Sodium Chloride Cotransporter in Hypertension
Abstract
:1. Introduction
2. NCC Structure and Function
3. NCC Regulation
3.1. Insulin
3.2. Vasopressin
3.3. Angiotensin II
3.4. Glucocorticoids
3.5. Sex Hormones
3.6. Aldosterone
3.7. Potassium
4. Alteration of NCC Activity
4.1. Decrease in NCC Activity
4.1.1. Gitelman Syndrome
4.1.2. Bartter Syndrome
4.1.3. Other Genetic Defects
4.2. Increase in NCC Activity
Gordon Syndrome
5. NCC and Hypertension
5.1. Dietary Salt Influence on NCC
5.2. Sympathetic Regulation of NCC
6. NCC Role in Other Forms of Hypertension
6.1. Cushing Syndrome
6.2. Eclampsia
7. Pharmacological Regulation of NCC
7.1. NCC Activity Blockers
7.1.1. Thiazide Diuretics
7.1.2. MR Antagonists
7.2. NCC Activity Enhancers
7.2.1. Loop Diuretics
7.2.2. Calcineurin Inhibitors
7.2.3. Salbutamol
7.3. SGLT2 Inhibitors
7.3.1. Mechanisms of Action and Blood Pressure Regulation
7.3.2. Gliflozines Influence on NCC Levels and Activation
8. NCC in Extracellular Vesicles in Health and Hypertensive Diseases
9. Discussion, Conclusions, and Future Directions
9.1. General Considerations
9.2. NCC in EVs
9.3. Perspectives in Hypertension Modulation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Report on Hypertension: The Race Against a Silent Killer. Available online: https://www.who.int/publications/i/item/9789240081062 (accessed on 25 September 2024).
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the Management of Arterial Hypertension The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Suzumoto, Y.; Zucaro, L.; Iervolino, A.; Capasso, G. Kidney and Blood Pressure Regulation-Latest Evidence for Molecular Mechanisms. Clin. Kidney J. 2023, 16, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Wadei, H.M.; Textor, S.C. The Role of the Kidney in Regulating Arterial Blood Pressure. Nat. Rev. Nephrol. 2012, 8, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Stockand, J.D. Vasopressin Regulation of Renal Sodium Excretion. Kidney Int. 2010, 78, 849–856. [Google Scholar] [CrossRef]
- Salih, M.; Fenton, R.A.; Zietse, R.; Hoorn, E.J. Urinary Extracellular Vesicles as Markers to Assess Kidney Sodium Transport. Curr. Opin. Nephrol. Hypertens. 2016, 25, 67–72. [Google Scholar] [CrossRef]
- Wu, A.; Wolley, M.J.; Fenton, R.A.; Stowasser, M. Using Human Urinary Extracellular Vesicles to Study Physiological and Pathophysiological States and Regulation of the Sodium Chloride Cotransporter. Front. Endocrinol. 2022, 13, 981317. [Google Scholar] [CrossRef]
- Friso, S.; Castagna, A.; Mango, G.; Olivieri, O.; Pizzolo, F. Urinary Extracellular Vesicles Carry Valuable Hints through mRNA for the Understanding of Endocrine Hypertension. Front. Endocrinol. 2023, 14, 1155011. [Google Scholar] [CrossRef]
- Gamba, G. Molecular Physiology and Pathophysiology of Electroneutral Cation-Chloride Cotransporters. Physiol. Rev. 2005, 85, 423–493. [Google Scholar] [CrossRef]
- Gamba, G.; Saltzberg, S.N.; Lombardi, M.; Miyanoshita, A.; Lytton, J.; Hediger, M.A.; Brenner, B.M.; Hebert, S.C. Primary Structure and Functional Expression of a cDNA Encoding the Thiazide-Sensitive, Electroneutral Sodium-Chloride Cotransporter. Proc. Natl. Acad. Sci. USA 1993, 90, 2749–2753. [Google Scholar] [CrossRef]
- Arroyo, J.P.; Kahle, K.T.; Gamba, G. The SLC12 Family of Electroneutral Cation-Coupled Chloride Cotransporters. Mol. Asp. Med. 2013, 34, 288–298. [Google Scholar] [CrossRef]
- Gamba, G. Thirty Years of the NaCl Cotransporter: From Cloning to Physiology and Structure. Am. J. Physiol. Renal Physiol. 2023, 325, F479–F490. [Google Scholar] [CrossRef] [PubMed]
- Hoorn, E.J.; Gritter, M.; Cuevas, C.A.; Fenton, R.A. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol. Rev. 2020, 100, 321–356. [Google Scholar] [CrossRef] [PubMed]
- Franken, G.A.C.; Adella, A.; Bindels, R.J.M.; de Baaij, J.H.F. Mechanisms Coupling Sodium and Magnesium Reabsorption in the Distal Convoluted Tubule of the Kidney. Acta Physiol. 2021, 231, e13528. [Google Scholar] [CrossRef] [PubMed]
- Maeoka, Y.; McCormick, J.A. NaCl Cotransporter Activity and Mg2+ Handling by the Distal Convoluted Tubule. Am. J. Physiol. Renal Physiol. 2020, 319, F1043–F1053. [Google Scholar] [CrossRef]
- Chávez-Canales, M.; García, J.A.; Gamba, G. Regulation of the WNK4-SPAK-NCC Pathway by the Calcium-Sensing Receptor. Curr. Opin. Nephrol. Hypertens. 2023, 32, 451–457. [Google Scholar] [CrossRef]
- de Jong, J.C.; Willems, P.H.G.M.; Mooren, F.J.M.; van den Heuvel, L.P.W.J.; Knoers, N.V.A.M.; Bindels, R.J.M. The Structural Unit of the Thiazide-Sensitive NaCl Cotransporter Is a Homodimer. J. Biol. Chem. 2003, 278, 24302–24307. [Google Scholar] [CrossRef]
- Nan, J.; Yuan, Y.; Yang, X.; Shan, Z.; Liu, H.; Wei, F.; Zhang, W.; Zhang, Y. Cryo-EM Structure of the Human Sodium-Chloride Cotransporter NCC. Sci. Adv. 2022, 8, eadd7176. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, J.; Lee, C.-L.; Zhang, J.; Feng, L. Structure and Thiazide Inhibition Mechanism of the Human Na-Cl Cotransporter. Nature 2023, 614, 788–793. [Google Scholar] [CrossRef]
- Delpire, E.; Guo, J. Cryo-EM Structures of DrNKCC1 and hKCC1: A New Milestone in the Physiology of Cation-Chloride Cotransporters. Am. J. Physiol. Cell Physiol. 2020, 318, C225–C237. [Google Scholar] [CrossRef]
- Lomize, M.A.; Pogozheva, I.D.; Joo, H.; Mosberg, H.I.; Lomize, A.L. OPM Database and PPM Web Server: Resources for Positioning of Proteins in Membranes. Nucleic Acids Res. 2012, 40, D370–D376. [Google Scholar] [CrossRef]
- Richardson, C.; Rafiqi, F.H.; Karlsson, H.K.R.; Moleleki, N.; Vandewalle, A.; Campbell, D.G.; Morrice, N.A.; Alessi, D.R. Activation of the Thiazide-Sensitive Na+-Cl− Cotransporter by the WNK-Regulated Kinases SPAK and OSR1. J. Cell Sci. 2008, 121, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Schubert, H.; Blakely, A.; Forbush, B.; Smith, M.D.; Rinehart, J.; Cao, E. Structural Bases for Na+-Cl− Cotransporter Inhibition by Thiazide Diuretic Drugs and Activation by Kinases. Nat. Commun. 2024, 15, 7006. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Alvarez, D.; Cristóbal, P.S.; Meade, P.; Moreno, E.; Vazquez, N.; Muñoz, E.; Díaz, A.; Juárez, M.E.; Giménez, I.; Gamba, G. The Na+:Cl− Cotransporter Is Activated and Phosphorylated at the Amino-Terminal Domain upon Intracellular Chloride Depletion. J. Biol. Chem. 2006, 281, 28755–28763. [Google Scholar] [CrossRef] [PubMed]
- Mercier-Zuber, A.; O’Shaughnessy, K.M. Role of SPAK and OSR1 Signalling in the Regulation of NaCl Cotransporters. Curr. Opin. Nephrol. Hypertens. 2011, 20, 534–540. [Google Scholar] [CrossRef]
- Rosenbaek, L.L.; Kortenoeven, M.L.A.; Aroankins, T.S.; Fenton, R.A. Phosphorylation Decreases Ubiquitylation of the Thiazide-Sensitive Cotransporter NCC and Subsequent Clathrin-Mediated Endocytosis. J. Biol. Chem. 2014, 289, 13347–13361. [Google Scholar] [CrossRef]
