Connexins and Aging-Associated Respiratory Disorders: The Role in Intercellular Communications
Abstract
:1. Introduction
2. Cellular Localization of Connexins
3. Connexon Functions
4. Connexins and Aging
5. The Expression and Role of Connexins in Respiratory Pathology
6. Macrophage Connexins
7. The Role of Connexins in Oncogenesis
8. The Role of Connexins in Fibrosis Processes
9. The Role of Connexins in Inflammatory Processes
10. The Functional Relation Between Connexins and Mitochondria
11. Prospects for Therapeutic Interventions on Connexin Channels
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Esseltine, J.L.; Laird, D.W. Next–generation connexin and pannexin cell biology. Trends Cell Biol. 2016, 26, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.W. Life cycle of connexins in health and disease. Biochem. J. 2006, 394, 527–543. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.S.; Axelsen, L.N.; Sorgen, P.L.; Verma, V.; Delmar, M.; Holstein-Rathlou, N.-H. Gap Junctions. Compr. Physiol. 2012, 2, 1981–2035. [Google Scholar] [PubMed]
- Totland, M.Z.; Rasmussen, N.L.; Knudsen, L.M.; Leithe, E. Regulation of gap junction intercellular communication by connexin ubiquitination: Physiological and pathophysiological implications. Cell. Mol. Life Sci. 2020, 77, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; De Bock, M.; Decrock, E.; Bol, M.; Gadicherla, A.; Bultynck, G.; Leybaert, L. Connexin targeting peptides as inhibitors of voltage–and intracellular Ca2+–triggered Cx43 hemichannel opening. Neuropharmacology 2013, 75, 506–516. [Google Scholar] [CrossRef]
- Iyyathurai, J.; Wang, N.; D’hondt, C.; Jiang, J.X.; Leybaert, L.; Bultynck, G. The SH3–binding domain of Cx43 participates in loop/tail interactions critical for Cx43–hemichannel activity. Cell. Mol. Life Sci. 2018, 75, 2059–2073. [Google Scholar] [CrossRef]
- Leybaert, L.; Lampe, P.D.; Dhein, S.; Kwak, B.R.; Ferdinandy, P.; Beyer, E.C.; Laird, D.W.; Naus, C.C.; Green, C.R.; Schulz, R. Connexins in cardiovascular and neurovascular health and disease: Pharmacological implications. Pharmacol. Rev. 2017, 69, 396–478. [Google Scholar] [CrossRef]
- Hu, Z.; Riquelme, M.A.; Gu, S.; Jiang, J.X. Regulation of Connexin Gap Junctions and Hemichannels by Calcium and Calcium Binding Protein Calmodulin. Int. J. Mol. Sci. 2020, 21, 8194. [Google Scholar] [CrossRef]
- Goodenough, D.A.; Paul, D.L. Gap junctions. Cold Spring Harb. Perspect. Biol. 2009, 1, 211. [Google Scholar] [CrossRef]
- González-Nieto, D.; Gómez-Hernández, J.M.; Larrosa, B.; Gutiérrez, C.; Muñoz, M.D.; Fasciani, I.; O’Brien, J.; Zappalà, A.; Cicirata, F.; Barrio, L.C. Regulation of neuronal connexin-36 channels by pH. Proc. Natl. Acad. Sci. USA 2008, 105, 17169–17174. [Google Scholar] [CrossRef]
- Bao, X.; Reuss, L.; Altenberg, G.A. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C–mediated phosphorylation of Serine 368. J. Biol. Chem. 2004, 279, 20058–20066. [Google Scholar] [CrossRef] [PubMed]
- Lampe, P.D.; Laird, D.W. Recent advances in connexin gap junction biology. Fac. Rev. 2022, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Cha, H.J.; Jeong, H.; Lee, S.N.; Lee, C.W.; Kim, M.; Yoo, J.; Woo, J.S. Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nat. Commun. 2023, 14, 931. [Google Scholar] [CrossRef] [PubMed]
