Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.; Voroslakos, M.; Kronberg, G.; Henin, S.; Krause, M.R.; Huang, Y.; Opitz, A.; Mehta, A.; Pack, C.C.; Krekelberg, B.; et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 2018, 9, 5092. [Google Scholar] [CrossRef]
- Battleday, R.M.; Muller, T.; Clayton, M.S.; Cohen Kadosh, R. Mapping the mechanisms of transcranial alternating current stimulation: A pathway from network effects to cognition. Front. Psychiatry 2014, 5, 162. [Google Scholar] [CrossRef]
- Elyamany, O.; Leicht, G.; Herrmann, C.S.; Mulert, C. Transcranial alternating current stimulation (tACS): From basic mechanisms towards first applications in psychiatry. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 135–156. [Google Scholar] [CrossRef]
- Meng, H.; Houston, M.; Zhang, Y.; Li, S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci. 2024, 14, 322. [Google Scholar] [CrossRef]
- Wischnewski, M.; Schutter, D.; Nitsche, M.A. Effects of beta-tACS on corticospinal excitability: A meta-analysis. Brain Stimul. 2019, 12, 1381–1389. [Google Scholar] [CrossRef]
- Wu, L.; Liu, T.; Wang, J. Improving the Effect of Transcranial Alternating Current Stimulation (tACS): A Systematic Review. Front. Hum. Neurosci. 2021, 15, 652393. [Google Scholar] [CrossRef]
- Pellegrini, M.; Zoghi, M.; Jaberzadeh, S. The effects of transcranial direct current stimulation on corticospinal and cortico-cortical excitability and response variability: Conventional versus high-definition montages. Neurosci. Res. 2021, 166, 12–25. [Google Scholar] [CrossRef]
- Masina, F.; Arcara, G.; Galletti, E.; Cinque, I.; Gamberini, L.; Mapelli, D. Neurophysiological and behavioural effects of conventional and high definition tDCS. Sci. Rep. 2021, 11, 7659. [Google Scholar] [CrossRef]
- Heise, K.F.; Kortzorg, N.; Saturnino, G.B.; Fujiyama, H.; Cuypers, K.; Thielscher, A.; Swinnen, S.P. Evaluation of a Modified High-Definition Electrode Montage for Transcranial Alternating Current Stimulation (tACS) of Pre-Central Areas. Brain Stimul. 2016, 9, 700–704. [Google Scholar] [CrossRef]
- Rong, D.; Zhang, M.; Ma, Q.; Lu, J.; Li, K. Corticospinal tract change during motor recovery in patients with medulla infarct: A diffusion tensor imaging study. BioMed Res. Int. 2014, 2014, 524096. [Google Scholar] [CrossRef]
- Natali, A.L.; Reddy, V.; Bordoni, B. Neuroanatomy, Corticospinal Cord Tract; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kuo, H.I.; Bikson, M.; Datta, A.; Minhas, P.; Paulus, W.; Kuo, M.F.; Nitsche, M.A. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimul. 2013, 6, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Betti, S.; Fedele, M.; Castiello, U.; Sartori, L.; Budisavljevic, S. Corticospinal excitability and conductivity are related to the anatomy of the corticospinal tract. Brain Struct. Funct. 2022, 227, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, E.J.; Compton, C.T.; Forman, D.A.; Pearcey, G.E.; Button, D.C.; Power, K.E. Moving forward: Methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J. Neurophysiol. 2021, 126, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Houston, M.; Francisco, G.E.; Zhang, Y.; Li, S. Scalp acupuncture guidance for identifying the optimal site for transcranial electrical stimulation of the hand. Exp. Brain Res. 2024, 242, 2083–2091. [Google Scholar] [CrossRef]
- Wach, C.; Krause, V.; Moliadze, V.; Paulus, W.; Schnitzler, A.; Pollok, B. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav. Brain Res. 2013, 241, 1–6. [Google Scholar] [CrossRef]
- Nakazono, H.; Ogata, K.; Kuroda, T.; Tobimatsu, S. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability. PLoS ONE 2016, 11, e0162521. [Google Scholar] [CrossRef]
- Schilberg, L.; Engelen, T.; Ten Oever, S.; Schuhmann, T.; de Gelder, B.; de Graaf, T.A.; Sack, A.T. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Cortex 2018, 103, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Fresnoza, S.; Christova, M.; Feil, T.; Gallasch, E.; Korner, C.; Zimmer, U.; Ischebeck, A. The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults. Exp. Brain Res. 2018, 236, 2573–2588. [Google Scholar] [CrossRef]
- Ibanez, J.; Zicher, B.; Brown, K.E.; Rocchi, L.; Casolo, A.; Del Vecchio, A.; Spampinato, D.; Vollette, C.A.; Rothwell, J.C.; Baker, S.N.; et al. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. J. Physiol. 2023, 601, 3187–3199. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Y.; Li, S.; Zhou, P.; Rymer, W.Z.; Zhang, Y. Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings. Int. J. Neural. Syst. 2015, 25, 1550024. [Google Scholar] [CrossRef]