- Rosenbaek, L.L.; Rizzo, F.; MacAulay, N.; Staub, O.; Fenton, R.A. Functional Assessment of Sodium Chloride Cotransporter NCC Mutants in Polarized Mammalian Epithelial Cells. Am. J. Physiol. Renal Physiol. 2017, 313, F495–F504. [Google Scholar] [CrossRef]
- Furusho, T.; Uchida, S.; Sohara, E. The WNK Signaling Pathway and Salt-Sensitive Hypertension. Hypertens. Res. 2020, 43, 733–743. [Google Scholar] [CrossRef]
- Thomson, M.N.; Cuevas, C.A.; Bewarder, T.M.; Dittmayer, C.; Miller, L.N.; Si, J.; Cornelius, R.J.; Su, X.-T.; Yang, C.-L.; McCormick, J.A.; et al. WNK Bodies Cluster WNK4 and SPAK/OSR1 to Promote NCC Activation in Hypokalemia. Am. J. Physiol. Renal Physiol. 2020, 318, F216–F228. [Google Scholar] [CrossRef]
- Rojas-Vega, L.; Gamba, G. Mini-Review: Regulation of the Renal NaCl Cotransporter by Hormones. Am. J. Physiol. Renal Physiol. 2016, 310, F10–F14. [Google Scholar] [CrossRef]
- Bazúa-Valenti, S.; Rojas-Vega, L.; Castañeda-Bueno, M.; Barrera-Chimal, J.; Bautista, R.; Cervantes-Pérez, L.G.; Vázquez, N.; Plata, C.; Murillo-de-Ozores, A.R.; González-Mariscal, L.; et al. The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J. Am. Soc. Nephrol. 2018, 29, 1838–1848. [Google Scholar] [CrossRef]
- Rosenbaek, L.L.; Rizzo, F.; Wu, Q.; Rojas-Vega, L.; Gamba, G.; MacAulay, N.; Staub, O.; Fenton, R.A. The Thiazide Sensitive Sodium Chloride Co-Transporter NCC Is Modulated by Site-Specific Ubiquitylation. Sci. Rep. 2017, 7, 12981. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaek, L.L.; Petrillo, F.; van Bemmelen, M.X.; Staub, O.; Murali, S.K.; Fenton, R.A. The E3 Ubiquitin-Protein Ligase Nedd4-2 Regulates the Sodium Chloride Cotransporter NCC but Is Not Required for a Potassium-Induced Reduction of NCC Expression. Front. Physiol. 2022, 13, 971251. [Google Scholar] [CrossRef] [PubMed]
- Ohta, A.; Schumacher, F.-R.; Mehellou, Y.; Johnson, C.; Knebel, A.; Macartney, T.J.; Wood, N.T.; Alessi, D.R.; Kurz, T. The CUL3–KLHL3 E3 Ligase Complex Mutated in Gordon’s Hypertension Syndrome Interacts with and Ubiquitylates WNK Isoforms: Disease-Causing Mutations in KLHL3 and WNK4 Disrupt Interaction. Biochem. J. 2013, 451, 111–122. [Google Scholar] [CrossRef]
- Picard, N.; Trompf, K.; Yang, C.-L.; Miller, R.L.; Carrel, M.; Loffing-Cueni, D.; Fenton, R.A.; Ellison, D.H.; Loffing, J. Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension. J. Am. Soc. Nephrol. 2014, 25, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Glover, M.; Mercier Zuber, A.; Figg, N.; O’Shaughnessy, K.M. The Activity of the Thiazide-Sensitive Na(+)-Cl(−) Cotransporter Is Regulated by Protein Phosphatase PP4. Can. J. Physiol. Pharmacol. 2010, 88, 986–995. [Google Scholar] [CrossRef]
- Shoda, W.; Nomura, N.; Ando, F.; Mori, Y.; Mori, T.; Sohara, E.; Rai, T.; Uchida, S. Calcineurin Inhibitors Block Sodium-Chloride Cotransporter Dephosphorylation in Response to High Potassium Intake. Kidney Int. 2017, 91, 402–411. [Google Scholar] [CrossRef]
- Ishizawa, K.; Wang, Q.; Li, J.; Yamazaki, O.; Tamura, Y.; Fujigaki, Y.; Uchida, S.; Lifton, R.P.; Shibata, S. Calcineurin Dephosphorylates Kelch-like 3, Reversing Phosphorylation by Angiotensin II and Regulating Renal Electrolyte Handling. Proc. Natl. Acad. Sci. USA 2019, 116, 3155–3160. [Google Scholar] [CrossRef]
- Penton, D.; Moser, S.; Wengi, A.; Czogalla, J.; Rosenbaek, L.L.; Rigendinger, F.; Faresse, N.; Martins, J.R.; Fenton, R.A.; Loffing-Cueni, D.; et al. Protein Phosphatase 1 Inhibitor-1 Mediates the cAMP-Dependent Stimulation of the Renal NaCl Cotransporter. J. Am. Soc. Nephrol. 2019, 30, 737–750. [Google Scholar] [CrossRef]
- Fanestil, D.D. Steroid Regulation of Thiazide-Sensitive Transport. Semin. Nephrol. 1992, 12, 18–23. [Google Scholar]
- Chen, Z.; Vaughn, D.A.; Fanestil, D.D. Influence of Gender on Renal Thiazide Diuretic Receptor Density and Response. J. Am. Soc. Nephrol. 1994, 5, 1112–1119. [Google Scholar] [CrossRef]
- Chen, Z.F.; Vaughn, D.A.; Beaumont, K.; Fanestil, D.D. Effects of Diuretic Treatment and of Dietary Sodium on Renal Binding of 3H-Metolazone. J. Am. Soc. Nephrol. 1990, 1, 91–98. [Google Scholar] [CrossRef]
- Shirley, D.G.; Skinner, J.; Walter, S.J. The Influence of Dietary Potassium on the Renal Tubular Effect of Hydrochlorothiazide in the Rat. Br. J. Pharmacol. 1987, 91, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Riazi, S.; Ecelbarger, C.A. Insulin’s Impact on Renal Sodium Transport and Blood Pressure in Health, Obesity, and Diabetes. Am. J. Physiol. Renal Physiol. 2007, 293, F974–F984. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Canales, M.; Arroyo, J.P.; Ko, B.; Vázquez, N.; Bautista, R.; Castañeda-Bueno, M.; Bobadilla, N.A.; Hoover, R.S.; Gamba, G. Insulin Increases the Functional Activity of the Renal NaCl Cotransporter. J. Hypertens. 2013, 31, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Komers, R.; Rogers, S.; Oyama, T.T.; Xu, B.; Yang, C.-L.; Mccormick, J.; Ellison, D.H. Enhanced Phosphorylation of Na-Cl Cotransporter in Experimental Metabolic Syndrome—Role of Insulin. Clin. Sci. 2012, 123, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Sohara, E.; Rai, T.; Yang, S.-S.; Ohta, A.; Naito, S.; Chiga, M.; Nomura, N.; Lin, S.-H.; Vandewalle, A.; Ohta, E.; et al. Acute Insulin Stimulation Induces Phosphorylation of the Na-Cl Cotransporter in Cultured Distal mpkDCT Cells and Mouse Kidney. PLoS ONE 2011, 6, e24277. [Google Scholar] [CrossRef]
- Nishida, H.; Sohara, E.; Nomura, N.; Chiga, M.; Alessi, D.R.; Rai, T.; Sasaki, S.; Uchida, S. Phosphatidylinositol 3-Kinase/Akt Signaling Pathway Activates the WNK-OSR1/SPAK-NCC Phosphorylation Cascade in Hyperinsulinemic Db/Db Mice. Hypertension 2012, 60, 981–990. [Google Scholar] [CrossRef]
- Yoshizaki, Y.; Mori, Y.; Tsuzaki, Y.; Mori, T.; Nomura, N.; Wakabayashi, M.; Takahashi, D.; Zeniya, M.; Kikuchi, E.; Araki, Y.; et al. Impaired Degradation of WNK by Akt and PKA Phosphorylation of KLHL3. Biochem. Biophys. Res. Commun. 2015, 467, 229–234. [Google Scholar] [CrossRef]
- Kortenoeven, M.L.A.; Pedersen, N.B.; Rosenbaek, L.L.; Fenton, R.A. Vasopressin Regulation of Sodium Transport in the Distal Nephron and Collecting Duct. Am. J. Physiol. Renal Physiol. 2015, 309, F280–F299. [Google Scholar] [CrossRef]
- Saritas, T.; Borschewski, A.; McCormick, J.A.; Paliege, A.; Dathe, C.; Uchida, S.; Terker, A.; Himmerkus, N.; Bleich, M.; Demaretz, S.; et al. SPAK Differentially Mediates Vasopressin Effects on Sodium Cotransporters. J. Am. Soc. Nephrol. 2013, 24, 407–418. [Google Scholar] [CrossRef]
- Rieg, T.; Tang, T.; Uchida, S.; Hammond, H.K.; Fenton, R.A.; Vallon, V. Adenylyl Cyclase 6 Enhances NKCC2 Expression and Mediates Vasopressin-Induced Phosphorylation of NKCC2 and NCC. Am. J. Pathol. 2013, 182, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Bueno, M.; Arroyo, J.P.; Zhang, J.; Puthumana, J.; Yarborough, O.; Shibata, S.; Rojas-Vega, L.; Gamba, G.; Rinehart, J.; Lifton, R.P. Phosphorylation by PKC and PKA Regulate the Kinase Activity and Downstream Signaling of WNK4. Proc. Natl. Acad. Sci. USA 2017, 114, E879–E886. [Google Scholar] [CrossRef] [PubMed]