- Jagielnicki, M.; Kucharska, I.; Bennett, B.C.; Harris, A.L.; Yeager, M. Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures. Biology 2024, 13, 298. [Google Scholar] [CrossRef]
- Salameh, A. Life cycle of connexins: Regulation of connexin synthesis and degradation. Adv. Cardiol. 2006, 42, 57–70. [Google Scholar] [CrossRef]
- Hervé, J.-C.; Sarrouilhe, D. Connexin-Made Channels as Pharmacological Targets. Curr. Pharm. Des. 2005, 11, 1941–1958. [Google Scholar] [CrossRef]
- Bargiotas, P.; Monyer, H.; Schwaninger, M. Hemichannels in cerebral ischemia. Curr. Mol. Med. 2009, 9, 186–194. [Google Scholar] [CrossRef]
- Dosch, M.; Gerber, J.; Jebbawi, F.; Beldi, G. Mechanisms of ATP Release by Inflammatory Cells. Int. J. Mol. Sci. 2018, 19, 1222. [Google Scholar] [CrossRef]
- Moscato, S.; Cabiati, M.; Bianchi, F.; Panetta, D.; Burchielli, S.; Massimetti, G.; Del, R.S.; Mattii, L. Heart and liver connexin expression related to the first stage of aging: A study on naturally aged animals. Acta Histochem. 2020, 122, 151651. [Google Scholar] [CrossRef]
- Nagibin, V.; Egan Benova, T.; Viczenczova, C.; Szeiffova Bacova, B.; Dovinova, I.; Barancik, M.; Tribulova, N. Ageing related down-regulation of myocardial connexin-43 and up-regulation of MMP-2 may predict propensity to atrial fibrillation in experimental animals. Physiol. Res. 2016, 19, 65, 91–100. [Google Scholar] [CrossRef]
- Tribulová, N.; Dupont, E.; Soukup, T.; Okruhlicová, L.; Severs, N.J. Sex differences in connexin-43 expression in left ventricles of aging rats. Physiol. Res. 2005, 54, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, T.; Hamano, H.; Ogami, K.; Ohta, K.; Inoue, T.; Shimono, M. Reduction of connexin 43 expression in aged human dental pulp. Int. Endod. J. 2004, 37, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Statuto, M.; Bianchi, C.; Perego, R.; Del Monte, U. Drop of connexin 43 in replicative senescence of human fibroblasts HEL-299 as a possible biomarker of senescence. Exp. Gerontol. 2002, 7, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Xu, C. Role of connexins in neurodegenerative diseases (Review). Mol. Med. Rep. 2021, 23, 395. [Google Scholar] [CrossRef]
- Dahl, E.; Winterhager, E.; Traub, O.; Willecke, K. Expression of Gap Junction genes, Connexin 40 and Connexin 43, during fetal mouse development. Brain Struct. Funct. 1995, 191, 267–278. [Google Scholar]
- Swartzendruber, J.A.; Nicholson, B.J.; Murthy, A.K. The Role of Connexin 43 in Lung Disease. Life 2020, 10, 363. [Google Scholar] [CrossRef]
- Jonson, L.N.; Koval, M. Cross-talk between pulmonary injuiry, oxidant stress and gap junctional communication. Antioxid. Redox Signal. 2009, 11, 355–367. [Google Scholar] [CrossRef]
- Nagata, K.; Masumoto, K.; Esumi, G.; Teshiba, R.; Yoshizaki, K.; Fukumoto, S.; Nonaka, K.; Taguchi, T. Connexin 43 plays an important role in lung development. J. Pediatr. Surg. 2009, 44, 2296–2301. [Google Scholar] [CrossRef]
- Parthasarathi, K.; Ichimura, Y.; Monma, E.; Lindert, J.; Issekutz, A.; Bhattacharya, J. Connexin 43 mediates spread of Ca2+–dependent proinflammatory responses in lung capillaries. J. Clin. Investig. 2006, 116, 2193–2200. [Google Scholar] [CrossRef]
