Changes in IL-6, IL-12, IL-5, IL-10 and TGF-β1 Concentration in Patients with Treatment-Resistant Schizophrenia (TRS) Following Electroconvulsive Therapy (ECT)—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients, Inclusion and Exclusion Criteria
2.2. ECT Treatment Procedures
2.3. Interleukins Assay
2.4. Statistical Methods
3. Results
3.1. Changes in Cytokine Concentration and PANSS Score Following ECT
3.2. Correlations Between Cytokines and PANSS Scores During ECT
4. Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yu, T.; Pei, W.; Xu, C.; Zhang, X.; Deng, C. Investigation of peripheral inflammatory biomarkers in association with violence in schizophrenia. BMC Psychiatry 2024, 24, 542. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ma, Q.; Fan, Y.; Zhao, B.; Wang, W.; Zhu, F.; Ma, X.; Zhou, L. The Role of Cytokines in Predicting the Efficacy of Acute Stage Treatment in Patients with Schizophrenia. Neuropsychiatr. Dis. Treat. 2020, 21, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Al-Dujaili, A.H.; Mousa, R.F.; Al-Hakeim, H.K.; Maes, M. High Mobility Group Protein 1 and Dickkopf-Related Protein 1 in Schizophrenia and Treatment-Resistant Schizophrenia: Associations with Interleukin-6, Symptom Domains, and Neurocognitive Impairments. Schizophr. Bull. 2021, 47, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Roomruangwong, C.; Noto, C.; Kanchanatawan, B.; Anderson, G.; Kubera, M.; Carvalho, A.F.; Maes, M. The Role of Aberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: The IRS-CIRS Theory of Schizophrenia. Mol. Neurobiol. 2020, 57, 778–797. [Google Scholar] [CrossRef] [PubMed]
- Saetre, P.; Emilsson, L.; Axelsson, E.; Kreuger, J.; Lindholm, E.; Jazin, E. Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 2007, 7, 46. [Google Scholar] [CrossRef]
- Yang, L.; Wang, B.; Yang, Z.; Zheng, S.; Xin, Z.; Wu, S.; Zou, W.; Peng, H. Toxoplasma gondii infection positively associated with schizophrenia: Evidences from UK Biobank cohort and case-controlled studies. J. Psychiatr. Res. 2024, 175, 243–250. [Google Scholar] [CrossRef]
- Cullen, A.E.; Holmes, S.; Pollak, T.A.; Blackman, G.; Joyce, D.W.; Kempton, M.J.; Murray, R.M.; McGuire, P.; Mondelli, V. Associations between Non-Neurological Autoimmune Disorders and Psychosis: A Meta-analysis. Biol. Psychiatry 2019, 85, 35–48. [Google Scholar] [CrossRef]
- Leboyer, M.; Godin, O.; Terro, E.; Boukouaci, W.; Lu, C.L.; Andre, M.; Aouizerate, B.; Berna, F.; Barau, C.; Capdevielle, D.; et al. Immune Signatures of Treatment-Resistant Schizophrenia: A FondaMental Academic Centers of Expertise for Schizophrenia (FACE-SZ) Study. Schizophr. Bull. Open 2021, 2, sgab012. [Google Scholar] [CrossRef]
- Howes, O.D.; McCutcheon, R.; Agid, O.; de Bartolomeis, A.; van Beveren, N.; Birnbaum, M.L.; Bloomfield, M.A.; Bressan, R.A.; Buchanan, R.W.; Carpenter, W.T.; et al. Treatment-Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology. Am. J. Psychiatry 2017, 174, 216–229. [Google Scholar] [CrossRef]
- Kuipers, E.; Yesufu-Udechuku, A.; Taylor, C.; Kendall, T. Management of psychosis and schizophrenia in adults: Summary of updated NICE guidance. BMJ 2014, 348, g117. [Google Scholar] [CrossRef]
- Noto, C.; Maes, M.; Ota, V.K.; Teixeira, A.L.; Bressan, R.A.; Gadelha, A.; Brietzke, E. High predictive value of immune-inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J. Biol. Psychiatry 2015, 16, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Godin, O.; Boyer, L.; Berna, F.; Andrianarisoa, M.; Coulon, N.; Brunel, L.; Bulzacka, E.; Aouizerate, B.; Capdevielle, D.; et al. Chronic low-grade peripheral inflammation is associated with ultra resistant schizophrenia. Results from the FACE-SZ cohort. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bosmans, E.; Kenis, G.; De Jong, R.; Smith, R.S.; Meltzer, H.Y. In vivo immunomodulatory effects of clozapine in schizophrenia. Schizophr. Res. 1997, 26, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Noto, M.N.; Maes, M.; Nunes, S.O.V.; Ota, V.K.; Rossaneis, A.C.; Verri, W.A., Jr.; Cordeiro, Q.; Belangero, S.I.; Gadelha, A.; Bressan, R.A.; et al. Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur. Neuropsychopharmacol. 2019, 29, 416–431. [Google Scholar] [CrossRef]
- Maes, M.; Sirivichayakul, S.; Matsumoto, A.K.; Maes, A.; Michelin, A.P.; de Oliveira Semeão, L.; de Lima Pedrão, J.V.; Moreira, E.G.; Barbosa, D.S.; Geffard, M.; et al. Increased Levels of Plasma Tumor Necrosis Factor-α Mediate Schizophrenia Symptom Dimensions and Neurocognitive Impairments and Are Inversely Associated with Natural IgM Directed to Malondialdehyde and Paraoxonase 1 Activity. Mol. Neurobiol. 2020, 57, 2333–2345, Erratum in Mol. Neurobiol. 2022, 59, 1350. [Google Scholar] [CrossRef]