- Carbajal-Contreras, H.; Murillo-de-Ozores, A.R.; Magaña-Avila, G.; Marquez-Salinas, A.; Bourqui, L.; Tellez-Sutterlin, M.; Bahena-Lopez, J.P.; Cortes-Arroyo, E.; Behn-Eschenburg, S.G.; Lopez-Saavedra, A.; et al. Arginine Vasopressin Regulates the Renal Na+-Cl− and Na+-K+-Cl− Cotransporters through with-No-Lysine Kinase 4 and Inhibitor 1 Phosphorylation. Am. J. Physiol. Renal Physiol. 2024, 326, F285–F299. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wu, Q.; Kortenoeven, M.L.A.; Pisitkun, T.; Fenton, R.A. A Systems Level Analysis of Vasopressin-Mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. Sci. Rep. 2015, 5, 12829. [Google Scholar] [CrossRef]
- Brooks, H.L.; Allred, A.J.; Beutler, K.T.; Coffman, T.M.; Knepper, M.A. Targeted Proteomic Profiling of Renal Na(+) Transporter and Channel Abundances in Angiotensin II Type 1a Receptor Knockout Mice. Hypertension 2002, 39, 470–473. [Google Scholar] [CrossRef]
- van der Lubbe, N.; Zietse, R.; Hoorn, E.J. Effects of Angiotensin II on Kinase-Mediated Sodium and Potassium Transport in the Distal Nephron. Curr. Opin. Nephrol. Hypertens. 2013, 22, 120–126. [Google Scholar] [CrossRef]
- San-Cristobal, P.; Pacheco-Alvarez, D.; Richardson, C.; Ring, A.M.; Vazquez, N.; Rafiqi, F.H.; Chari, D.; Kahle, K.T.; Leng, Q.; Bobadilla, N.A.; et al. Angiotensin II Signaling Increases Activity of the Renal Na-Cl Cotransporter through a WNK4-SPAK-Dependent Pathway. Proc. Natl. Acad. Sci. USA 2009, 106, 4384–4389. [Google Scholar] [CrossRef]
- Ko, B.; Mistry, A.; Hanson, L.; Mallick, R.; Hoover, R.S. Mechanisms of Angiotensin II Stimulation of NCC Are Time-Dependent in mDCT15 Cells. Am. J. Physiol. Renal Physiol. 2015, 308, F720–F727. [Google Scholar] [CrossRef]
- Shibata, S.; Arroyo, J.P.; Castañeda-Bueno, M.; Puthumana, J.; Zhang, J.; Uchida, S.; Stone, K.L.; Lam, T.T.; Lifton, R.P. Angiotensin II Signaling via Protein Kinase C Phosphorylates Kelch-like 3, Preventing WNK4 Degradation. Proc. Natl. Acad. Sci. USA 2014, 111, 15556–15561. [Google Scholar] [CrossRef]
- Veiras, L.C.; Han, J.; Ralph, D.L.; McDonough, A.A. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension. Hypertension 2016, 68, 904–912. [Google Scholar] [CrossRef]
- Ivy, J.R.; Jones, N.K.; Costello, H.M.; Mansley, M.K.; Peltz, T.S.; Flatman, P.W.; Bailey, M.A. Glucocorticoid Receptor Activation Stimulates the Sodium-Chloride Cotransporter and Influences the Diurnal Rhythm of Its Phosphorylation. Am. J. Physiol. Renal Physiol. 2019, 317, F1536–F1548. [Google Scholar] [CrossRef] [PubMed]
- Canonica, J.; Frateschi, S.; Boscardin, E.; Ebering, A.; Sergi, C.; Jäger, Y.; Peyrollaz, T.; Mérillat, A.-M.; Maillard, M.; Klusonova, P.; et al. Lack of Renal Tubular Glucocorticoid Receptor Decreases the Thiazide-Sensitive Na+/Cl− Cotransporter NCC and Transiently Affects Sodium Handling. Front. Physiol. 2019, 10, 989. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.R.; Oosthuyzen, W.; Peltz, T.S.; Howarth, A.R.; Hunter, R.W.; Dhaun, N.; Al-Dujaili, E.A.S.; Webb, D.J.; Dear, J.W.; Flatman, P.W.; et al. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter. Hypertension 2016, 67, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Zhang, F.; Luo, Y.; Wang, L.; Huang, S.; Jin, F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int. J. Mol. Sci. 2016, 17, 1307. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, P.; Colussi, G.; Ng, M.; Wu, X.; Kidwai, A.; Pearce, D. Glucocorticoid-Induced Leucine Zipper Protein Regulates Sodium and Potassium Balance in the Distal Nephron. Kidney Int. 2017, 91, 1159–1177. [Google Scholar] [CrossRef]
- Richards, J.; Ko, B.; All, S.; Cheng, K.-Y.; Hoover, R.S.; Gumz, M.L. A Role for the Circadian Clock Protein Per1 in the Regulation of the NaCl Co-Transporter (NCC) and the with-No-Lysine Kinase (WNK) Cascade in Mouse Distal Convoluted Tubule Cells. J. Biol. Chem. 2014, 289, 11791–11806. [Google Scholar] [CrossRef]
- Rojas-Vega, L.; Reyes-Castro, L.A.; Ramírez, V.; Bautista-Pérez, R.; Rafael, C.; Castañeda-Bueno, M.; Meade, P.; de Los Heros, P.; Arroyo-Garza, I.; Bernard, V.; et al. Ovarian Hormones and Prolactin Increase Renal NaCl Cotransporter Phosphorylation. Am. J. Physiol. Renal Physiol. 2015, 308, F799–F808. [Google Scholar] [CrossRef]
- Veiras, L.C.; Girardi, A.C.C.; Curry, J.; Pei, L.; Ralph, D.L.; Tran, A.; Castelo-Branco, R.C.; Pastor-Soler, N.; Arranz, C.T.; Yu, A.S.L.; et al. Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis. J. Am. Soc. Nephrol. 2017, 28, 3504–3517. [Google Scholar] [CrossRef]
- Verlander, J.W.; Tran, T.M.; Zhang, L.; Kaplan, M.R.; Hebert, S.C. Estradiol Enhances Thiazide-Sensitive NaCl Cotransporter Density in the Apical Plasma Membrane of the Distal Convoluted Tubule in Ovariectomized Rats. J. Clin. Investig. 1998, 101, 1661–1669. [Google Scholar] [CrossRef]
- Tahaei, E.; Coleman, R.; Saritas, T.; Ellison, D.H.; Welling, P.A. Distal Convoluted Tubule Sexual Dimorphism Revealed by Advanced 3D Imaging. Am. J. Physiol. Renal Physiol. 2020, 319, F754–F764. [Google Scholar] [CrossRef]
- Preston, R.A.; Norris, P.M.; Alonso, A.B.; Ni, P.; Hanes, V.; Karara, A.H. Randomized, Placebo-Controlled Trial of the Effects of Drospirenone-Estradiol on Blood Pressure and Potassium Balance in Hypertensive Postmenopausal Women Receiving Hydrochlorothiazide. Menopause 2007, 14, 408. [Google Scholar] [CrossRef] [PubMed]
- Posadzy-Malaczynska, A.; Rajpold, K.; Woznicka-Leskiewicz, L.; Marcinkowska, J. Hemodynamic and Metabolic Effects of Estrogen plus Progestin Therapy in Hypertensive Postmenopausal Women Treated with an ACE-Inhibitor or a Diuretic. Clin. Res. Cardiol. 2015, 104, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Masilamani, S.; Turner, R.; Mitchell, C.; Wade, J.B.; Knepper, M.A. The Thiazide-Sensitive Na-Cl Cotransporter Is an Aldosterone-Induced Protein. Proc. Natl. Acad. Sci. USA 1998, 95, 14552–14557. [Google Scholar] [CrossRef] [PubMed]
- van der Lubbe, N.; Lim, C.H.; Meima, M.E.; van Veghel, R.; Rosenbaek, L.L.; Mutig, K.; Danser, A.H.J.; Fenton, R.A.; Zietse, R.; Hoorn, E.J. Aldosterone Does Not Require Angiotensin II to Activate NCC through a WNK4-SPAK-Dependent Pathway. Pflugers Arch. 2012, 463, 853–863. [Google Scholar] [CrossRef]
- Terker, A.S.; Yarbrough, B.; Ferdaus, M.Z.; Lazelle, R.A.; Erspamer, K.J.; Meermeier, N.P.; Park, H.J.; McCormick, J.A.; Yang, C.-L.; Ellison, D.H. Direct and Indirect Mineralocorticoid Effects Determine Distal Salt Transport. J. Am. Soc. Nephrol. 2016, 27, 2436–2445. [Google Scholar] [CrossRef]
