Effects. Int. J. Mol. Sci. 2020, 21, 5611. [Google Scholar] [CrossRef]
- Slemc, L.; Kunej, T. Transcription factor HIF1A: Downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumor Biol. 2016, 37, 14851–14861. [Google Scholar] [CrossRef]
- Lappin, T.R.; Lee, F.S. Update on mutations in the HIF: EPO pathway and their role in erythrocytosis. Blood Rev. 2019, 37, 100590. [Google Scholar] [CrossRef]
- Jiang, S.; Gao, Y.; Yu, Q.H.; Li, M.; Cheng, X.; Hu, S.B.; Song, Z.F.; Zheng, Q.C. P-21-activated kinase 1 contributes to tumor angiogenesis upon photodynamic therapy via the HIF-1α/VEGF pathway. Biochem. Biophys. Res. Commun. 2020, 526, 98–104. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, Y.; Zhu, L.; Yang, K.; Liang, K.; Tan, J.; Yu, B. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species. Cell Death Dis. 2021, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-N.; Zheng, H.-L.; Yang, R.-Z.; Jiang, L.-S.; Jiang, S.-D. HIF-1α Regulates Glucocorticoid-Induced Osteoporosis Through PDK1/AKT/mTOR Signaling Pathway. Front. Endocrinol. 2020, 10, 922. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.S.; Hogan, E.A.; Borrelli, M.J.; Liachenko, S.; O’brien, C.A.; Manolagas, S.C. The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice. Endocrinology 2017, 158, 3817–3831. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Wang, Y.; Ma, J.; Cui, H.; Feng, X.; Ma, X. Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: A systematic review. J. Orthop. Surg. Res. 2024, 19, 265. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Su, R.; Zhang, P.; Yuan, B.; Li, L. Cortisol inhibits mTOR signaling in avascular necrosis of the femoral head. J. Orthop. Surg. Res. 2017, 12, 154. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, C.; Deng, L.; Liu, X.; Cao, X.; Gilbert, S.R.; Bouxsein, M.L.; Faugere, M.-C.; Guldberg, R.E.; Gerstenfeld, L.C.; et al. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Investig. 2007, 117, 1616–1626. [Google Scholar] [CrossRef]
- Li, J.; Fan, L.; Yu, Z.; Dang, X.; Wang, K. The effect of deferoxamine on angiogenesis and bone repair in steroid-induced osteonecrosis of rabbit femoral heads. Exp. Biol. Med. 2015, 240, 273–280. [Google Scholar] [CrossRef]
- Sheng, H.; Lao, Y.; Zhang, S.; Ding, W.; Lu, D.; Xu, B. Combined Pharmacotherapy with Alendronate and Desferoxamine Regulate the Bone Resorption and Bone Regeneration for Preventing Glucocorticoids-Induced Osteonecrosis of the Femoral Head. BioMed Res. Int. 2020, 2020, 3120458. [Google Scholar] [CrossRef]
- Fan, L.; Li, J.; Yu, Z.; Dang, X.; Wang, K. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Prevents Steroid-Associated Osteonecrosis of the Femoral Head in Rabbits by Promoting Angiogenesis and Inhibiting Apoptosis. PLoS ONE 2014, 9, e107774. [Google Scholar] [CrossRef]
- Zhao, H.; Yeersheng, R.; Xia, Y.; Kang, P.; Wang, W. Hypoxia Enhanced Bone Regeneration Through the HIF-1α/β-Catenin Pathway in Femoral Head Osteonecrosis. Am. J. Med. Sci. 2021, 362, 78–91. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Liang, X.; Li, S.-R.; Guo, K.-J.; Li, D.-F.; Li, T.-F. Bone Marrow Mesenchymal Stem Cells Overexpressing HIF-1α Prevented the Progression of Glucocorticoid-Induced Avascular Osteonecrosis of Femoral Heads in Mice. Cell Transplant. 2022, 31, 9636897221082687. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Wang, X.; Wang, W.; Xiao, P.; Ma, Y.; Jiang, L. Detection of AD-BMP-2-IRES-HIF-1α MU on local promoting angiogenic and osteogenic capacity of necrosis area. Pak. J. Pharm. Sci. 2017, 30, 2013–2019. [Google Scholar] [PubMed]
- Hong, J.M.; Kim, T.-H.; Kim, H.-J.; Park, E.-K.; Yang, E.-K.; Kim, S.-Y. Genetic association of angiogenesis- and hypoxia-related gene polymorphisms with osteonecrosis of the femoral head. Exp. Mol. Med. 2010, 42, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Shi, K.; Long, J.; Liu, Y.; Li, L.; Ye, T.; Huang, C.; Lai, Y.; Bai, X.; Qin, L.; et al. PDGF-BB prevents destructive repair and promotes reparative osteogenesis of steroid-associated osteonecrosis of the femoral head in rabbits. Bone 2023, 167, 116645. [Google Scholar] [CrossRef] [PubMed]