- Kasper, M.; Traub, O.; Reimann, T.; Bjermer, L.; Grossman, H.; Muller, M.; Wenzel, K.W. Upregulatiom of gap junction protein connexin 43 in alveolar epithelial cells of rats with radiation-induced pulmonary fibrosis. Histochem. Cell Biol. 1996, 106, 419. [Google Scholar] [CrossRef]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Cardwell, E. Acute respiratory distress syndrome. Jama 2012, 307, 2526–2533. [Google Scholar]
- Soon, A.S.C.; Chua, J.W.; Becker, D.L. Connexins in endothelial barrier function–novel therapeutic targets countering vascular hyperpermeability. Thromb. Haemost. 2016, 116, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef]
- Gerber, J.; Heinrich, J.; Brehm, R. Blood-testis barrier and sertoli cell function: Lessions from SCCx43KO mice. Reproduction 2016, 151, 15–27. [Google Scholar] [CrossRef]
- Kojima, T.; Murata, M.; Go, M.; Spray, D.C.; Sawada, N. Connexins induce and maintain tight junctions in epithelial cells. J. Membr. Biol. 2007, 217, 13–19. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Eckle, T.; Mager, A.; Kuper, N.; Karcher, C.; Weissmuller, T.; Boengler, K.; Schulz, R.; Robson, S.C.; Colgan, S.P. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine–dependent endothelial cell function. Circ. Res. 2006, 99, 1100–1108. [Google Scholar] [CrossRef]
- O’Donnell III, J.J.; Birukova, A.A.; Beyer, E.; Birukov, K.G. Gap junction protein connexin43 exacerbates lung vascular permeability. PLoS ONE 2014, 9, 100931. [Google Scholar] [CrossRef]
- Kandasamy, K.; Escue, R.; Manna, J.; Adebiyi, A.; Parthasarathi, K. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE–cadherin expression in endotoxin–challenged lungs. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 309, 584–592. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, Y.; Liu, K.; Hou, L.; Zhang, W. miR–206 regulates alveolar type II epithelial cell Cx43 expression in sepsis–induced acute lung injury. Exp. Ther. Med. 2019, 18, 296–304. [Google Scholar] [CrossRef]
- Sarieddine, M.Z.R.; Scheckenbach, K.E.L.; Foglia, B.; Maass, K.; Garcia, I.; Kwak, B.R.; Chanson, M. Connexin 43 modulates neutrophil recruitment to the lung. J. Cell. Mol. Med. 2009, 13, 4560–4570. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Gerard, J.C.; Fernando, J.M.; Antonio, A.; Peter, J.B.; Bourbeau, J.; Celli, B.R.; Rongchang, C.; Decramer, M.; Fabbri, L.M. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Spannbrucker, T.; Ale-Agha, N.; Goy, C.; Dyballa-Rukes, N.; Jakobs, P.; Jander, K.; Altschmied, J.; Unfried, K.; Haendeler, J. Induction of a senescent like phenotype and loss of gap junctional intercellular communication by carbon nanoparticle exposure of lung epithelial cells. Exp. Gerontol. 2019, 117, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Haussig, S.; Schubert, A.; Mohr, F.-W.; Dhein, S. Sub–chronic nicotine exposure induces intercellular communication failure and differential down–regulation of connexins in cultured human endothelial cells. Atherosclerosis 2008, 196, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Muresan, X.M.; Cervellati, F.; Sticozzi, C.; Belmonte, G.; Chui, C.H.; Lampronti, I.; Borgatti, M.; Gambari, R.; Valacchi, G. The loss of cellular junctions in epithelial lung cells induced by cigarette smoke is attenuated by corilagin. Oxidative Med. Cell. Longev. 2015, 2015, 631758. [Google Scholar] [CrossRef]
