Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges: An Editorial Retrospective
Conflicts of Interest
List of Contributions
- Monaco, C.; Kronenberger, R.; Talevi, G.; Pannone, L.; Cappello, I.A.; Candelari, M.; Ramak, R.; Della Rocca, D.G.; Bori, E.; Terryn, H.; et al. Advancing Surgical Arrhythmia Ablation: Novel Insights on 3D Printing Applications and Two Biocompatible Materials. Biomedicines 2024, 12, 869. https://doi.org/10.3390/biomedicines12040869.
- Wojcik, T.; Chai, F.; Hornez, V.; Raoul, G.; Hornez, J.-C. Engineering Precise Interconnected Porosity in β-Tricalcium Phosphate (β-TCP) Matrices by Means of Top–Down Digital Light Processing. Biomedicines 2024, 12, 736. https://doi.org/10.3390/biomedicines12040736.
- Verisqa, F.; Park, J.-H.; Mandakhbayar, N.; Cha, J.-R.; Nguyen, L.; Kim, H.-W.; Knowles, J.C. In Vivo Osteogenic and Angiogenic Properties of a 3D-Printed Isosorbide-Based Gyroid Scaffold Manufactured via Digital Light Processing. Biomedicines 2024, 12, 609. https://doi.org/10.3390/biomedicines12030609.
- Kallivokas, S.V.; Kontaxis, L.C.; Psarras, S.; Roumpi, M.; Ntousi, O.; Kakkos, I.; Deligianni, D.; Matsopoulos, G.K.; Fotiadis, D.I.; Kostopoulos, V. A Combined Computational and Experimental Analysis of PLA and PCL Hybrid Nanocomposites 3D Printed Scaffolds for Bone Regeneration. Biomedicines 2024, 12, 261. https://doi.org/10.3390/biomedicines12020261.
- Omer, A.B.; Fatima, F.; Ahmed, M.M.; Aldawsari, M.F.; Alalaiwe, A.; Anwer, M.K.; Mohammed, A.A. Enhanced Apigenin Dissolution and Effectiveness Using Glycyrrhizin Spray-Dried Solid Dispersions Filled in 3D-Printed Tablets. Biomedicines 2023, 11, 3341. https://doi.org/10.3390/biomedicines11123341.
- Nashed, N.; Chan, S.; Lam, M.; Ghafourian, T.; Nokhodchi, A. Effect of pH, Ionic Strength and Agitation Rate on Dissolution Behaviour of 3D-Printed Tablets, Tablets Prepared from Ground Hot-Melt Extruded Filaments and Physical Mixtures. Biomedicines 2023, 11, 375. https://doi.org/10.3390/biomedicines11020375.
- Encarnacion Ramirez, M.; Ramirez Pena, I.; Barrientos Castillo, R.E.; Sufianov, A.; Goncharov, E.; Soriano Sanchez, J.A.; Colome-Hidalgo, M.; Nurmukhametov, R.; Cerda Céspedes, J.R.; Montemurro, N. Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training. Biomedicines 2023, 11, 330. https://doi.org/10.3390/biomedicines11020330.
References
- Hull, C. Apparatus for Production of Three-Dimensional Object by Stereolithography. US Patent 4,575,330, 11 March 1986. [Google Scholar]
- Savini, A.; Savini, G.G. A short history of 3D printing, a technological revolution just started. In Proceedings of the 2015 ICOHTEC/IEEE International History of High-Technologies and Their Socio-Cultural CONTEXTS conference (HISTELCON), Tel-Aviv, Israel, 18–19 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–8. [Google Scholar]
- Kamrani, A.K.; Nasr, E.A. (Eds.) Rapid Prototyping: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 6. [Google Scholar]
- Ghazali, H.S.; Askari, E.; Seyfoori, A.; Naghib, S.M. A high-absorbance water-soluble photoinitiator nanoparticle for hydrogel 3D printing: Synthesis, characterization and in vitro cytotoxicity study. Sci. Rep. 2023, 13, 8577. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kapadia, W.; Li, C.; Lin, F.; Pereira, R.F.; Granja, P.L.; Cui, W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J. Control. Release 2021, 329, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Monaco, C.; Kronenberger, R.; Talevi, G.; Pannone, L.; Cappello, I.A.; Candelari, M.; Ramak, R.; Della Rocca, D.G.; Bori, E.; Terryn, H.; et al. Advancing Surgical Arrhythmia Ablation: Novel Insights on 3D Printing Applications and Two Biocompatible Materials. Biomedicines 2024, 12, 869. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, T.; Chai, F.; Hornez, V.; Raoul, G.; Hornez, J.-C. Engineering Precise Inter-connected Porosity in β-Tricalcium Phosphate (β-TCP) Matrices by Means of Top–Down Digital Light Processing. Biomedicines 2024, 12, 736. [Google Scholar] [CrossRef] [PubMed]
- Mirshafiei, M.; Rashedi, H.; Yazdian, F.; Rahdar, A.; Baino, F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater. Des. 2024, 240, 112853. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Wang, Z.; Liu, M.; Zhao, Y.; Tan, Y.; Wu, C. The cutting-edge progress in bioprinting for biomedicine: Principles, applications, and future perspectives. MedComm 2024, 5, e753. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Tang, W.; Li, Y.; Ai, Y.; Tu, Z.; Yang, J.; Fan, C. Advancing cardiac regeneration through 3D bioprinting: Methods, applications, and future directions. Heart Fail. Rev. 2024, 29, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.K. Prospects of emerging 3D bioprinting technologies: Major technology components, technology developers, and end users—Part I. MGM J. Med. Sci. 2024, 11, 331–339. [Google Scholar] [CrossRef]
Contribution No. | Focus/Aim | Primary Research Discipline | Secondary Research Discipline |
---|---|---|---|
1 | 3D models for cardiac ablation | Cardiac Surgery | Heart Electrophysiology |
2 | Bone reconstruction (based on β-TCP matrices produced using top-down DLP * 3D printer) | Oral and Maxillofacial Surgery | Ceramic Materials |
3 | New bone formation and neovascularization of 3D-printed structures evaluated in vivo | Biomaterials and Tissue Engineering | Tissue Regeneration Engineering |
4 | Bone tissue engineering (based on a combined computational and experimental study) | Biomedical Engineering | Computation-Based Science and Technology |
5 | Formulation of filament-based 3D printlets to enhance the therapeutic effects of apigenin | Health Sciences | Pharmaceutics |
6 | Formulation of 3D-printed tablets with enhanced properties | Pharmaceutics | Chemistry |
7 | Development of a real-life brain model using 3D printing technology | Neurosurgery | Orthopedics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozafari, M.R. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges: An Editorial Retrospective. Biomedicines 2024, 12, 2612. https://doi.org/10.3390/biomedicines12112612
Mozafari MR. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges: An Editorial Retrospective. Biomedicines. 2024; 12(11):2612. https://doi.org/10.3390/biomedicines12112612
Chicago/Turabian StyleMozafari, M. R. 2024. "Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges: An Editorial Retrospective" Biomedicines 12, no. 11: 2612. https://doi.org/10.3390/biomedicines12112612
APA StyleMozafari, M. R. (2024). Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges: An Editorial Retrospective. Biomedicines, 12(11), 2612. https://doi.org/10.3390/biomedicines12112612