- Guzman, R.A.; Maruyama, M.; Moeinzadeh, S.; Lui, E.; Zhang, N.; Storaci, H.W.; Tam, K.; Huang, E.E.; Utsunomiya, T.; Rhee, C.; et al. The effect of genetically modified platelet-derived growth factor-BB over-expressing mesenchymal stromal cells during core decompression for steroid-associated osteonecrosis of the femoral head in rabbits. Stem Cell Res. Ther. 2021, 12, 503. [Google Scholar] [CrossRef] [PubMed]
- Park, B.-H.; Jang, K.Y.; Kim, K.H.; Song, K.H.; Lee, S.Y.; Yoon, S.J.; Kwon, K.S.; Yoo, W.-H.; Koh, Y.J.; Yoon, K.H.; et al. COMP-Angiopoietin-1 ameliorates surgery-induced ischemic necrosis of the femoral head in rats. Bone 2009, 44, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yoon, S.J.; Jang, K.Y.; Moon, Y.J.; Wagle, S.; Lee, K.B.; Park, B.-H.; Kim, J.R. COMP-Angiopoietin1 Potentiates the Effects of Bone Morphogenic Protein-2 on Ischemic Necrosis of the Femoral Head in Rats. PLoS ONE 2014, 9, e110593. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kang, M.-A.; Moon, Y.J.; Jang, K.Y.; Kim, J.R. Metformin coordinates osteoblast/osteoclast differentiation associated with ischemic osteonecrosis. Aging 2020, 12, 4727–4741. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, J.; Li, M.; Li, X.-H.; Dang, X.-Q.; Wang, K.-Z. Repair effect of coexpression of the hVEGF and hBMP genes via an adeno-associated virus vector in a rabbit model of early steroid-induced avascular necrosis of the femoral head. Transl. Res. 2015, 166, 269–280. [Google Scholar] [CrossRef]
- Cui, Q.; Botchwey, E.A. Emerging Ideas: Treatment of Precollapse Osteonecrosis Using Stem Cells and Growth Factors. Clin. Orthop. Relat. Res. 2011, 469, 2665–2669. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, K.-Z.; Qiang, H.; Tang, Y.-L.; Li, Q.; Li, M.; Dang, X.-Q. Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol. Sin. 2010, 31, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.-X.; Wang, L. Adenovirus-Mediated Expression of BMP-2 and BFGF in Bone Marrow Mesenchymal Stem Cells Combined with Demineralized Bone Matrix For Repair of Femoral Head Osteonecrosis in Beagle Dogs. Cell. Physiol. Biochem. 2017, 43, 1648–1662. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Cai, X.; Lin, T.; Shi, Z.; Yan, S. Low-intensity Pulsed Ultrasound Enhances Bone Repair in a Rabbit Model of Steroid-associated Osteonecrosis. Clin. Orthop. Relat. Res. 2015, 473, 1830–1839. [Google Scholar] [CrossRef] [PubMed]
- Zhen, R.; Yang, J.; Wang, Y.; Li, Y.; Chen, B.; Song, Y.; Ma, G.; Yang, B. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein-2-mediated NF-κB signaling pathway. Mol. Med. Rep. 2018, 17, 6045–6053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-L.; Shi, K.-O.; Jia, P.T.; Jiang, L.H.; Liu, Y.-H.; Chen, X.; Zhou, Z.Y.; Li, Y.X.; Wang, L.S. Effects of platelet-rich plasma on angiogenesis and osteogenesis-associated factors in rabbits with avascular necrosis of the femoral head. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2143–2152. [Google Scholar]
- Zhang, Y.; Yin, J.; Ding, H.; Zhang, C.; Gao, Y.-S. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: A Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model. Int. J. Biol. Sci. 2016, 12, 776–785. [Google Scholar] [CrossRef]
- Wang, C.-J.; Yang, Y.-J.; Huang, C.-C. The effects of shockwave on systemic concentrations of nitric oxide level, angiogenesis and osteogenesis factors in hip necrosis. Rheumatol. Int. 2011, 31, 871–877. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, C.; Yu, T.; Zhang, H.; Huang, J.; Chen, L.; Tong, P.; Zhen, G. The therapeutic effect of adipose-derived lipoaspirate cells in femoral head necrosis by improving angiogenesis. Front. Cell Dev. Biol. 2022, 10, 1014789. [Google Scholar] [CrossRef]