- Wong, C.W.; Christen, T.; Roth, I.; Chadjichristos, C.E.; Derouette, J.-P.; Foglia, B.F.; Chanson, M.; Goodenough, D.A.; Kwak, B.R. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat. Med. 2006, 12, 950–954. [Google Scholar] [CrossRef]
- Liao, M.; Chen, L.; Lu, J.; Liang, G.; Yao, Y.; Ouyang, S.; Yang, Y.; Jian, Z.; Guo, S. Connexin 37 Regulates the Kv1. 3 pathway and promotes the development of atherosclerosis. Mediat. Inflamm. 2022, 2022, 2689918. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
- Fahy, J.V.; Dickey, B.F. Airway mucus function and dysfunction. New Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef]
- Yao, Y.; Zeng, Q.-X.; Deng, X.-Q.; Tang, G.-N.; Guo, J.-B.; Sun, Y.-Q.; Ru, K.; Rizzo, A.N.; Shi, J.-B.; Fu, Q.-L. Connexin 43 upregulation in mouse lungs during ovalbumin– induced asthma. PLoS ONE 2015, 10, e0144106. [Google Scholar] [CrossRef]
- Huang, J.Q.; Chen, X.Y.; Huang, F.; Fan, J.M.; Shi, X.W.; Ju, Y.K. Effects of Connexin 43 Inhibition in an Ovalbumin–induced Mouse Model of Asthma. Iran. J. Allergy Asthma Immunol. 2018, 17, 29–38. [Google Scholar]
- Park, S.J.; Lee, K.S.; Kim, S.R.; Min, K.H.; Lee, K.Y.; Choe, Y.H.; Park, S.Y.; Hong, S.H.; Lee, Y.C. Change of connexin 37 in allergen–induced airway inflammation. Exp. Mol. Med. 2007, 39, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T. Epithelium dysfanction in asthma. J. Allergy Asthma Immunol. 2018, 17, 29–38. [Google Scholar]
- Westphalen, K.; Gusarova, G.A.; Islam, M.N.; Subramanian, M.; Cohen, T.S.; Prince, A.S.; Bhattacharya, J. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 2014, 506, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, X.-M.; Yang, P.; Han, L.; Wang, Y.-Z.; Zheng, Z.-H.; Wu, F.; Zhang, W.-J.; Zhang, L. Effect of gap junctions on RAW264. 7 macrophages infected with H37Rv. Medicine 2018, 97, e12125. [Google Scholar] [CrossRef]
- Shen, C.; Chen, J.H.; Lee, Y.; Hassan, M.M.; Kim, S.J.; Choi, E.Y.; Hong, S.T.; Park, B.-H.; Park, J. Mtor–and sgk–mediated connexin 43 expression participates in lipopolysaccharide–stimulated macrophage migration through the inos/src/fak axis. J. Immunol. 2018, 201, 2986–2997. [Google Scholar] [CrossRef]
- Eugenín, E.A.; Brañes, M.C.; Berman, J.W.; Sáez, J.C. TNF–α plus IFN–γ induce connexin 43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J. Immunol. 2003, 170, 1320–1328. [Google Scholar] [CrossRef]
- Graham, S.V.; Jiang, J.X.; Mesnil, M. Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. Int. J. Mol. Sci. 2018, 19, 1645. [Google Scholar] [CrossRef]
- Mizdrak, M.; Ticinovic Kurir, T.; Mizdrak, I.; Kumric, M.; Krnic, M.; Bozic, J. The Role of the Gap Junction Protein Connexin in Adrenal Gland Tumorigenesis. Int. J. Mol. Sci. 2024, 25, 5399. [Google Scholar] [CrossRef]
- Kutova, O.M.; Pospelov, A.D.; Balalaeva, I.V. The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. Biology 2023, 12, 204. [Google Scholar] [CrossRef]