- Kristensen, M.; Fenton, R.A.; Poulsen, S.B. Dissecting the Effects of Aldosterone and Hypokalemia on the Epithelial Na+ Channel and the NaCl Cotransporter. Front. Physiol. 2022, 13, 800055. [Google Scholar] [CrossRef]
- Cheng, L.; Poulsen, S.B.; Wu, Q.; Esteva-Font, C.; Olesen, E.T.B.; Peng, L.; Olde, B.; Leeb-Lundberg, L.M.F.; Pisitkun, T.; Rieg, T.; et al. Rapid Aldosterone-Mediated Signaling in the DCT Increases Activity of the Thiazide-Sensitive NaCl Cotransporter. J. Am. Soc. Nephrol. 2019, 30, 1454–1470. [Google Scholar] [CrossRef]
- Chiga, M.; Rai, T.; Yang, S.-S.; Ohta, A.; Takizawa, T.; Sasaki, S.; Uchida, S. Dietary Salt Regulates the Phosphorylation of OSR1/SPAK Kinases and the Sodium Chloride Cotransporter through Aldosterone. Kidney Int. 2008, 74, 1403–1409. [Google Scholar] [CrossRef]
- Arroyo, J.P.; Lagnaz, D.; Ronzaud, C.; Vázquez, N.; Ko, B.S.; Moddes, L.; Ruffieux-Daidié, D.; Hausel, P.; Koesters, R.; Yang, B.; et al. Nedd4-2 Modulates Renal Na+-Cl− Cotransporter via the Aldosterone-SGK1-Nedd4-2 Pathway. J. Am. Soc. Nephrol. 2011, 22, 1707–1719. [Google Scholar] [CrossRef]
- Terker, A.S.; Zhang, C.; McCormick, J.A.; Lazelle, R.A.; Zhang, C.; Meermeier, N.P.; Siler, D.A.; Park, H.J.; Fu, Y.; Cohen, D.M.; et al. Potassium Modulates Electrolyte Balance and Blood Pressure through Effects on Distal Cell Voltage and Chloride. Cell Metab. 2015, 21, 39–50. [Google Scholar] [CrossRef]
- Sorensen, M.V.; Grossmann, S.; Roesinger, M.; Gresko, N.; Todkar, A.P.; Barmettler, G.; Ziegler, U.; Odermatt, A.; Loffing-Cueni, D.; Loffing, J. Rapid Dephosphorylation of the Renal Sodium Chloride Cotransporter in Response to Oral Potassium Intake in Mice. Kidney Int. 2013, 83, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Rioux, A.V.; Nsimba-Batomene, T.R.; Slimani, S.; Bergeron, N.A.; Gravel, M.A.; Schreiber, S.V.; Fiola, M.J.; Haydock, L.; Garneau, A.P.; Isenring, P. Navigating the Multifaceted Intricacies of the Na+-Cl− Cotransporter, a Highly Regulated Key Effector in the Control of Hydromineral Homeostasis. Physiol. Rev. 2024, 104, 1147–1204. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, A.; Bockenhauer, D.; Bolignano, D.; Calò, L.A.; Cosyns, E.; Devuyst, O.; Ellison, D.H.; Karet Frankl, F.E.; Knoers, N.V.A.M.; Konrad, M.; et al. Gitelman Syndrome: Consensus and Guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Parmar, M.S.; Muppidi, V.; Bashir, K. Gitelman Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Loffing, J.; Vallon, V.; Loffing-Cueni, D.; Aregger, F.; Richter, K.; Pietri, L.; Bloch-Faure, M.; Hoenderop, J.G.J.; Shull, G.E.; Meneton, P.; et al. Altered Renal Distal Tubule Structure and Renal Na(+) and Ca(2+) Handling in a Mouse Model for Gitelman’s Syndrome. J. Am. Soc. Nephrol. 2004, 15, 2276–2288. [Google Scholar] [CrossRef] [PubMed]
- Mrad, F.C.C.; Soares, S.B.M.; de Menezes Silva, L.A.W.; dos Anjos Menezes, P.V.; Simões-e-Silva, A.C. Bartter’s Syndrome: Clinical Findings, Genetic Causes and Therapeutic Approach. World J. Pediatr. 2021, 17, 31–39. [Google Scholar] [CrossRef]
- Laghmani, K.; Beck, B.B.; Yang, S.-S.; Seaayfan, E.; Wenzel, A.; Reusch, B.; Vitzthum, H.; Priem, D.; Demaretz, S.; Bergmann, K.; et al. Polyhydramnios, Transient Antenatal Bartter’s Syndrome, and MAGED2 Mutations. N. Engl. J. Med. 2016, 374, 1853–1863. [Google Scholar] [CrossRef]
- Teulon, J.; Planelles, G.; Sepúlveda, F.V.; Andrini, O.; Lourdel, S.; Paulais, M. Renal Chloride Channels in Relation to Sodium Chloride Transport. In Comprehensive Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 301–342. ISBN 978-0-470-65071-4. [Google Scholar]
- Piala, A.T.; Moon, T.M.; Akella, R.; He, H.; Cobb, M.H.; Goldsmith, E.J. Chloride Sensing by WNK1 Involves Inhibition of Autophosphorylation. Sci. Signal. 2014, 7, ra41. [Google Scholar] [CrossRef]
- Johnston, J.G.; Wingo, C.S. Potassium Homeostasis and WNK Kinases in the Regulation of the Sodium-Chloride Cotransporter: Hyperaldosteronism and Its Metabolic Consequences. Kidney360 2022, 3, 1823–1828. [Google Scholar] [CrossRef]
- Lo, J.; Forst, A.-L.; Warth, R.; Zdebik, A.A. EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies. Front. Physiol. 2022, 13, 852674. [Google Scholar] [CrossRef]
- Palazzo, V.; Raglianti, V.; Landini, S.; Cirillo, L.; Errichiello, C.; Buti, E.; Artuso, R.; Tiberi, L.; Vergani, D.; Dirupo, E.; et al. Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome. Int. J. Mol. Sci. 2022, 23, 5641. [Google Scholar] [CrossRef]
- Manas, F.; Singh, S. Pseudohypoaldosteronism Type II or Gordon Syndrome: A Rare Syndrome of Hyperkalemia and Hypertension With Normal Renal Function. Cureus 2024, 16, e52594. [Google Scholar] [CrossRef] [PubMed]
- Mabillard, H.; Sayer, J.A. The Molecular Genetics of Gordon Syndrome. Genes 2019, 10, 986. [Google Scholar] [CrossRef] [PubMed]
- Sohara, E.; Uchida, S. Kelch-like 3/Cullin 3 Ubiquitin Ligase Complex and WNK Signaling in Salt-Sensitive Hypertension and Electrolyte Disorder. Nephrol. Dial. Transplant. 2016, 31, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Alessi, D.R.; Zhang, J.; Khanna, A.; Hochdörfer, T.; Shang, Y.; Kahle, K.T. The WNK-SPAK/OSR1 Pathway: Master Regulator of Cation-Chloride Cotransporters. Sci. Signal. 2014, 7, re3. [Google Scholar] [CrossRef]
- Vidal-Petiot, E.; Elvira-Matelot, E.; Mutig, K.; Soukaseum, C.; Baudrie, V.; Wu, S.; Cheval, L.; Huc, E.; Cambillau, M.; Bachmann, S.; et al. WNK1-Related Familial Hyperkalemic Hypertension Results from an Increased Expression of L-WNK1 Specifically in the Distal Nephron. Proc. Natl. Acad. Sci. USA 2013, 110, 14366–14371. [Google Scholar] [CrossRef]
- Kim, S.M.; Eisner, C.; Faulhaber-Walter, R.; Mizel, D.; Wall, S.M.; Briggs, J.P.; Schnermann, J. Salt Sensitivity of Blood Pressure in NKCC1-Deficient Mice. Am. J. Physiol. Renal Physiol. 2008, 295, F1230–F1238. [Google Scholar] [CrossRef]
- Liang, L.; Shimosawa, T. Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease. Int. J. Mol. Sci. 2023, 24, 286. [Google Scholar] [CrossRef]
- Welling, P.A.; Little, R.; Al-Qusairi, L.; Delpire, E.; Ellison, D.H.; Fenton, R.A.; Grimm, P.R. Potassium-Switch Signaling Pathway Dictates Acute Blood Pressure Response to Dietary Potassium. Hypertension 2024, 81, 1044–1054. [Google Scholar] [CrossRef]
- Terker, A.S.; Zhang, C.; Erspamer, K.J.; Gamba, G.; Yang, C.-L.; Ellison, D.H. Unique Chloride-Sensing Properties of WNK4 Permit the Distal Nephron to Modulate Potassium Homeostasis. Kidney Int. 2016, 89, 127–134. [Google Scholar] [CrossRef]
- Canonica, J.; Sergi, C.; Maillard, M.; Klusonova, P.; Odermatt, A.; Koesters, R.; Loffing-Cueni, D.; Loffing, J.; Rossier, B.; Frateschi, S.; et al. Adult Nephron-Specific MR-Deficient Mice Develop a Severe Renal PHA-1 Phenotype. Pflugers Arch. 2016, 468, 895–908. [Google Scholar] [CrossRef]