- Kuroyanagi, G.; Adapala, N.S.; Yamaguchi, R.; Kamiya, N.; Deng, Z.; Aruwajoye, O.; Kutschke, M.; Chen, E.; Jo, C.; Ren, Y.; et al. Interleukin-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis in a murine model. Bone 2018, 116, 221–231. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Carmeliet, P. Hallmarks of Endothelial Cell Metabolism in Health and Disease. Cell Metab. 2019, 30, 414–433. [Google Scholar] [CrossRef]
- De Bock, K.; Georgiadou, M.; Schoors, S.; Kuchnio, A.; Wong, B.W.; Cantelmo, A.R.; Quaegebeur, A.; Ghesquière, B.; Cauwenberghs, S.; Eelen, G.; et al. Role of PFKFB3-Driven Glycolysis in Vessel Sprouting. Cell 2013, 154, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Eelen, G.; de Zeeuw, P.; Treps, L.; Harjes, U.; Wong, B.W.; Carmeliet, P. Endothelial Cell Metabolism. Physiol. Rev. 2018, 98, 3–58. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.; Potente, M. Endothelial metabolism—More complex (III) than previously thought. Nat. Metab. 2019, 1, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Diebold, L.P.; Gil, H.J.; Gao, P.; Martinez, C.A.; Weinberg, S.E.; Chandel, N.S. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat. Metab. 2019, 1, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Bruning, U.; Morales-Rodriguez, F.; Kalucka, J.; Goveia, J.; Taverna, F.; Queiroz, K.C.; Dubois, C.; Cantelmo, A.R.; Chen, R.; Loroch, S.; et al. Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. Cell Metab. 2018, 28, 866–880.e15. [Google Scholar] [CrossRef]
- Vandekeere, S.; Dubois, C.; Kalucka, J.; Sullivan, M.R.; García-Caballero, M.; Goveia, J.; Chen, R.; Diehl, F.F.; Bar-Lev, L.; Souffreau, J.; et al. Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. Cell Metab. 2018, 28, 573–587.e13. [Google Scholar] [CrossRef]
- Yang, N.; Wang, H.; Zhang, W.; Sun, H.; Li, M.; Xu, Y.; Huang, L.; Geng, D. Integrated analysis of transcriptome and proteome to explore the genes related to steroid-induced femoral head necrosis. Exp. Cell Res. 2021, 401, 112513. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Sheng, J.; Hu, B.; Zhu, Z.; Zhou, S.; Yin, J.; Gong, Q.; Wang, Y.; Zhang, C. Unique plasma metabolomic signature of osteonecrosis of the femoral head. J. Orthop. Res. 2016, 34, 1158–1167. [Google Scholar] [CrossRef]
- Roth, A.; Tingart, M. Atraumatische Femurkopfnekrose des Erwachsenen. Oper. Orthopadie Und Traumatol. 2020, 32, 87–88. [Google Scholar] [CrossRef]
- Baig, S.A.; Baig, M.N. Osteonecrosis of the Femoral Head: Etiology, Investigations, and Management. Cureus 2018, 10, e3171. [Google Scholar] [CrossRef]
- Karim, R.; Goel, K.D. Avascular necrosis of the hip in a 41-year-old male: A case study. Case Reports. J. Can. Chiropr. Assoc. 2004, 48, 137–141. [Google Scholar] [PubMed]
- Singh, M.; Singh, B.; Sharma, K.; Kumar, N.; Mastana, S.; Singh, P. A Molecular Troika of Angiogenesis, Coagulopathy and Endothelial Dysfunction in the Pathology of Avascular Necrosis of Femoral Head: A Comprehensive Review. Cells 2023, 12, 2278. [Google Scholar] [CrossRef] [PubMed]
Therapy | Methodology | Functional Output | Period Studied | Reference |
---|---|---|---|---|
Stem cell therapy | MSC arterial perfusion | Promotes VEGF expression | 2012 | [58] |
Stem cell therapy combined with mechanical support therapy | Arterial perfusion of G-CSF-stimulated peripheral blood stem cells (PBSCs) combined with mechanical support therapy | Enhances the efficacy of biomechanical support in the treatment of ANFH | 2015 | [60] |
Transgenic technology combined with stem cell therapy | Transplant VEGF transgenic bone marrow mesenchymal stem cells | Enhances bone reconstruction and vascular regeneration of the ANFH model | 2012 | [61] |
Stem cell therapy combined with platelet-rich plasma clot releasate (PRCR) | Ultrasound-guided injection of PRCR+ umbilical cord mesenchymal stem cells (UC-MSCs) | Promotes osteogenesis and angiogenesis; suppresses osteoclast overactivity | 2022 | [62] |
