C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Selection of SNPs
2.3. Genetic Analysis
2.4. Statistical and Bioinformatic Analysis
- The GTExportal was used for analysis of cis-eQTL (expression quantitative trait loci)-effects of C11orf58 SNPs and for the assessments of expression levels of the studied gene in the vessels, brain, and whole blood [61].
- Extras examination of C11orf58 SNPs eQTLs in peripheral blood, the eQTLGen resource was employed [62].
- We used QTLbase to look at the mQTLs (methylation quantitative trait loci) [63].
- To evaluate the relationships between C11orf58 SNPs and particular histone modifications indicative of promoters and enhancers and positioning of SNPs in DNase hypersensitive regions, HaploReg (v4.2) was used [64]. These modifications included the lysine residues at locations 27 and 9 of the histone H3 protein being acetylated (H3K27ac and H3K9ac), as well as the mono-methylation and tri-methylation of the 4th lysine residue of the histone H3 protein (H3K4me1 and H3K4me3, respectively).
- The effect of C11orf58 SNPs on the gene’s affinity for transcription factors (TFs) based on the carriage of reference and alternative alleles was assessed using the atSNP Function Prediction tool [65].
- In order to analyze the combined participation of TFs connected to reference/SNP alleles in over-represented biological processes directly associated to the molecular mechanisms of IS, Gene Ontology was recruited [66].
- Bioinformatic analyses of the associations of C11orf58 SNPs with cerebrovascular diseases and risk factors for IS (such as total cholesterol, LDL, BMI, etc.) were conducted using the tools available on the Cerebrovascular Disease Knowledge Portal (CDKP) and Cardiovascular Disease Knowledge Portal (CVDKP), which aggregate and evaluate the findings of genetic associations of the largest consortiums for the study of cardio- and cerebrovascular diseases [67].
3. Results
3.1. C11orf58 SNPs and the Ischemic Stroke Risk: An Analysis of Associations
3.2. Functional Annotation of IS-Associated C11orf58 SNPs
3.2.1. Quantitative Trait Loci (QTL) Analysis
3.2.2. Histone Modifications
3.2.3. Analysis of Transcription Factors
3.2.4. Bioinformatic Analysis of the Associations of C11orf58 SNPs with IS-Related Phenotypes
3.3. Gene-Gene and Gene-Environmental Interactions of C11orf58 and Other Genes, Encoding Hero Proteins
3.3.1. Intergenic Interactions
3.3.2. Gene-Environment Interactions
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorelick, P.B.; Wong, K.S.; Bae, H.-J.; Pandey, D.K. Large Artery Intracranial Occlusive Disease: A Large Worldwide Burden but a Relatively Neglected Frontier. Stroke 2008, 39, 2396–2399. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Puleo, M.G.; Velardo, M.C.; Corpora, F.; Daidone, M.; Pinto, A. Molecular Biology of Atherosclerotic Ischemic Strokes. Int. J. Mol. Sci. 2020, 21, 9372. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.P.; Mackman, N. Tissue Factor in Atherosclerosis and Atherothrombosis. Atherosclerosis 2020, 307, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 925923. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef]
- Kang, H.; Li, X.; Xiong, K.; Song, Z.; Tian, J.; Wen, Y.; Sun, A.; Deng, X. The Entry and Egress of Monocytes in Atherosclerosis: A Biochemical and Biomechanical Driven Process. Cardiovasc. Ther. 2021, 2021, 6642927. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Nikiforov, N.G.; Starodubova, A.V.; Popkova, T.V.; Orekhov, A.N. Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines 2021, 9, 1221. [Google Scholar] [CrossRef]
- Asada, Y.; Yamashita, A.; Sato, Y.; Hatakeyama, K. Pathophysiology of Atherothrombosis: Mechanisms of Thrombus Formation on Disrupted Atherosclerotic Plaques. Pathol. Int. 2020, 70, 309–322. [Google Scholar] [CrossRef]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of Plaque Formation and Rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Bui, Q.T.; Prempeh, M.; Wilensky, R.L. Atherosclerotic Plaque Development. Int. J. Biochem. Cell Biol. 2009, 41, 2109–2113. [Google Scholar] [CrossRef]
- Li, H.; Cao, Z.; Wang, L.; Liu, C.; Lin, H.; Tang, Y.; Yao, P. Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation. Front. Immunol. 2022, 13, 843712. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation in Atherosclerosis-No Longer a Theory. Clin. Chem. 2021, 67, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Chegodaev, Y.S.; Wu, W.-K.; Orekhov, A.N. Oxidative Stress and Antioxidants in Atherosclerosis Development and Treatment. Biology 2020, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, P.; Yang, Y.; Li, J.; Jiao, X.; Yu, H.; Wei, Y.; Li, J.; Qin, Y. Chronic Intermittent Hypoxia Participates in the Pathogenesis of Atherosclerosis and Perturbs the Formation of Intestinal Microbiota. Front. Cell Infect. Microbiol. 2021, 11, 560201. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Cui, Z.-Y.; Huang, X.-F.; Zhang, D.-D.; Guo, R.-J.; Han, M. Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Sig Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef]
- Thomas, C.; Leleu, D.; Masson, D. Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis. Front. Immunol. 2022, 13, 868958. [Google Scholar] [CrossRef]