- Czogalla, J.; Vohra, T.; Penton, D.; Kirschmann, M.; Craigie, E.; Loffing, J. The Mineralocorticoid Receptor (MR) Regulates ENaC but Not NCC in Mice with Random MR Deletion. Pflugers Arch. 2016, 468, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Hundemer, G.L. Primary Aldosteronism: Cardiovascular Outcomes Pre- and Post-Treatment. Curr. Cardiol. Rep. 2019, 21, 93. [Google Scholar] [CrossRef] [PubMed]
- Thout, S.R.; Santos, J.A.; McKenzie, B.; Trieu, K.; Johnson, C.; McLean, R.; Arcand, J.; Campbell, N.R.C.; Webster, J. The Science of Salt: Updating the Evidence on Global Estimates of Salt Intake. J. Clin. Hypertens. 2019, 21, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.W.; Dhaun, N.; Bailey, M.A. The Impact of Excessive Salt Intake on Human Health. Nat. Rev. Nephrol. 2022, 18, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Adolf, C.; Görge, V.; Heinrich, D.A.; Hoster, E.; Schneider, H.; Handgriff, L.; Künzel, H.; Sturm, L.; Beuschlein, F.; Reincke, M. Altered Taste Perception for Sodium Chloride in Patients With Primary Aldosteronism: A Prospective Cohort Study. Hypertension 2021, 77, 1332–1340. [Google Scholar] [CrossRef]
- Mutchler, S.M.; Hasan, M.; Murphy, C.P.; Baty, C.J.; Boyd-Shiwarski, C.; Kirabo, A.; Kleyman, T.R. Dietary Sodium Alters Aldosterone’s Effect on Renal Sodium Transporter Expression and Distal Convoluted Tubule Remodelling. J. Physiol. 2024, 602, 967–987. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, Y.; Zhang, C.; Su, T.; Jiang, L.; Zhou, W.; Zhong, X.; Wu, L.; Wang, W. Effects of a Low-Sodium Diet in Patients with Idiopathic Hyperaldosteronism: A Randomized Controlled Trial. Front. Endocrinol. 2023, 14, 1124479. [Google Scholar] [CrossRef]
- Pilic, L.; Pedlar, C.R.; Mavrommatis, Y. Salt-Sensitive Hypertension: Mechanisms and Effects of Dietary and Other Lifestyle Factors. Nutr. Rev. 2016, 74, 645–658. [Google Scholar] [CrossRef]
- Lerman, L.O.; Kurtz, T.W.; Touyz, R.M.; Ellison, D.H.; Chade, A.R.; Crowley, S.D.; Mattson, D.L.; Mullins, J.J.; Osborn, J.; Eirin, A.; et al. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019, 73, e87–e120. [Google Scholar] [CrossRef]
- Kim, K.; Nist, K.M.; Puleo, F.; McKenna, J.; Wainford, R.D. Sex Differences in Dietary Sodium Evoked NCC Regulation and Blood Pressure in Male and Female Sprague-Dawley, Dahl Salt-Resistant, and Dahl Salt-Sensitive Rats. Am. J. Physiol. Renal Physiol. 2024, 327, F277–F289. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, B.; Vaziri, N.D. Salt-Sensitive Hypertension--Update on Novel Findings. Nephrol. Dial. Transplant. 2007, 22, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Kopp, U.C. Role of Renal Sensory Nerves in Physiological and Pathophysiological Conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R79–R95. [Google Scholar] [CrossRef] [PubMed]
- Sonalker, P.A.; Tofovic, S.P.; Bastacky, S.I.; Jackson, E.K. Chronic Noradrenaline Increases Renal Expression of NHE-3, NBC-1, BSC-1 and Aquaporin-2. Clin. Exp. Pharmacol. Physiol. 2008, 35, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Shimosawa, T.; Ogura, S.; Wang, H.; Uetake, Y.; Kawakami-Mori, F.; Marumo, T.; Yatomi, Y.; Geller, D.S.; Tanaka, H.; et al. Epigenetic Modulation of the Renal β-Adrenergic-WNK4 Pathway in Salt-Sensitive Hypertension. Nat. Med. 2011, 17, 573–580. [Google Scholar] [CrossRef]
- Terker, A.S.; Yang, C.-L.; McCormick, J.A.; Meermeier, N.P.; Rogers, S.L.; Grossmann, S.; Trompf, K.; Delpire, E.; Loffing, J.; Ellison, D.H. Sympathetic Stimulation of Thiazide-Sensitive Sodium Chloride Cotransport in the Generation of Salt-Sensitive Hypertension. Hypertension 2014, 64, 178–184. [Google Scholar] [CrossRef]
- Wainford, R.D.; Carmichael, C.Y.; Pascale, C.L.; Kuwabara, J.T. Gαi2-Protein-Mediated Signal Transduction: Central Nervous System Molecular Mechanism Countering the Development of Sodium-Dependent Hypertension. Hypertension 2015, 65, 178–186. [Google Scholar] [CrossRef]
- Walsh, K.R.; Kuwabara, J.T.; Shim, J.W.; Wainford, R.D. Norepinephrine-Evoked Salt-Sensitive Hypertension Requires Impaired Renal Sodium Chloride Cotransporter Activity in Sprague-Dawley Rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R115–R124. [Google Scholar] [CrossRef]
- Frame, A.A.; Puleo, F.; Kim, K.; Walsh, K.R.; Faudoa, E.; Hoover, R.S.; Wainford, R.D. Sympathetic Regulation of NCC in Norepinephrine-Evoked Salt-Sensitive Hypertension in Sprague-Dawley Rats. Am. J. Physiol. Renal Physiol. 2019, 317, F1623–F1636. [Google Scholar] [CrossRef]
- Puleo, F.; Kim, K.; Frame, A.A.; Walsh, K.R.; Ferdaus, M.Z.; Moreira, J.D.; Comsti, E.; Faudoa, E.; Nist, K.M.; Abkin, E.; et al. Sympathetic Regulation of the NCC (Sodium Chloride Cotransporter) in Dahl Salt-Sensitive Hypertension. Hypertension 2020, 76, 1461–1469. [Google Scholar] [CrossRef]
- Doutova, E.A.; Moss, N.G. Age-Related Changes in Calcitonin Gene-Related Peptide and Substance P in Renal Afferent Nerve Soma in the Rat. Association with Afferent Renal Nerve Activity. Brain Res. Dev. Brain Res. 1996, 97, 260–268. [Google Scholar] [CrossRef]
- Frame, A.A.; Nist, K.M.; Kim, K.; Puleo, F.; Moreira, J.D.; Swaldi, H.; McKenna, J.; Wainford, R.D. Integrated Renal and Sympathetic Mechanisms Underlying the Development of Sex- and Age-Dependent Hypertension and the Salt Sensitivity of Blood Pressure. Geroscience 2024, 46, 6435–6458. [Google Scholar] [CrossRef]
- Cicala, M.V.; Mantero, F. Hypertension in Cushing’s Syndrome: From Pathogenesis to Treatment. Neuroendocrinology 2010, 92 (Suppl. S1), 44–49. [Google Scholar] [CrossRef] [PubMed]
- Feelders, R.A.; Pulgar, S.J.; Kempel, A.; Pereira, A.M. The Burden of Cushing’s Disease: Clinical and Health-Related Quality of Life Aspects. Eur. J. Endocrinol. 2012, 167, 311–326. [Google Scholar] [CrossRef]
- Hunter, R.W.; Ivy, J.R.; Bailey, M.A. Glucocorticoids and Renal Na+ Transport: Implications for Hypertension and Salt Sensitivity. J. Physiol. 2014, 592, 1731–1744. [Google Scholar] [CrossRef] [PubMed]
- Frindt, G.; Palmer, L.G. Regulation of Epithelial Na+ Channels by Adrenal Steroids: Mineralocorticoid and Glucocorticoid Effects. Am. J. Physiol. Renal Physiol. 2012, 302, F20–F26. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, H.; Bartiss, A.; Bernstein, P.; Ellison, D.H. Adrenal Steroids Stimulate Thiazide-Sensitive NaCl Transport by Rat Renal Distal Tubules. Am. J. Physiol. 1996, 270, F211–F219. [Google Scholar] [CrossRef]
- Salih, M.; Bovée, D.M.; van der Lubbe, N.; Danser, A.H.J.; Zietse, R.; Feelders, R.A.; Hoorn, E.J. Increased Urinary Extracellular Vesicle Sodium Transporters in Cushing Syndrome With Hypertension. J. Clin. Endocrinol. Metab. 2018, 103, 2583–2591. [Google Scholar] [CrossRef]
- Tranquilli, A.L.; Dekker, G.; Magee, L.; Roberts, J.; Sibai, B.M.; Steyn, W.; Zeeman, G.G.; Brown, M.A. The Classification, Diagnosis and Management of the Hypertensive Disorders of Pregnancy: A Revised Statement from the ISSHP. Pregnancy Hypertens. 2014, 4, 97–104. [Google Scholar] [CrossRef]