- Aasen, T.; Sansano, I.; Montero, M.Á.; Romagosa, C.; Temprana-Salvador, J.; Martínez-Marti, A.; Moliné, T.; Hernández-Losa, J.; Cajal, S.R. Insight into the role and regulation of gap junction genes in lung cancer and identification of nuclear Cx43 as a putative biomarker of poor prognosis. Cancers 2019, 11, 320. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, C.; Li, L.; Dong, S.; Zhang, N.; Tong, X. Cx43 reverses the resistance of A549 lung adenocarcinoma cells to cisplatin by inhibiting EMT. Oncol. Rep. 2014, 31, 2751–2758. [Google Scholar] [CrossRef] [PubMed]
- Fukumasu, H.; Avanzo, J.L.; Sanches, D.S.; Mennecier, G.; Mori, C.M.C.; Dagli, M.L.Z. Higher susceptibility of spontaneous and NNK-induced lung neoplasms in connexin 43 deficient CD1× AJ F1 mice: Paradoxical expression of connexin 43 during lung carcinogenesis. Mol. Carcinog. 2013, 52, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Q.; Sun, F.-J.; Liu, S.-S.; Yang, J.; Wu, Y.-Q.; Li, G.-S.; Chen, Q.-Y.; Wang, J.-X. Expression of connexin 43 and E–cadherin protein and mRNA in non–small cell lung cancers in Chinese patients. Asian Pac. J. Cancer Prev. 2013, 14, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Piwowarczyk, K.; Kwiecień, E.; Sośniak, J.; Zimoląg, E.; Guzik, E.; Sroka, J.; Madeja, Z.; Czyż, J. Fenofibrate interferes with the diapedesis of lung adenocarcinoma cells through the interference with Cx43/EGF–dependent intercellular signaling. Cancers 2018, 10, 363. [Google Scholar] [CrossRef]
- Good, M.E.; Ek–Vitorín, J.F.; Burt, J.M. Structural determinants and proliferative consequences of connexin 37 hemichannel function in insulinoma cells. J. Biol. Chem. 2014, 289, 30379–30386. [Google Scholar] [CrossRef]
- Weiskirchen, R.; Weiskirchen, S.; Tacke, F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol. Asp. Med. 2019, 65, 2–15. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Li, Y.; Acosta, F.M.; Jiang, J.X. Gap Junctions or Hemichannel-Dependent and Independent Roles of Connexins in Fibrosis, Epithelial–Mesenchymal Transitions, and Wound Healing. Biomolecules 2023, 13, 1796. [Google Scholar] [CrossRef]
- Abraham, V.; Chou, M.L.; George, P.; Pooler, P.; Zaman, A.; Savani, R.C.; Koval, M. Heterocellular gap junctional communication between alveolar epithelial cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2001, 280, 1085–1093. [Google Scholar] [CrossRef]
- Chen, W.; Tong, W.; Guo, Y.; He, B.; Chen, L.; Yang, W.; Wu, C.; Ren, D.; Zheng, P.; Feng, J. Upregulation of Connexin-43 is Critical for Irradiation-induced Neuroinflammation. Neurol. Disord. Drug Targets 2018, 17, 539–546. [Google Scholar] [CrossRef]
- Trovato–Salinaro, E.; Failla, M.; Mastruzzo, C.; Tomaselli, V.; Gili, E.; Crimi, N.; Condorelli, D.F.; Vancheri, C. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respir. Res. 2006, 7, 122. [Google Scholar] [CrossRef] [PubMed]
- McNair, A.J.; Wilson, K.S.; Martin, P.E.; Welsh, D.J.; Dempsie, Y. Connexin 43 plays a role in proliferation and migration of pulmonary arterial fibroblasts in response to hypoxia. Pulm. Circ. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Misharin, A.V.; Morales-Nebreda, L.; Reyfman, P.A.; Cuda, C.M.; Walter, J.M.; McQuattie-Pimentel, A.C.; Chen, C.-I.; Anekalla, K.R.; Joshi, N.; Williams, K.J.N.; et al. Monocyte–derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 2017, 214, 2387–2404. [Google Scholar] [CrossRef] [PubMed]
- Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference–based analysis of lung single–cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [Google Scholar] [CrossRef]