Biomaterials combined with cell therapy | Synergism between strontium-doped calcium polyphosphate (SCPP) and autologous bone marrow mononuclear cells (BM-MNCs) | Promotes osteogenesis and angiogenesis, allowing consolidation and remodeling into new trabecular bone | 2015 | [63] |
Transgenic technology combined with stem cell therapy | Transplant VEGF and BMP6 transgenic bone marrow mesenchymal stem cells | Promotes osteogenesis and angiogenesis | 2018 | [64] |
Biological scaffold | Calcium phosphate (CPC) composite scaffold containing poly lactic co glycolic acid (PLGA) microspheres loaded with bone morphogenetic protein (BMP) and VEGF (BMP-VEGF-PLGA-CPC) | Improves the therapeutic effect of core decompression surgery; promotes osteogenesis and angiogenesis | 2016 | [65] |
Biological scaffold | 0.25% nano-hydroxyapatite–copper–lithium (0.25% Cu-Li-nHA) scaffolds | Upregulates the HIF-1α/VEGF pathway, which benefits the repair of ANFH | 2021 | [66] |
Biological scaffold | Local injection hydrogel containing angiogenesis stimulator peptide (QK) | Promotes the proliferation and differentiation of BMSCs and endothelial cells; promotes osteogenesis and angiogenesis | 2024 | [67] |
Physiotherapy | Extracorporeal shock wave therapy (ESWT) and microbubble-mediated ultrasound (MUS) | Promotes the upregulation of VEGF, thereby inducing neovascularization | 2007, 2018 | [68,69] |
Drug | Desferoxamine (DFO), Thymoquinone (TQ), Tongluo Shenggu Capsule (TLSGC), astragaloside IV (AS-IV | Promotes osteogenesis and angiogenesis through the VEGF pathway | 2020–2023 | [70,71,72,73] |
Therapy | Methodology | Functional Output | Period Studied | Reference |
---|---|---|---|---|
Drug | Astragaloside IV(AS-IV) | Promotes osteogenesis and angiogenesis; inhibits cell apoptosis through the Akt/HIF-1 α/VEGF signaling pathway | 2023 | [70] |
Drug | Desferoxamine (DFO) alone or in combination with alendronat | Increases HIF-1α expression in ANFH; promotes angiogenesis, osteogenesis, and bone repair | 2020, 2015, 2020 | [73,87,88] |
Drug | 3, 4-Dihydroxybenzoate (EDHB) | Inhibits HIF-1α degradation, promotes angiogenesis, and inhibits the apoptosis of bone cells and hematopoietic tissues | 2014 | [89] |
Exosome | Exosomes secreted from mutant-HIF-1α-modified bone marrow-derived mesenchymal stem cells | Promotes bone regeneration and angiogenesis; increases bone trabecular reconstruction and microvascular density | 2017 | [19] |
Stem cell therapy | Hypoxia pre-stimulated bone marrow mesenchymal stem cells (BMSCs) | Hypoxia pre-stimulation can make BMSCs express more HIF-1 α, which can better stimulate local angiogenesis | 2021 | [90] |
Transgenic technology combined with stem cell therapy | Transplantation of HIF-1α transgenic BMSCs | Promotes osteogenesis and angiogenesis | 2013, 2022 | [50,91] |
Transgenic technology combined with stem cell therapy | Transplantation of Ad-BMP-2-IRES-HIF-1αmu transgenic EPCs | Promotes osteogenesis and angiogenesis | 2017 | [92] |
Biological scaffold | 0.25% nano-hydroxyapatite–copper–lithium (0.25% Cu-Li-nHA) scaffolds | Upregulates the HIF-1α/VEGF pathway, which benefits the repair of ANFH | 2021 | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Shao, W.; Wang, Y.; Wang, B.; Lv, X.; Feng, Y. Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy. Biomedicines 2024, 12, 2577. https://doi.org/10.3390/biomedicines12112577
Wang P, Shao W, Wang Y, Wang B, Lv X, Feng Y. Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy. Biomedicines. 2024; 12(11):2577. https://doi.org/10.3390/biomedicines12112577
Chicago/Turabian StyleWang, Ping, Wenkai Shao, Yuxi Wang, Bo Wang, Xiao Lv, and Yong Feng. 2024. "Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy" Biomedicines 12, no. 11: 2577. https://doi.org/10.3390/biomedicines12112577
APA StyleWang, P., Shao, W., Wang, Y., Wang, B., Lv, X., & Feng, Y. (2024). Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy. Biomedicines, 12(11), 2577. https://doi.org/10.3390/biomedicines12112577