- Kawai, K.; Kawakami, R.; Finn, A.V.; Virmani, R. Differences in Stable and Unstable Atherosclerotic Plaque. Arter. Thromb. Vasc. Biol. 2024, 44, 1474–1484. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, B.; Liu, W.; Xu, Q.; Hou, L.; Song, J.; Guo, Q.; Li, N. Dysfunction of Chaperone-Mediated Autophagy in Human Diseases. Mol. Cell Biochem. 2021, 476, 1439–1454. [Google Scholar] [CrossRef]
- Madrigal-Matute, J.; de Bruijn, J.; van Kuijk, K.; Riascos-Bernal, D.F.; Diaz, A.; Tasset, I.; Martín-Segura, A.; Gijbels, M.J.J.; Sander, B.; Kaushik, S.; et al. Protective Role of Chaperone-Mediated Autophagy against Atherosclerosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2121133119. [Google Scholar] [CrossRef]
- Qiao, L.; Ma, J.; Zhang, Z.; Sui, W.; Zhai, C.; Xu, D.; Wang, Z.; Lu, H.; Zhang, M.; Zhang, C.; et al. Deficient Chaperone-Mediated Autophagy Promotes Inflammation and Atherosclerosis. Circ. Res. 2021, 129, 1141–1157. [Google Scholar] [CrossRef]
- Yao, R.; Shen, J. Chaperone-Mediated Autophagy: Molecular Mechanisms, Biological Functions, and Diseases. MedComm (2020) 2023, 4, e347. [Google Scholar] [CrossRef] [PubMed]
- Dohi, E.; Tanaka, S.; Seki, T.; Miyagi, T.; Hide, I.; Takahashi, T.; Matsumoto, M.; Sakai, N. Hypoxic Stress Activates Chaperone-Mediated Autophagy and Modulates Neuronal Cell Survival. Neurochem. Int. 2012, 60, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Cuervo, A.M. Autophagy as a Cell-Repair Mechanism: Activation of Chaperone-Mediated Autophagy during Oxidative Stress. Mol. Asp. Med. 2006, 27, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, U.; Sridhar, S.; Kaushik, S.; Kiffin, R.; Cuervo, A.M. Identification of Regulators of Chaperone-Mediated Autophagy. Mol. Cell 2010, 39, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, A.M.; Wong, E. Chaperone-Mediated Autophagy: Roles in Disease and Aging. Cell Res. 2014, 24, 92–104. [Google Scholar] [CrossRef]
- Majeski, A.E.; Fred Dice, J. Mechanisms of Chaperone-Mediated Autophagy. Int. J. Biochem. Cell Biol. 2004, 36, 2435–2444. [Google Scholar] [CrossRef]
- Kaushik, S.; Cuervo, A.M. The Coming of Age of Chaperone-Mediated Autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef]
- Cuervo, A.M.; Dice, J.F. A Receptor for the Selective Uptake and Degradation of Proteins by Lysosomes. Science 1996, 273, 501–503. [Google Scholar] [CrossRef]
- Gao, L.; She, H.; Li, W.; Zeng, J.; Zhu, J.; Jones, D.P.; Mao, Z.; Gao, G.; Yang, Q. Oxidation of Survival Factor MEF2D in Neuronal Death and Parkinson’s Disease. Antioxid. Redox Signal 2014, 20, 2936–2948. [Google Scholar] [CrossRef]
- Lv, L.; Li, D.; Zhao, D.; Lin, R.; Chu, Y.; Zhang, H.; Zha, Z.; Liu, Y.; Li, Z.; Xu, Y.; et al. Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth. Mol. Cell 2011, 42, 719–730. [Google Scholar] [CrossRef]
- Park, C.; Suh, Y.; Cuervo, A.M. Regulated Degradation of Chk1 by Chaperone-Mediated Autophagy in Response to DNA Damage. Nat. Commun. 2015, 6, 6823. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.L.; Suh, Y.; Cuervo, A.M. Deficient Chaperone-Mediated Autophagy in Liver Leads to Metabolic Dysregulation. Cell Metab. 2014, 20, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Valdor, R.; Mocholi, E.; Botbol, Y.; Guerrero-Ros, I.; Chandra, D.; Koga, H.; Gravekamp, C.; Cuervo, A.M.; Macian, F. Chaperone-Mediated Autophagy Regulates T Cell Responses through Targeted Degradation of Negative Regulators of T Cell Activation. Nat. Immunol. 2014, 15, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Matute, J.; Cuervo, A.M.; Sluimer, J.C. Chaperone-Mediated Autophagy Protects against Atherosclerosis. Autophagy 2022, 18, 2505–2507. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K.; Chen, Y.-X.; Siebert, T.; O’Brien, E.R. Heat Shock Protein 27: Clue to Understanding Estrogen-Mediated Atheroprotection? Trends Cardiovasc. Med. 2010, 20, 53–57. [Google Scholar] [CrossRef]
- Kostenko, S.; Moens, U. Heat Shock Protein 27 Phosphorylation: Kinases, Phosphatases, Functions and Pathology. Cell. Mol. Life Sci. 2009, 66, 3289–3307. [Google Scholar] [CrossRef]
- Wendling, U.; Paul, L.; van der Zee, R.; Prakken, B.; Singh, M.; van Eden, W. A Conserved Mycobacterial Heat Shock Protein (Hsp) 70 Sequence Prevents Adjuvant Arthritis upon Nasal Administration and Induces IL-10-Producing T Cells That Cross-React with the Mammalian Self-Hsp70 Homologue1. J. Immunol. 2000, 164, 2711–2717. [Google Scholar] [CrossRef]
- Lee, K.-J.; Ha, E.-S.; Kim, M.-K.; Lee, S.-H.; Suh, J.S.; Lee, S.-H.; Park, K.H.; Park, J.H.; Kim, D.J.; Kang, D.; et al. CD36 Signaling Inhibits the Translation of Heat Shock Protein 70 Induced by Oxidized Low Density Lipoprotein through Activation of Peroxisome Proliferators-Activated Receptor γ. Exp. Mol. Med. 2008, 40, 658–668. [Google Scholar] [CrossRef]
- Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular Chaperones and Proteostasis Regulation during Redox Imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef]
- Bagyura, Z.; Takács, A.; Kiss, L.; Dósa, E.; Vadas, R.; Nguyen, T.D.; Dinya, E.; Soós, P.; Szelid, Z.; Láng, O.; et al. Level of Advanced Oxidation Protein Products Is Associated with Subclinical Atherosclerosis. BMC Cardiovasc. Disord. 2022, 22, 5. [Google Scholar] [CrossRef]