- Idzko, M.; Ferrari, D.; Eltzschig, H.K. Nucleotide signalling during inflammation. Nature 2014, 509, 310–317. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Torre, P.; Yadav, P.; Boostanpour, K.; Chen, T.Y.; Tsukui, T.; Sheppard, D.; Muramatsu, R.; Seed, R.I.; Nishimura, S.L.; et al. Macrophage Cx43 is necessary for fibroblast cytosolic calcium and lung fibrosis after injury. Front. Immunol. 2022, 13, 880887. [Google Scholar] [CrossRef]
- Nakamura, K.; Inai, T.; Nakamura, K.; Shibata, Y. Distribution of gap junction protein connexin 37 in smooth muscle cells of the rat trachea and pulmonary artery. Arch. Histol. Cytol. 1999, 62, 27–37. [Google Scholar] [CrossRef]
- Iyer, S.S.; Pulskens, W.P.; Sadler, J.J.; Butter, L.M.; Teske, G.J.; Ulland, T.K.; Eisenbarth, S.C.; Florquin, S.; Flavell, R.A.; Leemans, J.C.; et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl. Acad. Sci. USA 2009, 106, 20388–20393. [Google Scholar] [CrossRef]
- McDonald, B.; Pittman, K.; Menezes, G.B.; Hirota, S.A.; Slaba, I.; Waterhouse, C.C.M.; Beck, P.L.; Muruve, D.A.; Kubes, P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010, 330, 362–366. [Google Scholar] [CrossRef]
- Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; et al. Nucleotides released by apoptotic cells act as a find–me signal to promote phagocytic clearance. Nature 2009, 461, 282–286. [Google Scholar] [CrossRef]
- Wang, N.; De Bock, M.; Decrock, E.; Bol, M.; Gadicherla, A.; Vinken, M.; Rogiers, V.; Bukauskas, F.F.; Bultynck, G.; Leybaert, L. Paracrine signaling through plasma membrane hemichannels. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 35–50. [Google Scholar] [CrossRef] [PubMed]
- De Bock, M.; Wang, N.; Bol, M.; Decrock, E.; Ponsaerts, R.; Bultynck, G.; Dupont, G.; Leybaert, L. Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+–dependent Ca2+ entry pathway. J. Biol. Chem. 2012, 287, 12250–12266. [Google Scholar] [CrossRef] [PubMed]
- Yeini, E.; Ofek, P.; Pozzi, S.; Albeck, N.; Ben-Shushan, D.; Tiram, G.; Golan, S.; Kleiner, R.; Sheinin, R.; Dangoor, S.I.; et al. P–selectin axis plays a key role in microglia immunophenotype and glioblastoma progression. Nat. Commun. 2021, 12, 1912. [Google Scholar] [CrossRef] [PubMed]
- Derouette, J.P.; Wong, C.; Burnier, L.; Morel, S.; Sutter, E.; Galan, K.; Brisset, A.C.; Roth, I.; Chadjichristos, C.E.; Kwak, B.R. Molecular role of Cx37 in advanced atherosclerosis: A micro–array study. Atherosclerosis 2009, 206, 69–76. [Google Scholar] [CrossRef]
- De Bock, M.; Wang, N.; Decrock, E.; Bultynck, G.; Leybaert, L. Intracellular cleavage of the Cx43 C-terminal domain by matrix-metalloproteases: A novel contributor to inflammation? Mediat. Inflamm. 2015, 2015, 18. [Google Scholar] [CrossRef]
- Ghatnekar, G.S.; Michael, P.; O’Quinn, M.; Jourdan, L.J.; Gurjarpadhye, A.A.; Draughn, R.L.; Gourdie, R.G. Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen. Med. 2009, 4, 205–223. [Google Scholar] [CrossRef]
- Yang, H.T.; Li, L.L.; Li, S.N.; Wu, J.T.; Zhang, G.B.; Ma, J.F.; Fu, H.X.; Cao, S.; Gao, C.Y.; Hu, J. MicroRNA-155 inhibition attenuates myocardial infarction- induced connexin 43 degradation in cardiomyocytes by reducing pro-inflammatory macrophage activation. Cardiovasc. Diagn. Ther. 2022, 12, 325. [Google Scholar] [CrossRef]