- Brown, M.A.; Wang, J.; Whitworth, J.A. The Renin-Angiotensin-Aldosterone System in Pre-Eclampsia. Clin. Exp. Hypertens. 1997, 19, 713–726. [Google Scholar] [CrossRef]
- Hu, C.-C.; Katerelos, M.; Choy, S.-W.; Crossthwaite, A.; Walker, S.P.; Pell, G.; Lee, M.; Cook, N.; Mount, P.F.; Paizis, K.; et al. Pre-Eclampsia Is Associated with Altered Expression of the Renal Sodium Transporters NKCC2, NCC and ENaC in Urinary Extracellular Vesicles. PLoS ONE 2018, 13, e0204514. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, G.; Wu, Q.; Shen, L.; Liu, D.; Wang, Z.; Wang, W.; Ren, Z.; Jia, Y.; Liu, M.; et al. Renal CD81 Interacts with Sodium Potassium 2 Chloride Cotransporter and Sodium Chloride Cotransporter in Rats with Lipopolysaccharide-Induced Preeclampsia. FASEB J. 2023, 37, e22834. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; Meor Azlan, N.F.; Wu, Z.; Zhang, J. WNK-SPAK/OSR1-NCC Kinase Signaling Pathway as a Novel Target for the Treatment of Salt-Sensitive Hypertension. Acta Pharmacol. Sin. 2021, 42, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.E.; Moser, M. Use of Diuretics in Patients with Hypertension. N. Engl. J. Med. 2009, 361, 2153–2164. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.E.; Fravel, M.A. Thiazide and the Thiazide-Like Diuretics: Review of Hydrochlorothiazide, Chlorthalidone, and Indapamide. Am. J. Hypertens. 2022, 35, 573–586. [Google Scholar] [CrossRef]
- Roush, G.C.; Ernst, M.E.; Kostis, J.B.; Tandon, S.; Sica, D.A. Head-to-Head Comparisons of Hydrochlorothiazide with Indapamide and Chlorthalidone: Antihypertensive and Metabolic Effects. Hypertension 2015, 65, 1041–1046. [Google Scholar] [CrossRef]
- Palmer, B.F.; Naderi, A.S.A. Metabolic Complications Associated with Use of Thiazide Diuretics. J. Am. Soc. Hypertens. 2007, 1, 381–392. [Google Scholar] [CrossRef]
- Shao, S.-C.; Lai, C.-C.; Chen, Y.-H.; Lai, E.C.-C.; Hung, M.-J.; Chi, C.-C. Associations of Thiazide Use with Skin Cancers: A Systematic Review and Meta-Analysis. BMC Med. 2022, 20, 228. [Google Scholar] [CrossRef]
- Kreutz, R.; Algharably, E.A.H.; Douros, A. Reviewing the Effects of Thiazide and Thiazide-like Diuretics as Photosensitizing Drugs on the Risk of Skin Cancer. J. Hypertens. 2019, 37, 1950–1958. [Google Scholar] [CrossRef]
- Abdallah, J.G.; Schrier, R.W.; Edelstein, C.; Jennings, S.D.; Wyse, B.; Ellison, D.H. Loop Diuretic Infusion Increases Thiazide-Sensitive Na(+)/Cl(−)-Cotransporter Abundance: Role of Aldosterone. J. Am. Soc. Nephrol. 2001, 12, 1335–1341. [Google Scholar] [CrossRef]
- Nielsen, J.; Kwon, T.-H.; Masilamani, S.; Beutler, K.; Hager, H.; Nielsen, S.; Knepper, M.A. Sodium Transporter Abundance Profiling in Kidney: Effect of Spironolactone. Am. J. Physiol. Renal Physiol. 2002, 283, F923–F933. [Google Scholar] [CrossRef]
- Pizzolo, F.; Bertolone, L.; Castagna, A.; Morandini, F.; Sartori, G.; De Santis, D.; Tiberti, N.; Brazzarola, P.; Salvagno, G.; Friso, S.; et al. Urinary Extracellular Vesicle mRNA Analysis of Sodium Chloride Cotransporter in Hypertensive Patients under Different Conditions. J. Hum. Hypertens. 2022, 37, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Kolkhof, P.; Jaisser, F.; Kim, S.-Y.; Filippatos, G.; Nowack, C.; Pitt, B. Steroidal and Novel Non-Steroidal Mineralocorticoid Receptor Antagonists in Heart Failure and Cardiorenal Diseases: Comparison at Bench and Bedside. Handb. Exp. Pharmacol. 2017, 243, 271–305. [Google Scholar] [CrossRef] [PubMed]
- Susa, K.; Sohara, E.; Isobe, K.; Chiga, M.; Rai, T.; Sasaki, S.; Uchida, S. WNK-OSR1/SPAK-NCC Signal Cascade Has Circadian Rhythm Dependent on Aldosterone. Biochem. Biophys. Res. Commun. 2012, 427, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Pathare, G.; Anderegg, M.; Albano, G.; Lang, F.; Fuster, D.G. Elevated FGF23 Levels in Mice Lacking the Thiazide-Sensitive NaCl Cotransporter (NCC). Sci. Rep. 2018, 8, 3590. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.S.; Planavsky, N.; Hanberg, J.S.; Ahmad, T.; Brisco-Bacik, M.A.; Wilson, F.P.; Jacoby, D.; Chen, M.; Tang, W.H.W.; Cherney, D.Z.I.; et al. Compensatory Distal Reabsorption Drives Diuretic Resistance in Human Heart Failure. J. Am. Soc. Nephrol. 2017, 28, 3414–3424. [Google Scholar] [CrossRef]
- Loon, N.R.; Wilcox, C.S.; Unwin, R.J. Mechanism of Impaired Natriuretic Response to Furosemide during Prolonged Therapy. Kidney Int. 1989, 36, 682–689. [Google Scholar] [CrossRef]
- Wilcox, C.S.; Testani, J.M.; Pitt, B. Pathophysiology of Diuretic Resistance and Its Implications for the Management of Chronic Heart Failure. Hypertension 2020, 76, 1045–1054. [Google Scholar] [CrossRef]
- Reilly, R.F.; Ellison, D.H. Mammalian Distal Tubule: Physiology, Pathophysiology, and Molecular Anatomy. Physiol. Rev. 2000, 80, 277–313. [Google Scholar] [CrossRef]
- Obermüller, N.; Bernstein, P.; Velázquez, H.; Reilly, R.; Moser, D.; Ellison, D.H.; Bachmann, S. Expression of the Thiazide-Sensitive Na-Cl Cotransporter in Rat and Human Kidney. Am. J. Physiol. 1995, 269, F900–F910. [Google Scholar] [CrossRef]
- van Angelen, A.A.; van der Kemp, A.W.; Hoenderop, J.G.; Bindels, R.J. Increased Expression of Renal TRPM6 Compensates for Mg(2+) Wasting during Furosemide Treatment. Clin. Kidney J. 2012, 5, 535–544. [Google Scholar] [CrossRef]
- Safarini, O.A.; Keshavamurthy, C.; Patel, P. Calcineurin Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Ho, S.; Clipstone, N.; Timmermann, L.; Northrop, J.; Graef, I.; Fiorentino, D.; Nourse, J.; Crabtree, G.R. The Mechanism of Action of Cyclosporin A and FK506. Clin. Immunol. Immunopathol. 1996, 80, S40–S45. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.S.; Rein, J.L. The Many Faces of Calcineurin Inhibitor Toxicity-What the FK? Adv. Chronic Kidney Dis. 2020, 27, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Hošková, L.; Málek, I.; Kopkan, L.; Kautzner, J. Pathophysiological Mechanisms of Calcineurin Inhibitor-Induced Nephrotoxicity and Arterial Hypertension. Physiol. Res. 2017, 66, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Hoorn, E.J.; Walsh, S.B.; McCormick, J.A.; Fürstenberg, A.; Yang, C.-L.; Roeschel, T.; Paliege, A.; Howie, A.J.; Conley, J.; Bachmann, S.; et al. The Calcineurin Inhibitor Tacrolimus Activates the Renal Sodium Chloride Cotransporter to Cause Hypertension. Nat. Med. 2011, 17, 1304–1309. [Google Scholar] [CrossRef]
- Duan, X.-P.; Zhang, C.-B.; Wang, W.-H.; Lin, D.-H. Role of Calcineurin in Regulating Renal Potassium (K+) Excretion: Mechanisms of Calcineurin Inhibitor-Induced Hyperkalemia. Acta Physiol. 2024, 240, e14189. [Google Scholar] [CrossRef]
- Shoda, W.; Nomura, N.; Ando, F.; Tagashira, H.; Iwamoto, T.; Ohta, A.; Isobe, K.; Mori, T.; Susa, K.; Sohara, E.; et al. Sodium-Calcium Exchanger 1 Is the Key Molecule for Urinary Potassium Excretion against Acute Hyperkalemia. PLoS ONE 2020, 15, e0235360. [Google Scholar] [CrossRef]