- Xu, Q.; Metzler, B.; Jahangiri, M.; Mandal, K. Molecular Chaperones and Heat Shock Proteins in Atherosclerosis. Am. J. Physiol.-Heart Circ. Physiol. 2012, 302, H506–H514. [Google Scholar] [CrossRef] [PubMed]
- Tsuboyama, K.; Osaki, T.; Matsuura-Suzuki, E.; Kozuka-Hata, H.; Okada, Y.; Oyama, M.; Ikeuchi, Y.; Iwasaki, S.; Tomari, Y. A Widespread Family of Heat-Resistant Obscure (Hero) Proteins Protect against Protein Instability and Aggregation. PLoS Biol. 2020, 18, e3000632. [Google Scholar] [CrossRef] [PubMed]
- Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. Recent Advances in Understanding Catalysis of Protein Folding by Molecular Chaperones. FEBS Lett. 2020, 594, 2770–2781. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.Y.W.; Tsuboyama, K.; Tadakuma, H.; Tomari, Y. DNAJA2 and Hero11 Mediate Similar Conformational Extension and Aggregation Suppression of TDP-43. RNA 2024, 30, 1422–1436. [Google Scholar] [CrossRef] [PubMed]
- Kobzeva, K.A.; Shilenok, I.V.; Belykh, A.E.; Gurtovoy, D.E.; Bobyleva, L.A.; Krapiva, A.B.; Stetskaya, T.A.; Bykanova, M.A.; Mezhenskaya, A.A.; Lysikova, E.A.; et al. C9orf16 (BBLN) Gene, Encoding a Member of Hero Proteins, Is a Novel Marker in Ischemic Stroke Risk. Res. Results Biomed. 2022, 8, 278–292. [Google Scholar] [CrossRef]
- Shilenok, I.; Kobzeva, K.; Stetskaya, T.; Freidin, M.; Soldatova, M.; Deykin, A.; Soldatov, V.; Churnosov, M.; Polonikov, A.; Bushueva, O. SERPINE1 mRNA Binding Protein 1 Is Associated with Ischemic Stroke Risk: A Comprehensive Molecular–Genetic and Bioinformatics Analysis of SERBP1 SNPs. Int. J. Mol. Sci. 2023, 24, 8716. [Google Scholar] [CrossRef]
- Belykh, A.E.; Soldatov, V.O.; Stetskaya, T.A.; Kobzeva, K.A.; Soldatova, M.O.; Polonikov, A.V.; Deykin, A.V.; Churnosov, M.I.; Freidin, M.B.; Bushueva, O.Y. Polymorphism of SERF2, the Gene Encoding a Heat-Resistant Obscure (Hero) Protein with Chaperone Activity, Is a Novel Link in Ischemic Stroke. IBRO Neurosci. Rep. 2023, 14, 453–461. [Google Scholar] [CrossRef]
- Shilenok, I.; Kobzeva, K.; Deykin, A.; Pokrovsky, V.; Patrakhanov, E.; Bushueva, O. Obesity and Environmental Risk Factors Significantly Modify the Association between Ischemic Stroke and the Hero Chaperone C19orf53. Life 2024, 14, 1158. [Google Scholar] [CrossRef]
- Bushueva, O.Y.; Stetskaya, T.A.; Polonikov, A.V.; Ivanov, V.P. The relationship between polymorphism 640A>G of the CYBA gene with the risk of ischemic stroke in the population of the Central Russia. Zh Nevrol. Psikhiatr Im. S S Korsakova 2015, 115, 38–41. [Google Scholar] [CrossRef]
- Vialykh, E.K.; Solidolova, M.A.; Bushueva, O.I.; Bulgakova, I.V.; Polonikov, A.V. Catalase gene polymorphism is associated with increased risk of cerebral stroke in hypertensive patients. Zh Nevrol. Psikhiatr Im. S S Korsakova 2012, 112, 3–7. [Google Scholar]
- Polonikov, A.; Vialykh, E.; Vasil’eva, O.; Bulgakova, I.; Bushueva, O.; Illig, T.; Solodilova, M. Genetic Variation in Glutathione S-Transferase Genes and Risk of Nonfatal Cerebral Stroke in Patients Suffering from Essential Hypertension. J. Mol. Neurosci. 2012, 47, 511–513. [Google Scholar] [CrossRef]
- Bushueva, O.Y. Single Nucleotide Polymorphisms in Genes Encoding Xenobiotic Metabolizing Enzymes Are Associated with Predisposition to Arterial Hypertension. Res. Results Biomed. 2020, 6, 447–456. [Google Scholar] [CrossRef]
- Polonikov, A.V.; Samgina, T.A.; Nazarenko, P.M.; Bushueva, O.Y.; Ivanov, V.P. Alcohol Consumption and Cigarette Smoking Are Important Modifiers of the Association Between Acute Pancreatitis and the PRSS1-PRSS2 Locus in Men. Pancreas 2017, 46, 230–236. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916, ISBN 92-4-120916-X. [Google Scholar]
- Koressaar, T.; Remm, M. Enhancements and Modifications of Primer Design Program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Stetskaya, T.A.; Kobzeva, K.A.; Zaytsev, S.M.; Shilenok, I.V.; Komkova, G.V.; Goryainova, N.V.; Bushueva, O.Y. HSPD1 Gene Polymorphism Is Associated with an Increased Risk of Ischemic Stroke in Smokers. Res. Results Biomed. 2024, 10, 175–186. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A Web Tool for the Analysis of Association Studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Ivanova, T.A. Sex-Specific Features of Interlocus Interactions Determining Susceptibility to Hypertension. Res. Results Biomed. 2024, 10, 53–68. [Google Scholar] [CrossRef]
- Loktionov, A.V.; Kobzeva, K.A.; Karpenko, A.R.; Sergeeva, V.A.; Orlov, Y.L.; Bushueva, O.Y. GWAS-Significant Loci and Severe COVID-19: Analysis of Associations, Link with Thromboinflammation Syndrome, Gene-Gene, and Gene-Environmental Interactions. Front. Genet. 2024, 15, 1434681. [Google Scholar] [CrossRef]
- Kobzeva, K.A.; Soldatova, M.O.; Stetskaya, T.A.; Soldatov, V.O.; Deykin, A.V.; Freidin, M.B.; Bykanova, M.A.; Churnosov, M.I.; Polonikov, A.V.; Bushueva, O.Y. Association between HSPA8 Gene Variants and Ischemic Stroke: A Pilot Study Providing Additional Evidence for the Role of Heat Shock Proteins in Disease Pathogenesis. Genes 2023, 14, 1171. [Google Scholar] [CrossRef]