- Tittarelli, A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2021, 1867, 166258. [Google Scholar] [CrossRef]
- Boengler, K.; Leybaert, L.; Ruiz-Meana, M.; Schulz, R. Connexin43 in Mitochondria: What Do We Really Know About Its Function? Front. Physiol. 2022, 13, 928934. [Google Scholar] [CrossRef]
- Fernandez-Cobo, M.; Gingalewski, C.; Drujan, D.; Antonio De Maio, A. Downregulation of connexin 43 gene expression in rat heart during inflammation. The role of tumour necrosis factor. Cytokine 1999, 11, 216–224. [Google Scholar] [CrossRef]
- Beccia, E.; Daniello, V.; Laselva, O.; Leccese, G.; Mangiacotti, M.; Di Gioia, S.; La Bella, G.; Guerra, L.; Matteo, M.; Angiolillo, A.; et al. Human amniotic mesenchymal stem cells and fibroblasts accelerate wound repair of cystic fibrosis epithelium. Life 2022, 12, 756. [Google Scholar] [CrossRef] [PubMed]
- Héja, L.; Simon, Á.; Kardos, J. Simulation of gap junction formation reveals critical role of Cys disulfide redox state in connexin hemichannel docking. Cell Commun. Signal. 2024, 22, 185. [Google Scholar] [CrossRef] [PubMed]
- Delvaeye, T.; Vandenabeele, P.; Bultynck, G.; Leybaert, L.; Krysko, D.V. Therapeutic Targeting of Connexin Channels: New Views and Challenges. Trends Mol. Med. 2018, 24, 1036–1053. [Google Scholar] [CrossRef] [PubMed]
- Jara, O.; Maripillán, J.; Momboisse, F.; Cárdenas, A.M.; García, I.E.; Martínez, A.D. Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26. Int. J. Mol. Sci. 2024, 25, 7246. [Google Scholar] [CrossRef]
- Bejarano, E.; Yuste, A.; Patel, B.; Stout, R.F.; Spray, D.C.; Cuervo, A.M. Connexins modulate autophagosome biogenesis. Nat. Cell Biol. 2014, 16, 401–414. [Google Scholar] [CrossRef]
- Zeng, J.; Li, X.; Zhang, Y.; Zhang, B.; Wang, H.; Bao, S.; Zu, L.; Zhang, H.; Cheng, Y.; Tang, Q.; et al. GJB3: A comprehensive biomarker in pan-cancer prognosis and immunotherapy prediction. Aging 2024, 16, 7647–7667. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubareva, T.; Mironova, E.; Panfilova, A.; Krylova, Y.; Mazzoccoli, G.; Marasco, M.G.P.; Kvetnoy, I.; Yablonsky, P. Connexins and Aging-Associated Respiratory Disorders: The Role in Intercellular Communications. Biomedicines 2024, 12, 2599. https://doi.org/10.3390/biomedicines12112599
Zubareva T, Mironova E, Panfilova A, Krylova Y, Mazzoccoli G, Marasco MGP, Kvetnoy I, Yablonsky P. Connexins and Aging-Associated Respiratory Disorders: The Role in Intercellular Communications. Biomedicines. 2024; 12(11):2599. https://doi.org/10.3390/biomedicines12112599
Chicago/Turabian StyleZubareva, Tatiana, Ekaterina Mironova, Anna Panfilova, Yulia Krylova, Gianluigi Mazzoccoli, Maria Greta Pia Marasco, Igor Kvetnoy, and Peter Yablonsky. 2024. "Connexins and Aging-Associated Respiratory Disorders: The Role in Intercellular Communications" Biomedicines 12, no. 11: 2599. https://doi.org/10.3390/biomedicines12112599
APA StyleZubareva, T., Mironova, E., Panfilova, A., Krylova, Y., Mazzoccoli, G., Marasco, M. G. P., Kvetnoy, I., & Yablonsky, P. (2024). Connexins and Aging-Associated Respiratory Disorders: The Role in Intercellular Communications. Biomedicines, 12(11), 2599. https://doi.org/10.3390/biomedicines12112599