- Gao, Z.-X.; Zhou, R.; Li, M.-Y.; Li, S.-T.; Mao, Z.-H.; Shu, T.-T.; Liu, D.-W.; Liu, Z.-S.; Wu, P. Activation of Kir4.1/Kir5.1 Contributes to the Cyclosporin A-Induced Stimulation of the Renal NaCl Cotransporter and Hyperkalemic Hypertension. Acta Physiol. 2023, 238, e13948. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Walsh, S.B.; McCormick, J.A.; Zietse, R.; Unwin, R.J.; Ellison, D.H. Pathogenesis of Calcineurin Inhibitor-Induced Hypertension. J. Nephrol. 2012, 25, 269–275. [Google Scholar] [CrossRef]
- Marques, L.; Vale, N. Salbutamol in the Management of Asthma: A Review. Int. J. Mol. Sci. 2022, 23, 14207. [Google Scholar] [CrossRef]
- Poulsen, S.B.; Cheng, L.; Penton, D.; Kortenoeven, M.L.A.; Matchkov, V.V.; Loffing, J.; Little, R.; Murali, S.K.; Fenton, R.A. Activation of the Kidney Sodium Chloride Cotransporter by the Β2-Adrenergic Receptor Agonist Salbutamol Increases Blood Pressure. Kidney Int. 2021, 100, 321–335. [Google Scholar] [CrossRef]
- Kamiar, A.; Yousefi, K.; Dunkley, J.C.; Webster, K.A.; Shehadeh, L.A. Β2-Adrenergic Receptor Agonism as a Therapeutic Strategy for Kidney Disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R575–R587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, S.; Liu, L. Efficacy and Safety Evaluation of SGLT2i on Blood Pressure Control in Patients with Type 2 Diabetes and Hypertension: A New Meta-Analysis. Diabetol. Metab. Syndr. 2023, 15, 118. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Wilcox, C.S.; Testani, J.M. Critical Analysis of the Effects of SGLT2 Inhibitors on Renal Tubular Sodium, Water and Chloride Homeostasis and Their Role in Influencing Heart Failure Outcomes. Circulation 2023, 148, 354–372. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, A.; Burnier, M.; Muller, M.-E.; Ghajarzadeh-Wurzner, A.; Maillard, M.; Loncle, N.; Milani, B.; Dufour, N.; Bonny, O.; Pruijm, M. Acute and Chronic Effects of SGLT2 Inhibitor Empagliflozin on Renal Oxygenation and Blood Pressure Control in Nondiabetic Normotensive Subjects: A Randomized, Placebo-Controlled Trial. J. Am. Heart Assoc. 2020, 9, e016173. [Google Scholar] [CrossRef]
- Bahena-Lopez, J.P.; Rojas-Vega, L.; Chávez-Canales, M.; Bazua-Valenti, S.; Bautista-Pérez, R.; Lee, J.-H.; Madero, M.; Vazquez-Manjarrez, N.; Alquisiras-Burgos, I.; Hernandez-Cruz, A.; et al. Glucose/Fructose Delivery to the Distal Nephron Activates the Sodium-Chloride Cotransporter via the Calcium-Sensing Receptor. J. Am. Soc. Nephrol. 2023, 34, 55–72. [Google Scholar] [CrossRef]
- Onishi, A.; Fu, Y.; Patel, R.; Darshi, M.; Crespo-Masip, M.; Huang, W.; Song, P.; Freeman, B.; Kim, Y.C.; Soleimani, M.; et al. A Role for Tubular Na+/H+ Exchanger NHE3 in the Natriuretic Effect of the SGLT2 Inhibitor Empagliflozin. Am. J. Physiol. Renal Physiol. 2020, 319, F712–F728. [Google Scholar] [CrossRef]
- Ahwin, P.; Martinez, D. The Relationship between SGLT2 and Systemic Blood Pressure Regulation. Hypertens. Res. 2024, 47, 2094–2103. [Google Scholar] [CrossRef]
- Ishizawa, K.; Wang, Q.; Li, J.; Xu, N.; Nemoto, Y.; Morimoto, C.; Fujii, W.; Tamura, Y.; Fujigaki, Y.; Tsukamoto, K.; et al. Inhibition of Sodium Glucose Cotransporter 2 Attenuates the Dysregulation of Kelch-Like 3 and NaCl Cotransporter in Obese Diabetic Mice. J. Am. Soc. Nephrol. 2019, 30, 782–794. [Google Scholar] [CrossRef]
- Chung, S.; Kim, S.; Son, M.; Kim, M.; Koh, E.S.; Shin, S.J.; Ko, S.-H.; Kim, H.-S. Empagliflozin Contributes to Polyuria via Regulation of Sodium Transporters and Water Channels in Diabetic Rat Kidneys. Front. Physiol. 2019, 10, 271. [Google Scholar] [CrossRef]
- Kravtsova, O.; Bohovyk, R.; Levchenko, V.; Palygin, O.; Klemens, C.A.; Rieg, T.; Staruschenko, A. SGLT2 Inhibition Effect on Salt-Induced Hypertension, RAAS, and Na+ Transport in Dahl SS Rats. Am. J. Physiol. Renal Physiol. 2022, 322, F692–F707. [Google Scholar] [CrossRef]
- Castro, P.C.; Santos-Rios, T.M.; Martins, F.L.; Crajoinas, R.O.; Caetano, M.V.; Lessa, L.M.A.; Luchi, W.M.; McCormick, J.A.; Girardi, A.C.C. Renal Upregulation of NCC Counteracts Empagliflozin-Mediated NHE3 Inhibition in Normotensive but Not in Hypertensive Male Rat. Am. J. Physiol. Cell Physiol. 2024, 326, C1573–C1589. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. SGLT2 Inhibition and Kidney Potassium Homeostasis. Clin. J. Am. Soc. Nephrol. 2024, 19, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Spanu, S.; van Roeyen, C.R.C.; Denecke, B.; Floege, J.; Mühlfeld, A.S. Urinary Exosomes: A Novel Means to Non-Invasively Assess Changes in Renal Gene and Protein Expression. PLoS ONE 2014, 9, e109631. [Google Scholar] [CrossRef] [PubMed]
- Barros, E.R.; Carvajal, C.A. Urinary Exosomes and Their Cargo: Potential Biomarkers for Mineralocorticoid Arterial Hypertension? Front. Endocrinol. 2017, 8, 230. [Google Scholar] [CrossRef]
- McKEE, J.A.; Kumar, S.; Ecelbarger, C.A.; Fernández-Llama, P.; Terris, J.; Knepper, M.A. Detection of Na(+) Transporter Proteins in Urine. J. Am. Soc. Nephrol. 2000, 11, 2128–2132. [Google Scholar] [CrossRef]
- Mayan, H.; Attar-Herzberg, D.; Shaharabany, M.; Holtzman, E.J.; Farfel, Z. Increased Urinary Na-Cl Cotransporter Protein in Familial Hyperkalaemia and Hypertension. Nephrol. Dial. Transplant. 2008, 23, 492–496. [Google Scholar] [CrossRef]
- Esteva-Font, C.; Guillén-Gómez, E.; Diaz, J.M.; Guirado, L.; Facundo, C.; Ars, E.; Ballarin, J.A.; Fernández-Llama, P. Renal Sodium Transporters Are Increased in Urinary Exosomes of Cyclosporine-Treated Kidney Transplant Patients. Am. J. Nephrol. 2014, 39, 528–535. [Google Scholar] [CrossRef]
- Tutakhel, O.A.Z.; Moes, A.D.; Valdez-Flores, M.A.; Kortenoeven, M.L.A.; Vrie, M.V.D.; Jeleń, S.; Fenton, R.A.; Zietse, R.; Hoenderop, J.G.J.; Hoorn, E.J.; et al. NaCl Cotransporter Abundance in Urinary Vesicles Is Increased by Calcineurin Inhibitors and Predicts Thiazide Sensitivity. PLoS ONE 2017, 12, e0176220. [Google Scholar] [CrossRef]
- Joo, K.W.; Lee, J.W.; Jang, H.R.; Heo, N.J.; Jeon, U.S.; Oh, Y.K.; Lim, C.S.; Na, K.Y.; Kim, J.; Cheong, H.I.; et al. Reduced Urinary Excretion of Thiazide-Sensitive Na-Cl Cotransporter in Gitelman Syndrome: Preliminary Data. Am. J. Kidney Dis. 2007, 50, 765–773. [Google Scholar] [CrossRef]
- Esteva-Font, C.; Wang, X.; Ars, E.; Guillén-Gómez, E.; Sans, L.; González Saavedra, I.; Torres, F.; Torra, R.; Masilamani, S.; Ballarín, J.A.; et al. Are Sodium Transporters in Urinary Exosomes Reliable Markers of Tubular Sodium Reabsorption in Hypertensive Patients? Nephron Physiol. 2010, 114, p25–p34. [Google Scholar] [CrossRef]
- Zachar, R.; Jensen, B.L.; Svenningsen, P. Dietary Na+ Intake in Healthy Humans Changes the Urine Extracellular Vesicle Prostasin Abundance While the Vesicle Excretion Rate, NCC, and ENaC Are Not Altered. Am. J. Physiol. Renal Physiol. 2019, 317, F1612–F1622. [Google Scholar] [CrossRef] [PubMed]