- Aguet, F.; Barbeira, A.N.; Bonazzola, R.; Jo, B.; Kasela, S.; Liang, Y.; Parsana, P.; Aguet, F.; Battle, A.; Brown, A.; et al. THE GTEX CONSORTIUM The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Võsa, U.; Claringbould, A.; Westra, H.-J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Kasela, S. Unraveling the Polygenic Architecture of Complex Traits Using Blood eQTL Metaanalysis. bioRxiv 2018, 447367. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, D.; Wang, J.; Zhao, K.; Zhou, Y.; Guo, Z.; Zhai, S.; Xu, H.; Cui, H.; Yao, H.; et al. QTLbase: An Integrative Resource for Quantitative Trait Loci across Multiple Human Molecular Phenotypes. Nucleic Acids Res. 2020, 48, D983–D991. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.D.; Kellis, M. HaploReg: A Resource for Exploring Chromatin States, Conservation, and Regulatory Motif Alterations within Sets of Genetically Linked Variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Hudson, R.; Harrison, C.; Craven, M.; Keleş, S. atSNP Search: A Web Resource for Statistically Evaluating Influence of Human Genetic Variation on Transcription Factor Binding. Bioinformatics 2019, 35, 2657–2659. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.O. The Gene Ontology Resource: 20 Years and Still GOing Strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef]
- Crawford, K.M.; Gallego-Fabrega, C.; Kourkoulis, C.; Miyares, L.; Marini, S.; Flannick, J.; Burtt, N.P.; von Grotthuss, M.; Alexander, B.; Costanzo, M.C.; et al. Cerebrovascular Disease Knowledge Portal. Stroke 2018, 49, 470–475. [Google Scholar] [CrossRef]
- Devereaux, K.; Dall’Armi, C.; Alcazar-Roman, A.; Ogasawara, Y.; Zhou, X.; Wang, F.; Yamamoto, A.; De Camilli, P.; Di Paolo, G. Regulation of Mammalian Autophagy by Class II and III PI 3-Kinases through PI3P Synthesis. PLoS ONE 2013, 8, e76405. [Google Scholar] [CrossRef]
- Falasca, M.; Maffucci, T. Regulation and Cellular Functions of Class II Phosphoinositide 3-Kinases. Biochem. J. 2012, 443, 587–601. [Google Scholar] [CrossRef]
- Krag, C.; Malmberg, E.K.; Salcini, A.E. PI3KC2α, a Class II PI3K, Is Required for Dynamin-Independent Internalization Pathways. J. Cell Sci. 2010, 123, 4240–4250. [Google Scholar] [CrossRef]
- Leibiger, B.; Moede, T.; Uhles, S.; Barker, C.J.; Creveaux, M.; Domin, J.; Berggren, P.-O.; Leibiger, I.B. Insulin-Feedback via PI3K-C2alpha Activated PKBalpha/Akt1 Is Required for Glucose-Stimulated Insulin Secretion. FASEB J. 2010, 24, 1824–1837. [Google Scholar] [CrossRef]
- Yoshioka, K.; Yoshida, K.; Cui, H.; Wakayama, T.; Takuwa, N.; Okamoto, Y.; Du, W.; Qi, X.; Asanuma, K.; Sugihara, K.; et al. Endothelial PI3K-C2α, a Class II PI3K, Has an Essential Role in Angiogenesis and Vascular Barrier Function. Nat. Med. 2012, 18, 1560–1569. [Google Scholar] [CrossRef]
- Winneberger, J.; Schöls, S.; Lessmann, K.; Rández-Garbayo, J.; Bauer, A.T.; Mohamud Yusuf, A.; Hermann, D.M.; Gunzer, M.; Schneider, S.W.; Fiehler, J.; et al. Platelet Endothelial Cell Adhesion Molecule-1 Is a Gatekeeper of Neutrophil Transendothelial Migration in Ischemic Stroke. Brain Behav. Immun. 2021, 93, 277–287. [Google Scholar] [CrossRef]
- Xu, N.; Jiang, X.; Zhang, W.; Shi, Y.; Leak, R.K.; Keep, R.F.; Ye, Q.; Yang, T.; Li, S.; Hu, X.; et al. Endothelial Peroxiredoxin-4 Is Indispensable for Blood–Brain Barrier Integrity and Long-Term Functional Recovery after Ischemic Stroke. Proc. Natl. Acad. Sci. USA 2024, 121, e2400272121. [Google Scholar] [CrossRef]
- Tan, B.; Liu, M.; Yang, Y.; Liu, L.; Meng, F. Low Expression of PIK3C2A Gene: A Potential Biomarker to Predict the Risk of Acute Myocardial Infarction. Medicine 2019, 98, e15061. [Google Scholar] [CrossRef]
- Ersahin, T.; Tuncbag, N.; Cetin-Atalay, R. The PI3K/AKT/mTOR Interactive Pathway. Mol. Biosyst. 2015, 11, 1946–1954. [Google Scholar] [CrossRef]
- Sakai, S.; Shichita, T. Inflammation and Neural Repair after Ischemic Brain Injury. Neurochem. Int. 2019, 130, 104316. [Google Scholar] [CrossRef]
- Simats, A.; Liesz, A. Systemic Inflammation after Stroke: Implications for Post-Stroke Comorbidities. EMBO Mol. Med. 2022, 14, e16269. [Google Scholar] [CrossRef]
- Koutsaliaris, I.K.; Moschonas, I.C.; Pechlivani, L.M.; Tsouka, A.N.; Tselepis, A.D. Inflammation, Oxidative Stress, Vascular Aging and Atherosclerotic Ischemic Stroke. Curr. Med. Chem. 2022, 29, 5496–5509. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Kashirskikh, D.A.; Sukhorukov, V.N.; Kalmykov, V.; Omelchenko, A.V.; Orekhov, A.N. Cholesterol Transport Dysfunction and Its Involvement in Atherogenesis. Int. J. Mol. Sci. 2022, 23, 1332. [Google Scholar] [CrossRef]
- Yu, X.-H.; Zhang, D.-W.; Zheng, X.-L.; Tang, C.-K. Cholesterol Transport System: An Integrated Cholesterol Transport Model Involved in Atherosclerosis. Prog. Lipid Res. 2019, 73, 65–91. [Google Scholar] [CrossRef]
- Bushueva, O.Y.; Bulgakova, I.V.; Ivanov, V.P.; Polonikov, A.V. Association of Flavin Monooxygenase Gene E158K Polymorphism with Chronic Heart Disease Risk. Bull. Exp. Biol. Med. 2015, 159, 776–778. [Google Scholar] [CrossRef]
- Sorokin, A.; Kotani, K.; Bushueva, O.; Taniguchi, N.; Lazarenko, V. The Cardio-Ankle Vascular Index and Ankle-Brachial Index in Young Russians. J. Atheroscler. Thromb. 2015, 22, 211–218. [Google Scholar] [CrossRef]