- Ning, Y.; Zhu, X.; Zhu, S.; Zhang, Y. Surface EMG decomposition based on K-means clustering and convolution kernel compensation. IEEE J. Biomed. Health Inform. 2015, 19, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Schwab, B.C.; Misselhorn, J.; Engel, A.K. Modulation of large-scale cortical coupling by transcranial alternating current stimulation. Brain Stimul. 2019, 12, 1187–1196. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Lee, H.J.; Lee, J.; Na, Y.; Chang, W.H.; Kim, Y.H. Optimal stimulation site for rTMS to improve motor function: Anatomical hand knob vs. hand motor hotspot. Neurosci. Lett. 2021, 740, 135424. [Google Scholar] [CrossRef]
- Kim, H.; Wright, D.L.; Rhee, J.; Kim, T. C3 in the 10–20 system may not be the best target for the motor hand area. Brain Res. 2023, 1807, 148311. [Google Scholar] [CrossRef]
- Antal, A.; Boros, K.; Poreisz, C.; Chaieb, L.; Terney, D.; Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008, 1, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Liebetanz, D.; Antal, A.; Lang, N.; Tergau, F.; Paulus, W. Modulation of cortical excitability by weak direct current stimulation-technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 2003, 56, 255–276. [Google Scholar] [CrossRef]
- Antal, A.; Herrmann, C.S. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural. Plast. 2016, 2016, 3616807. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.R.; Vieira, P.G.; Csorba, B.A.; Pilly, P.K.; Pack, C.C. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. USA 2019, 116, 5747–5755. [Google Scholar] [CrossRef] [PubMed]
- Reato, D.; Rahman, A.; Bikson, M.; Parra, L.C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 2010, 30, 15067–15079. [Google Scholar] [CrossRef]
- Christou, E.A. Aging and variability of voluntary contractions. Exerc. Sport Sci. Rev. 2011, 39, 77–84. [Google Scholar] [CrossRef]
- Sarkar, A.; Dipani, A.; Leodori, G.; Popa, T.; Kassavetis, P.; Hallett, M.; Thirugnanasambandam, N. Inter-Individual Variability in Motor Output Is Driven by Recruitment Gain in the Corticospinal Tract Rather Than Motor Threshold. Brain Sci. 2022, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Christou, E.A.; Enoka, R.M. Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J. Neurophysiol. 2003, 90, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.T.; Barry, B.K.; Pascoe, M.A.; Enoka, R.M. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J. Neurophysiol. 2005, 93, 2449–2459. [Google Scholar] [CrossRef] [PubMed]
- Kortuem, V.; Kadish, N.E.; Siniatchkin, M.; Moliadze, V. Efficacy of tRNS and 140 Hz tACS on motor cortex excitability seemingly dependent on sensitivity to sham stimulation. Exp. Brain Res. 2019, 237, 2885–2895. [Google Scholar] [CrossRef]
- Kudo, D.; Koseki, T.; Katagiri, N.; Yoshida, K.; Takano, K.; Jin, M.; Nito, M.; Tanabe, S.; Yamaguchi, T. Individualized beta-band oscillatory transcranial direct current stimulation over the primary motor cortex enhances corticomuscular coherence and corticospinal excitability in healthy individuals. Brain Stimul. 2022, 15, 46–52. [Google Scholar] [CrossRef]
Hotspot | C3 | |||||
---|---|---|---|---|---|---|
Pre | Post | %Change | Pre | Post | %Change | |
# of MUs (n) | 18.5 (6.5) | 18.7 (6.5) | 1.08% | 19.7 (4.6) | 19.1 (5.0) | −3.05% |
MUAP Amplitude (μV) | 79.9 (22.3) | 81.3 (22.3) | 1.75% | 86.3 (33.2) | 90.8 (33.2) | 5.21% |
MUAP Firing Rate (Hz) | 11.3 (0.9) | 11.5 (1.0) | 1.77% | 11.6 (0.8) | 11.6 (0.9) | 0.00% |
CoV_MUAP Firing Rate (%) | 17.8 (3.6) | 15.5 (4.1) * | −12.92% | 17.6 (5.1) | 16.8 (3.4) | −4.55% |
CoV_Force (%) | 5.7 (3.7) | 8.4 (8.1) * | 47.37% | 6.6 (5.1) | 8.3 (4.5) | 25.76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Houston, M.; Dias, N.; Guo, C.; Francisco, G.; Zhang, Y.; Li, S. Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines 2024, 12, 2635. https://doi.org/10.3390/biomedicines12112635
Meng H, Houston M, Dias N, Guo C, Francisco G, Zhang Y, Li S. Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines. 2024; 12(11):2635. https://doi.org/10.3390/biomedicines12112635
Chicago/Turabian StyleMeng, Hao, Michael Houston, Nicholas Dias, Chen Guo, Gerard Francisco, Yingchun Zhang, and Sheng Li. 2024. "Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability" Biomedicines 12, no. 11: 2635. https://doi.org/10.3390/biomedicines12112635
APA StyleMeng, H., Houston, M., Dias, N., Guo, C., Francisco, G., Zhang, Y., & Li, S. (2024). Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines, 12(11), 2635. https://doi.org/10.3390/biomedicines12112635