- Castagna, A.; Pizzolo, F.; Chiecchi, L.; Morandini, F.; Channavajjhala, S.K.; Guarini, P.; Salvagno, G.; Olivieri, O. Circadian Exosomal Expression of Renal Thiazide-Sensitive NaCl Cotransporter (NCC) and Prostasin in Healthy Individuals. Proteom. Clin. Appl. 2015, 9, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Wolley, M.J.; Mayr, H.L.; Cheng, L.; Cowley, D.; Li, B.; Campbell, K.L.; Terker, A.S.; Ellison, D.H.; Welling, P.A.; et al. Randomized Trial on the Effect of Oral Potassium Chloride Supplementation on the Thiazide-Sensitive Sodium Chloride Cotransporter in Healthy Adults. Kidney Int. Rep. 2023, 8, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Bielopolski, D.; Musante, L.; Hoorn, E.J.; Molina, H.; Barrows, D.; Carrol, T.S.; Harding, M.A.; Upson, S.; Qureshi, A.; Weder, M.M.; et al. Effect of the DASH Diet on the Sodium-Chloride Cotransporter and Aquaporin-2 in Urinary Extracellular Vesicles. Am. J. Physiol. Renal Physiol. 2024, 326, F971–F980. [Google Scholar] [CrossRef]
- van der Lubbe, N.; Jansen, P.M.; Salih, M.; Fenton, R.A.; van den Meiracker, A.H.; Danser, A.H.J.; Zietse, R.; Hoorn, E.J. The Phosphorylated Sodium Chloride Cotransporter in Urinary Exosomes Is Superior to Prostasin as a Marker for Aldosteronism. Hypertension 2012, 60, 741–748. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, X.; Rose, K.L.; MacDonald, W.H.; Zhang, B.; Schey, K.L.; Luther, J.M. Activation of the Endogenous Renin-Angiotensin-Aldosterone System or Aldosterone Administration Increases Urinary Exosomal Sodium Channel Excretion. J. Am. Soc. Nephrol. 2016, 27, 646–656. [Google Scholar] [CrossRef]
- Wolley, M.J.; Wu, A.; Xu, S.; Gordon, R.D.; Fenton, R.A.; Stowasser, M. In Primary Aldosteronism, Mineralocorticoids Influence Exosomal Sodium-Chloride Cotransporter Abundance. J. Am. Soc. Nephrol. 2017, 28, 56–63. [Google Scholar] [CrossRef]
- Xu, N.; Hirohama, D.; Ishizawa, K.; Chang, W.X.; Shimosawa, T.; Fujita, T.; Uchida, S.; Shibata, S. Hypokalemia and Pendrin Induction by Aldosterone. Hypertension 2017, 69, 855–862. [Google Scholar] [CrossRef]
- Shibata, S.; Rinehart, J.; Zhang, J.; Moeckel, G.; Castañeda-Bueno, M.; Stiegler, A.L.; Boggon, T.J.; Gamba, G.; Lifton, R.P. Mineralocorticoid Receptor Phosphorylation Regulates Ligand Binding and Renal Response to Volume Depletion and Hyperkalemia. Cell Metab. 2013, 18, 660–671. [Google Scholar] [CrossRef]
- Wu, A.; Wolley, M.J.; Matthews, A.; Cowley, D.; Welling, P.A.; Fenton, R.A.; Stowasser, M. In Primary Aldosteronism Acute Potassium Chloride Supplementation Suppresses Abundance and Phosphorylation of the Sodium-Chloride Cotransporter. Kidney360 2022, 3, 1909–1923. [Google Scholar] [CrossRef]
- Kong, L.; Tang, X.; Kang, Y.; Dong, L.; Tong, J.; Xu, J.; Gao, P.; Wang, J.; Shen, W.; Zhu, L. The Role of Urinary Extracellular Vesicles Sodium Chloride Cotransporter in Subtyping Primary Aldosteronism. Front. Endocrinol. 2022, 13, 834409. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef] [PubMed]
- Rabi, D.M.; McBrien, K.A.; Sapir-Pichhadze, R.; Nakhla, M.; Ahmed, S.B.; Dumanski, S.M.; Butalia, S.; Leung, A.A.; Harris, K.C.; Cloutier, L.; et al. Hypertension Canada’s 2020 Comprehensive Guidelines for the Prevention, Diagnosis, Risk Assessment, and Treatment of Hypertension in Adults and Children. Can. J. Cardiol. 2020, 36, 596–624. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of Oral Potassium on Blood Pressure. Meta-Analysis of Randomized Controlled Clinical Trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Geleijnse, J.M.; Kok, F.J.; Grobbee, D.E. Blood Pressure Response to Changes in Sodium and Potassium Intake: A Metaregression Analysis of Randomised Trials. J. Hum. Hypertens. 2003, 17, 471–480. [Google Scholar] [CrossRef]
- Little, R.; Murali, S.K.; Poulsen, S.B.; Grimm, P.R.; Assmus, A.; Cheng, L.; Ivy, J.R.; Hoorn, E.J.; Matchkov, V.; Welling, P.A.; et al. Dissociation of Sodium-Chloride Cotransporter Expression and Blood Pressure during Chronic High Dietary Potassium Supplementation. JCI Insight 2023, 8, e156437. [Google Scholar] [CrossRef]
- Meor Azlan, N.F.; Koeners, M.P.; Zhang, J. Regulatory Control of the Na-Cl Co-Transporter NCC and Its Therapeutic Potential for Hypertension. Acta Pharm. Sin. B 2021, 11, 1117–1128. [Google Scholar] [CrossRef]
- Yamada, K.; Zhang, J.-H.; Xie, X.; Reinhardt, J.; Xie, A.Q.; LaSala, D.; Kohls, D.; Yowe, D.; Burdick, D.; Yoshisue, H.; et al. Discovery and Characterization of Allosteric WNK Kinase Inhibitors. ACS Chem. Biol. 2016, 11, 3338–3346. [Google Scholar] [CrossRef]
- Yamada, K.; Levell, J.; Yoon, T.; Kohls, D.; Yowe, D.; Rigel, D.F.; Imase, H.; Yuan, J.; Yasoshima, K.; DiPetrillo, K.; et al. Optimization of Allosteric With-No-Lysine (WNK) Kinase Inhibitors and Efficacy in Rodent Hypertension Models. J. Med. Chem. 2017, 60, 7099–7107. [Google Scholar] [CrossRef]
- Lin, S.-H.; Yu, I.-S.; Jiang, S.-T.; Lin, S.-W.; Chu, P.; Chen, A.; Sytwu, H.-K.; Sohara, E.; Uchida, S.; Sasaki, S.; et al. Impaired Phosphorylation of Na(+)-K(+)-2Cl(−) Cotransporter by Oxidative Stress-Responsive Kinase-1 Deficiency Manifests Hypotension and Bartter-like Syndrome. Proc. Natl. Acad. Sci. USA 2011, 108, 17538–17543. [Google Scholar] [CrossRef]
- Kikuchi, E.; Mori, T.; Zeniya, M.; Isobe, K.; Ishigami-Yuasa, M.; Fujii, S.; Kagechika, H.; Ishihara, T.; Mizushima, T.; Sasaki, S.; et al. Discovery of Novel SPAK Inhibitors That Block WNK Kinase Signaling to Cation Chloride Transporters. J. Am. Soc. Nephrol. 2015, 26, 1525–1536. [Google Scholar] [CrossRef]
- Mori, T.; Kikuchi, E.; Watanabe, Y.; Fujii, S.; Ishigami-Yuasa, M.; Kagechika, H.; Sohara, E.; Rai, T.; Sasaki, S.; Uchida, S. Chemical Library Screening for WNK Signalling Inhibitors Using Fluorescence Correlation Spectroscopy. Biochem. J. 2013, 455, 339–345. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castagna, A.; Mango, G.; Martinelli, N.; Marzano, L.; Moruzzi, S.; Friso, S.; Pizzolo, F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024, 12, 2580. https://doi.org/10.3390/biomedicines12112580
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines. 2024; 12(11):2580. https://doi.org/10.3390/biomedicines12112580
Chicago/Turabian StyleCastagna, Annalisa, Gabriele Mango, Nicola Martinelli, Luigi Marzano, Sara Moruzzi, Simonetta Friso, and Francesca Pizzolo. 2024. "Sodium Chloride Cotransporter in Hypertension" Biomedicines 12, no. 11: 2580. https://doi.org/10.3390/biomedicines12112580
APA StyleCastagna, A., Mango, G., Martinelli, N., Marzano, L., Moruzzi, S., Friso, S., & Pizzolo, F. (2024). Sodium Chloride Cotransporter in Hypertension. Biomedicines, 12(11), 2580. https://doi.org/10.3390/biomedicines12112580