- Bushueva, O.; Solodilova, M.; Ivanov, V.; Polonikov, A. Gender-Specific Protective Effect of the −463G>A Polymorphism of Myeloperoxidase Gene against the Risk of Essential Hypertension in Russians. J. Am. Soc. Hypertens. 2015, 9, 902–906. [Google Scholar] [CrossRef]
- Bushueva, O.; Barysheva, E.; Markov, A.; Belykh, A.; Koroleva, I.; Churkin, E.; Polonikov, A.; Ivanov, V.; Nazarenko, M. DNA Hypomethylation of the MPO Gene in Peripheral Blood Leukocytes Is Associated with Cerebral Stroke in the Acute Phase. J. Mol. Neurosci. 2021, 71, 1914–1932. [Google Scholar] [CrossRef]
- Polonikov, A.; Bocharova, I.; Azarova, I.; Klyosova, E.; Bykanova, M.; Bushueva, O.; Polonikova, A.; Churnosov, M.; Solodilova, M. The Impact of Genetic Polymorphisms in Glutamate-Cysteine Ligase, a Key Enzyme of Glutathione Biosynthesis, on Ischemic Stroke Risk and Brain Infarct Size. Life 2022, 12, 602. [Google Scholar] [CrossRef]
- Hossain, M.I.; Roulston, C.L.; Stapleton, D.I. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia. PLoS ONE 2014, 9, e97570. [Google Scholar] [CrossRef]
- Soldatova, V.A.; Demidenko, A.N.; Soldatov, V.; Deykin, A.; Bushueva, O.; Puchenkova, O.A. Hypoxia-Inducible Factor: Basic Biology and Involvement in Cardiovascular Pathology. Asian J. Pharm. 2018, 12, S1173–S1178. [Google Scholar]
- Kabir, F.; Atkinson, R.; Cook, A.L.; Phipps, A.J.; King, A.E. The Role of Altered Protein Acetylation in Neurodegenerative Disease. Front. Aging Neurosci. 2023, 14, 1025473. [Google Scholar] [CrossRef]
- Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The World of Protein Acetylation. Biochim. et Biophys. Acta (BBA)—Proteins Proteom. 2016, 1864, 1372–1401. [Google Scholar] [CrossRef]
- Venediktov, A.A.; Bushueva, O.Y.; Kudryavtseva, V.A.; Kuzmin, E.A.; Moiseeva, A.V.; Baldycheva, A.; Meglinski, I.; Piavchenko, G.A. Closest Horizons of Hsp70 Engagement to Manage Neurodegeneration. Front. Mol. Neurosci. 2023, 16, 1230436. [Google Scholar] [CrossRef]
- Arumugam, T.V.; Baik, S.-H.; Balaganapathy, P.; Sobey, C.G.; Mattson, M.P.; Jo, D.-G. Notch Signaling and Neuronal Death in Stroke. Prog. Neurobiol. 2018, 165–167, 103–116. [Google Scholar] [CrossRef]
- Lampada, A.; Taylor, V. Notch Signaling as a Master Regulator of Adult Neurogenesis. Front. Neurosci. 2023, 17, 1179011. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.; Choi, Y.K. The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System. Biomol. Ther. 2020, 28, 45. [Google Scholar] [CrossRef]
- Santopolo, G.; Magnusson, J.P.; Lindvall, O.; Kokaia, Z.; Frisén, J. Blocking Notch-Signaling Increases Neurogenesis in the Striatum after Stroke. Cells 2020, 9, 1732. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chen, S.-J.; Su, C.-C.; Yen, C.-C.; Tseng, T.-J.; Jinn, T.-R.; Tang, F.-C.; Chen, K.-L.; Su, Y.-C.; Lee, K.-I.; et al. Chloroacetic Acid Induced Neuronal Cells Death through Oxidative Stress-Mediated P38-MAPK Activation Pathway Regulated Mitochondria-Dependent Apoptotic Signals. Toxicology 2013, 303, 72–82. [Google Scholar] [CrossRef]
- Wang, Q.-Y.; Liu, F.; Wu, F.-J.; Li, J.-L. Effects of ginsenoside Rg1 on the expressions of p-eRK1/2 and p-JNK in local cerebral ischemia/reperfusion injury rats. Zhongguo Zhong Xi Yi Jie He Za Zhi 2013, 33, 229–234. [Google Scholar]
- Lu, T.-H.; Tseng, T.-J.; Su, C.-C.; Tang, F.-C.; Yen, C.-C.; Liu, Y.-Y.; Yang, C.-Y.; Wu, C.-C.; Chen, K.-L.; Hung, D.-Z.; et al. Arsenic Induces Reactive Oxygen Species-Caused Neuronal Cell Apoptosis through JNK/ERK-Mediated Mitochondria-Dependent and GRP 78/CHOP-Regulated Pathways. Toxicol. Lett. 2014, 224, 130–140. [Google Scholar] [CrossRef]
- Pietri, M.; Caprini, A.; Mouillet-Richard, S.; Pradines, E.; Ermonval, M.; Grassi, J.; Kellermann, O.; Schneider, B. Overstimulation of PrPC Signaling Pathways by Prion Peptide 106-126 Causes Oxidative Injury of Bioaminergic Neuronal Cells. J. Biol. Chem. 2006, 281, 28470–28479. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Nan, G. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke. J. Mol. Neurosci. 2016, 59, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Lebesgue, D.; Chevaleyre, V.; Zukin, R.S.; Etgen, A.M. Estradiol Rescues Neurons from Global Ischemia-Induced Cell Death: Multiple Cellular Pathways of Neuroprotection. Steroids 2009, 74, 555–561. [Google Scholar] [CrossRef]
- Ueno, T.; Sawa, Y.; Kitagawa-Sakakida, S.; Nishimura, M.; Morishita, R.; Kaneda, Y.; Kohmura, E.; Yoshimine, T.; Matsuda, H. Nuclear Factor-κB Decoy Attenuates Neuronal Damage after Global Brain Ischemia: A Future Strategy for Brain Protection during Circulatory Arrest. J. Thorac. Cardiovasc. Surg. 2001, 122, 720–727. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Huang, Z.H.; Zhu, Y.; Liang, Z.-Q.; Han, R.; Wang, X.-X.; Chase, T.N.; Qin, Z.-H. Neuroprotective Effects of Prostaglandin A1 in Animal Models of Focal Ischemia. Brain Res. 2005, 1039, 203–206. [Google Scholar] [CrossRef]
- Ridder, D.A.; Schwaninger, M. NF-κB Signaling in Cerebral Ischemia. Neuroscience 2009, 158, 995–1006. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, C.; Wang, X.; Hu, H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front. Pharmacol. 2021, 12, 600618. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front. Immunol. 2021, 12, 666693. [Google Scholar] [CrossRef]
- Blaschke, F.; Takata, Y.; Caglayan, E.; Law, R.E.; Hsueh, W.A. Obesity, Peroxisome Proliferator-Activated Receptor, and Atherosclerosis in Type 2 Diabetes. Arter. Thromb. Vasc. Biol. 2006, 26, 28–40. [Google Scholar] [CrossRef]
- Berger, J.P.; Akiyama, T.E.; Meinke, P.T. PPARs: Therapeutic Targets for Metabolic Disease. Trends Pharmacol. Sci. 2005, 26, 244–251. [Google Scholar] [CrossRef]
- Vergès, B. Clinical Interest of PPARs Ligands. Diabetes Metab. 2004, 30, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Culman, J.; Zhao, Y.; Gohlke, P.; Herdegen, T. PPAR-γ: Therapeutic Target for Ischemic Stroke. Trends Pharmacol. Sci. 2007, 28, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Sarahian, N.; Mohammadi, M.T.; Darabi, S.; Salem, F. The Effects of the Peroxisome-Proliferator Activated Receptor-Alpha Agonist, Fenofibrate, on the Antioxidant Capacity of the Brain in Pentylenetetrazol Kindling Seizures in Mice. React. Oxyg. Species 2019, 7, 47–54. [Google Scholar] [CrossRef]
- Vural, K.; Seyrek, O. The Neuroprotective Effect of Pioglitazone on NB2a Mouse Neuroblastoma Cell Culture. Kafkas Üniversitesi Vet. Fakültesi Derg. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, X.; Deng, X.; Chen, H.; Xu, J.; Zhang, Z.; Liu, G.; Yong, Z.; Yuan, C.; Sun, X. Pioglitazone Ameliorates Neuronal Damage after Traumatic Brain Injury via the PPARγ/NF-κB/IL-6 Signaling Pathway. Genes Dis. 2020, 7, 253–265. [Google Scholar] [CrossRef]
- Belov Kirdajova, D.; Kriska, J.; Tureckova, J.; Anderova, M. Ischemia-Triggered Glutamate Excitotoxicity from the Perspective of Glial Cells. Front. Cell. Neurosci. 2020, 14, 51. [Google Scholar] [CrossRef]
- Canellada, A.; Cano, E.; Sánchez-Ruiloba, L.; Zafra, F.; Redondo, J.M. Calcium-Dependent Expression of TNF-α in Neural Cells Is Mediated by the Calcineurin/NFAT Pathway. Mol. Cell. Neurosci. 2006, 31, 692–701. [Google Scholar] [CrossRef]
- Furman, J.L.; Norris, C.M. Calcineurin and Glial Signaling: Neuroinflammation and Beyond. J. Neuroinflamm. 2014, 11, 158. [Google Scholar] [CrossRef]
- Furman, J.L.; Sompol, P.; Kraner, S.D.; Pleiss, M.M.; Putman, E.J.; Dunkerson, J.; Abdul, H.M.; Roberts, K.N.; Scheff, S.W.; Norris, C.M. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J. Neurosci. 2016, 36, 1502–1515. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Zhang, G. Signal Transducer and Activator of Transcription-3 Activation Is Mediated by N-Methyl-D-Aspartate Receptor and L-Type Voltage-Gated Ca2+ Channel during Cerebral Ischemia in Rat Hippocampus. Neurosci. Lett. 2003, 345, 61–64. [Google Scholar] [CrossRef]
- Zhong, Y.; Yin, B.; Ye, Y.; Dekhel, O.Y.A.T.; Xiong, X.; Jian, Z.; Gu, L. The Bidirectional Role of the JAK2/STAT3 Signaling Pathway and Related Mechanisms in Cerebral Ischemia-Reperfusion Injury. Exp. Neurol. 2021, 341, 113690. [Google Scholar] [CrossRef]
Baseline and Clinical Characteristics | IS Patients (n = 917) | Controls (n = 1287) | p-Value | |
---|---|---|---|---|
Age, Me [Q1; Q3] | 62 [55; 70] | 58 [53; 66] | <0.001 | |
Gender | Males, N (%) | 507 (55.3%) | 594 (46.1%) | <0.001 |
Females, N (%) | 410 (44.7%) | 693 (53.9%) | ||
Smoking | Yes, N (%) | 444 (48.4%) | 386 (30%) | <0.001 |
No, N (%) | 473 (51.6%) | 901 (70%) | ||
Low physical activity | Yes, N (%) | 349 (38.1%) | ND | |
No, N (%) | 530 (57.8%) | |||
ND, N (%) | 38 (4.1%) | |||
Low fruit/vegetable consumption | Yes, N (%) | 469 (51.2%) | ND | |
No, N (%) | 410 (44.7%) | |||
ND, N (%) | 38 (4.1%) | |||
Coronary artery disease | Yes, N (%) | 115 (12.6%) | - | |
No, N (%) | 765 (83.5%) | - | ||
ND, N (%) | 37 (3.9%) | |||
Body mass index, Me [Q1; Q3] | 23 [22; 26] (n = 585) | - | ||
Family history of cerebrovascular diseases | Yes, N (%) | 309 (33.7%) | 0 (0%) | |
No, N (%) | 567 (61.8%) | 0 (0%) | ||
ND, N (%) | 41 (4.5%) | 1287 (100%) | ||
Age at onset of stroke, Me [Q1; Q3] | 61 [54; 70] (n = 896) | - | ||
Number of strokes including event in question | 1, N (%) | 796 (88.8%) | - | |
2, N (%) | 87 (9.7%) | - | ||
3, N (%) | 13 (1.5%) | - | ||
Stroke location | Right/left middle cerebral arteries, N (%) | 745 (81.2%) | - | |
Vertebrobasilar arteries, N (%) | 149 (16.3%) | - | ||
ND, N (%) | 23 (2.5%) | |||
Stroke size, mm2, Me [Q1; Q3] | 108 [30; 471] (n = 876) | - | ||
Total cholesterol, mmol/L, Me [Q1; Q3] | 5.2 [4.4; 5.9] (n = 601) | ND | ||
Triglycerides, mmol/L, Me [Q1; Q3] | 1.3 [1.1; 1.8] (n = 594) | ND | ||
Prothrombin time, seconds, Me [Q1; Q3] | 10.79 [10.14; 11.70] (n = 873) | ND | ||
International normalized ratio, Me [Q1; Q3] | 1 [0.94; 1.09] (n = 590) | ND | ||
Activated partial thromboplastin time, seconds, Me [Q1; Q3] | 32.7 [29; 37] (n = 593) | ND |
Genetic Variant | Effect Allele | Other Allele | OR [95% CI] 1 | p 2 | OR [95% CI] 1 | p 2 | OR [95% CI] 1 | p 2 |
---|---|---|---|---|---|---|---|---|
Entire Group | Smokers | Low Fruit/Vegetable Intake [f+] | ||||||
rs10766342 C11orf58 | A | G | 1.21 [1.03–1.43] | 0.02 | 1.42 [1.09–1.86] | 0.009 | 1.26 [1.04–1.53] | 0.02 (0.04) |
rs7928675 C11orf58 | C | A | 0.89 [0.75–1.07] | 0.21 | 0.73 [0.56–0.96] | 0.025 | 0.93 [0.75–1.15] | 0.49 (0.98) |
rs11024030 C11orf58 | C | T | 1.16 [0.99–1.37] | 0.064 | 1.33 [1.02–1.72] | 0.03 | 1.26 [1.05–1.52] | 0.016 (0.032) |
rs11024032* C11orf58 | T | C | 1.22 [1.04–1.44] | 0.01 | 1.39 [1.07–1.81] | 0.01 | 1.26 [1.04–1.52] | 0.02 (0.04) |
rs7951676* C11orf58 | T | G | 0.88 [0.74–1.05] | 0.17 | 0.75 [0.57–0.99] | 0.04 | 0.91 [0.74–1.12] | 0.38 (0.76) |
rs11826990 C11orf58 | G | T | 1.25 [1.06–1.47] | 0.007 | 1.48 [1.13–1.93] | 0.004 | 1.26 [1.05–1.53] | 0.017 (0.034) |
rs3203295 C11orf58 | C | A | 1.22 [1.04–1.44] | 0.016 | 1.40 [1.07–1.83] | 0.01 | 1.26 [1.04–1.53] | 0.02 (0.04) |
rs10832676 C11orf58 | G | A | 1.26 [1.07–1.48] | 0.006 | 1.53 [1.17–2.00] | 0.002 | 1.30 [1.07–1.57] | 0.007 (0.014) |
rs4757429 C11orf58 | T | C | 1.21 [1.03–1.42] | 0.02 | 1.32 [1.01–1.71] | 0.04 | 1.25 [1.03–1.51] | 0.02 (0.04) |
SNP | Allele | Gene Expressed | Z-Score | p-Value | FDR |
---|---|---|---|---|---|
rs10766342 C11orf58 (G/A) | A | C11orf58 | ↓(−12.28) | 1.19 × 10−34 | 0 |
PIK3C2A | ↓(−4.37) | 1.26 × 10−5 | 0.038 | ||
rs11024030 C11orf58 (T/C) | C | C11orf58 | ↓(−12.22) | 2.36 × 10−34 | 0 |
PIK3C2A | ↓(−4.28) | 1.85 × 10−5 | 0.046 | ||
rs11024032 C11orf58 (C/T) | T | C11orf58 | ↓(−12.24) | 1.85 × 10−34 | 0 |
PIK3C2A | ↓(−4.33) | 1.48 × 10−5 | 0.038 | ||
rs11826990 C11orf58 (T/G) | G | C11orf58 | ↓(−12.20) | 3.22 × 10−34 | 0 |
rs3203295 C11orf58 (A/C) | C | C11orf58 | ↓(−12.20) | 3.00 × 10−34 | 0 |
PIK3C2A | ↓(−4.32) | 1.55 × 10−5 | 0.039 | ||
rs10832676 C11orf58 (A/G) | G | C11orf58 | ↓(−12.24) | 1.80 × 10−34 | 0 |
PIK3C2A | ↓(−4.28) | 1.85 × 10−5 | 0.046 | ||
rs4757429 C11orf58 (C/T) | T | C11orf58 | ↓(−12.22) | 2.42 × 10−34 | 0 |
PIK3C2A | ↓(−4.26) | 1.98 × 10−5 | 0.049 | ||
rs7928675 C11orf58 (A/C) | C | C11orf58 | ↓(−8.23) | 1.94 × 10−16 | 0 |
rs7951676 C11orf58 (G/T) | T | C11orf58 | ↓(−8.21) | 2.17 × 10−16 | 0 |
Trait | Effect Allele | Tissue | Effect Size (Beta) | FDR |
---|---|---|---|---|
rs10766342 C11orf58 | ||||
cg05512310 (chr11:16804714) C11orf58 | A | Brain-Prefrontal Cortex | 0.01 | 1.3 × 10−3 |
cg05405872 (chr11:16804957) C11orf58 | A | Brain-Prefrontal Cortex | 0.01 | 1.7 × 10−3 |
cg20474675 (chr11:16804716) C11orf58 | A | Brain-Prefrontal Cortex | 0.01 | 2.7 × 10−3 |
rs11024030 C11orf58 | ||||
cg05405872 (chr11:16804957) C11orf58 | C | Brain-Prefrontal Cortex | 0.02 | 8.6 × 10−4 |
rs11024032 C11orf58 | ||||
cg05405872 (chr11:16804957) C11orf58 | T | Brain-Prefrontal Cortex | 0.01 | 5.0 × 10−3 |
rs11826990 C11orf58 | ||||
cg05512310 (chr11:16804714) C11orf58 | G | Brain-Prefrontal Cortex | 0.01 | 1.3 × 10−3 |
cg05405872 (chr11:16804957) C11orf58 | G | Brain-Prefrontal Cortex | 0.01 | 1.7 × 10−3 |
cg20474675 (chr11:16804716) C11orf58 | G | Brain-Prefrontal Cortex | 0.01 | 2.7 × 10−3 |
rs3203295 C11orf58 | ||||
cg05512310 (chr11:16804714) C11orf58 | C | Brain-Prefrontal Cortex | 0.01 | 0.002 |
cg20474675 (chr11:16804716) C11orf58 | C | Brain-Prefrontal Cortex | 0.01 | 0.004 |
cg05405872 (chr11:16804957) C11orf58 | C | Brain-Prefrontal Cortex | 0.01 | 0.006 |
cg01047635 (chr11:16804930) C11orf58 | C | Brain-Prefrontal Cortex | 0.01 | 0.008 |
rs10832676 C11orf58 | ||||
cg05405872 (chr11:16804957) C11orf58 | G | Brain-Prefrontal Cortex | 0.02 | 8.6 × 10−4 |
rs4757429 C11orf58 | ||||
cg05405872 (chr11:16804957) C11orf58 | T | Brain-Prefrontal Cortex | 0.02 | 8.6 × 10−4 |
SNP (Ref/Alt Allele) | Marks | Brain | Blood | ||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | ||
rs10766342 C11orf58 (G/A) | H3K4me1 | Enh | Enh | Enh | Enh | - | - | - | Enh |
H3K4me3 | Pro | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
H3K27ac | Enh | Enh | Enh | Enh | Enh | Enh | Enh | Enh | |
H3K9ac | - | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
DNase | - | - | - | - | - | - | - | DNase | |
rs11024030 C11orf58 (T/C) | H3K4me1 | Enh | - | - | Enh | - | - | Enh | Enh |
H3K27ac | - | - | - | - | - | - | - | Enh | |
rs11024032 C11orf58 (C/T) | H3K4me1 | - | Enh | - | Enh | - | Enh | - | Enh |
H3K27ac | - | - | - | - | - | - | Enh | Enh | |
H3K9ac | - | - | Pro | - | - | - | - | - | |
rs11826990 C11orf58 (T/G) | H3K4me1 | Enh | - | - | - | - | - | - | Enh |
H3K4me3 | Pro | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
H3K27ac | Enh | Enh | Enh | Enh | Enh | Enh | Enh | Enh | |
H3K9ac | - | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
DNase | - | - | - | - | - | - | - | DNase | |
rs3203295 C11orf58 (A/C) | H3K4me1 | Enh | Enh | Enh | Enh | Enh | Enh | Enh | Enh |
H3K4me3 | Pro | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
H3K27ac | Enh | Enh | Enh | Enh | Enh | Enh | Enh | Enh | |
H3K9ac | Pro | Pro | Pro | Pro | Pro | Pro | Pro | ||
DNase | - | - | - | - | - | - | - | DNase | |
rs10832676 C11orf58 (A/G) | H3K4me1 | - | - | Enh | Enh | Enh | Enh | Enh | Enh |
H3K4me3 | - | - | - | - | - | - | - | Pro | |
H3K27ac | - | - | - | - | - | - | - | Enh | |
rs4757429 C11orf58 (C/T) | H3K4me1 | Enh | Enh | Enh | Enh | Enh | Enh | Enh | Enh |
H3K4me3 | Pro | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
H3K27ac | - | - | - | - | Enh | - | Enh | Enh | |
H3K9ac | - | - | - | - | - | - | - | Pro | |
rs7928675 C11orf58 (A/C) | H3K4me1 | Enh | Enh | Enh | Enh | Enh | Enh | Enh | Enh |
H3K4me3 | Pro | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
H3K27ac | Enh | - | Enh | Enh | Enh | Enh | Enh | Enh | |
H3K9ac | - | Pro | Pro | Pro | Pro | Pro | Pro | Pro | |
rs7951676 C11orf58 (G/T) | H3K4me1 | - | - | Enh | Enh | Enh | Enh | Enh | Enh |
H3K4me3 | - | - | - | - | - | - | - | Pro | |
H3K27ac | - | - | - | - | - | - | - | Enh | |
H3K9ac | - | - | - | - | - | - | - | Pro |
Gene–Gene Interaction Models | NH | Beta H | WH | NL | Beta L | WL | Wmax | Pperm |
---|---|---|---|---|---|---|---|---|
The best two-locus models of intergenic interactions (for models with Pmin. < 1 × 10−17, 1000 permutations) | ||||||||
rs10104 C19orf53×rs2277947 C19orf53 | 6 | 0.4708 | 104.46 | 2 | −0.29994 | 70.758 | 104.46 | <0.001 |
rs10104 C19orf53×rs11666524 C19orf53 | 6 | 0.4868 | 80.29 | 1 | −0.06732 | 9.155 | 80.29 | <0.001 |
rs3203295 C11orf58×rs10766342 C11orf58 | 2 | 0.5602 | 75.06 | 1 | −0.09136 | 16.641 | 75.06 | <0.001 |
The best three-locus models of intergenic interactions (for models with Pmin. < 5 × 10−24, 1000 permutations) | ||||||||
rs10104 C19orf53×rs2277947 C19orf53×rs11666524 C19orf53 | 11 | 0.5044 | 133.3 | 2 | −0.33361 | 98.43 | 133.3 | <0.001 |
rs10104 C19orf53×rs346157 C19orf53×rs2277947 C19orf53 | 10 | 0.5214 | 109.3 | 1 | −0.08513 | 11.74 | 109.3 | <0.001 |
rs8107914 C19orf53×rs10104 C19orf53×rs2277947 C19orf53 | 9 | 0.5135 | 107.0 | 2 | −0.07575 | 10.51 | 107.0 | <0.001 |
rs10104 C19orf53×rs346158 C19orf53×rs2277947 C19orf53 | 9 | 0.5025 | 106.6 | 2 | −0.09005 | 15.31 | 106.6 | <0.001 |
The best four-locus models of gene–gene interactions (for models with Pmin. < 1 × 10−34, 1000 permutations) | ||||||||
rs3203295 C11orf58×rs10766342 C11orf58×rs10104 C19orf53×rs2277947 C19orf53 | 13 | 0.5459 | 171.7 | 3 | −0.1991 | 69.61 | 171.7 | <0.001 |
rs10832676 C11orf58×rs10766342 C11orf58×rs10104 C19orf53×rs2277947 C19orf53 | 12 | 0.5437 | 164.5 | 3 | −0.2036 | 73.22 | 164.5 | <0.001 |
rs11826990 C11orf58×rs10766342 C11orf58×rs10104 C19orf53×rs2277947 C19orf53 | 13 | 0.5466 | 162.4 | 3 | −0.1988 | 69.17 | 162.4 | <0.001 |
Models of G × E Interactions | NH | Beta H | WH | NL | Beta L | WL | Wmax | Pperm |
---|---|---|---|---|---|---|---|---|
The best two-factor models of G × E interactions (for models with Pmin < 1 × 10−24, 1000 permutations) | ||||||||
SMOKE×rs10734249 C11orf58 | 3 | 0.2605 | 110.26 | 3 | −0.26052 | 110.264 | 110.26 | <0.001 |
Best three-factor models of G × E interactions (for models with Pmin, < 1 × 10−25, 1000 permutations) | ||||||||
SMOKE×rs10104 C19orf53×rs2277947 C19orf53 | 12 | 0.2577 | 118.6 | 2 | −0.2335 | 116.75 | 118.6 | <0.001 |
SMOKE×rs11024031 C11orf58×rs10734249 C11orf58 | 6 | 0.2729 | 118.0 | 5 | −0.2406 | 95.42 | 118.0 | <0.001 |
SMOKE×rs3802963 C11orf58×rs10734249 C11orf58 | 4 | 0.2636 | 110.6 | 3 | −0.2634 | 114.35 | 114.4 | <0.001 |
SMOKE×rs7928675 C11orf58×rs10734249 C11orf58 | 4 | 0.2851 | 114.2 | 4 | −0.2467 | 100.95 | 114.2 | <0.001 |
Best four-factor models of G × E interactions (for models with Pmin. < 2 × 10−31, 1000 permutations) | ||||||||
SMOKE×rs11024031 C11orf58×rs10734249 C11orf58×rs6677 C11orf58 | 13 | 0.2872 | 131.9 | 6 | −0.2998 | 147.33 | 147.3 | <0.001 |
SMOKE×rs10734249 C11orf58×rs10104 C19orf53×rs2277947 C19orf53 | 13 | 0.3052 | 120.4 | 5 | −0.2952 | 144.63 | 144.6 | <0.001 |
SMOKE×rs11024032 C11orf58×rs10766342 C11orf58×rs10734249 C11orf58 | 12 | 0.2966 | 144.4 | 4 | −0.2715 | 124.24 | 144.4 | <0.001 |
SMOKE×rs10734249 C11orf58×rs2277947 C19orf53×rs11666524 C19orf53 | 14 | 0.3001 | 127.0 | 5 | −0.2932 | 143.19 | 143.2 | <0.001 |
SNP | G × G Interactions | G × E Interactions | ||
---|---|---|---|---|
Mono-Effect | GG-Effect | Mono-Effect | GE-Effect | |
rs10104 C19orf53 | 0.39% | 5.99% | 0.56% | 8.67% |
rs2277947 C19orf53 | 1.37% | 6.8% | 1.63% | 9.47% |
rs11826990 C11orf58 | 0.24% | 4.59% | - | - |
rs3203295 C11orf58 | 0.22% | 5.85% | - | - |
rs10766342 C11orf58 | 0.16% | 9.44% | 0.21% | 5.07% |
rs10832676 C11orf58 | 0.27% | 4.81% | - | - |
rs11666524 C19orf53 | 1.12% | 7.01% | ||
rs10734249 C11orf58 | - | - | 4.00% | 5.46% |
rs11024031 C11orf58 | - | - | 0.39% | 5.15% |
rs11024032 C11orf58 | - | - | 0.43% | 3.71% |
rs6677 C11orf58 | - | - | 0.59% | 2.86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shilenok, I.; Kobzeva, K.; Soldatov, V.; Deykin, A.; Bushueva, O. C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones. Biomedicines 2024, 12, 2603. https://doi.org/10.3390/biomedicines12112603
Shilenok I, Kobzeva K, Soldatov V, Deykin A, Bushueva O. C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones. Biomedicines. 2024; 12(11):2603. https://doi.org/10.3390/biomedicines12112603
Chicago/Turabian StyleShilenok, Irina, Ksenia Kobzeva, Vladislav Soldatov, Alexey Deykin, and Olga Bushueva. 2024. "C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones" Biomedicines 12, no. 11: 2603. https://doi.org/10.3390/biomedicines12112603
APA StyleShilenok, I., Kobzeva, K., Soldatov, V., Deykin, A., & Bushueva, O. (2024). C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones. Biomedicines, 12(11), 2603. https://doi.org/10.3390/biomedicines12112603