- Davis, J.; Eyre, H.; Jacka, F.N.; Dodd, S.; Dean, O.; McEwen, S.; Debnath, M.; McGrath, J.; Maes, M.; Amminger, P.; et al. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci. Biobehav. Rev. 2016, 65, 185–194. [Google Scholar] [CrossRef]
- Davis, J.; Moylan, S.; Harvey, B.H.; Maes, M.; Berk, M. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. Aust. N. Z. J. Psychiatry 2014, 48, 512–529. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Monji, A.; Kato, T.; Kanba, S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin. Neurosci. 2009, 63, 257–265. [Google Scholar] [CrossRef]
- Sirivichayakul, S.; Kanchanatwan, B.; Thika, S.; Carvalho, A.; Maes, M. A new schizophrenia model: Immune activation is associated with induction of the tryptophan catabolite pathway and increased eotaxin levels which together determine memory impairments and schizophrenia symptom dimensions. bioRxiv 2018. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Almulla, A.F.; Al-Dujaili, A.H.; Maes, M. Construction of a Neuro-Immune-Cognitive Pathway-Phenotype Underpinning the Phenome of Deficit Schizophrenia. Curr. Top Med. Chem. 2020, 20, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Carvalho, A.F. The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder. Mol. Neurobiol. 2018, 55, 8885–8903. [Google Scholar] [CrossRef] [PubMed]
- Arandjelovic, S.; Dragojlovic, N.; Li, X.; Myers, R.R.; Campana, W.M.; Gonias, S.L. A derivative of the plasma protease inhibitor alpha(2)-macroglobulin regulates the response to peripheral nerve injury. J. Neurochem. 2007, 103, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Kanchanatawan, B. In (deficit) schizophrenia, a general cognitive decline partly mediates the effects of neuro-immune and neuro-oxidative toxicity on the symptomatome and quality of life. CNS Spectr. 2021, 12, 506–515. [Google Scholar] [CrossRef]
- Chen, W.; Gou, M.; Wang, L.; Li, N.; Li, W.; Tong, J.; Zhou, Y.; Xie, T.; Yu, T.; Feng, W.; et al. Inflammatory disequilibrium and lateral ventricular enlargement in treatment-resistant schizophrenia. Eur. Neuropsychopharmacol. 2023, 72, 18–29. [Google Scholar] [CrossRef]
- Debnath, M.; Berk, M. Th17 pathway-mediated immunopathogenesis of schizophrenia: Mechanisms and implications. Schizophr. Bull. 2014, 40, 1412–1420. [Google Scholar] [CrossRef]
- Maes, M.; Bocchio Chiavetto, L.; Bignotti, S.; Battisa Tura, G.; Pioli, R.; Boin, F.; Kenis, G.; Bosmans, E.; de Jongh, R.; Lin, A.; et al. Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur. Neuropsychopharmacol. 2000, 10, 119–124. [Google Scholar] [CrossRef]
- Kaster, T.S.; Daskalakis, Z.J.; Blumberger, D.M. Clinical Effectiveness and Cognitive Impact of Electroconvulsive Therapy for Schizophrenia: A Large Retrospective Study. J. Clin. Psychiatry 2017, 78, e383–e389. [Google Scholar] [CrossRef]
- Chan, C.Y.W.; Abdin, E.; Seow, E.; Subramaniam, M.; Liu, J.; Peh, C.X.; Tor, P.C. Clinical effectiveness and speed of response of electroconvulsive therapy in treatment-resistant schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 416–422. [Google Scholar] [CrossRef]
- Wagner, E.; Kane, J.M.; Correll, C.U.; Howes, O.; Siskind, D.; Honer, W.G.; Lee, J.; Falkai, P.; Schneider-Axmann, T.; Hasan, A. Clozapine Combination and Augmentation Strategies in Patients with Schizophrenia-Recommendations from an International Expert Survey Among the Treatment Response and Resistance in Psychosis (TRRIP) Working Group. Schizophr. Bull. 2020, 46, 1459–1470. [Google Scholar] [CrossRef]
- Wang, G.; Zheng, W.; Li, X.-B.; Wang, S.-B.; Cai, D.-B.; Yang, X.-H.; Ungvari, G.S.; Xiang, Y.-T.; Correll, C.U. ECT augmentation of clozapine for clozapine resistant schizophrenia: A meta-analysis of randomized controlled trials. J. Psychiatr. Res. 2018, 105, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Rosenquist, P.B.; Miller, B.; Pillai, A. The Antipsychotic Effects of ECT: A Review of Possible Mechanisms. J. ECT 2014, 30, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, F.; Xiao, W.; Tang, X.; Sha, W.; Zhang, X.; Wang, J. Increased serum brain-derived neurotrophic factor levels following electroconvulsive therapy or antipsychotic treatment in patients with schizophrenia. Eur. Psychiatry 2016, 36, 23–28. [Google Scholar] [CrossRef]
- Shahin, O.; Gohar, S.M.; Ibrahim, W.; El-Makawi, S.M.; Fakher, W.; Taher, D.B.; Abdel Samie, M.; Khalil, M.A.; Saleh, A.A. Brain-Derived neurotrophic factor (BDNF) plasma level increases in patients with resistant schizophrenia treated with electroconvulsive therapy (ECT). Int. J. Psychiatry Clin. Pract. 2022, 26, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, G.; Ricci, V.; Di Nicola, M.; Caltagirone, C.; Bria, P.; Angelucci, F. Brain-derived neurotrophic factor and electroconvulsive therapy in a schizophrenic patient with treatment-resistant paranoid-hallucinatory symptoms. J. ECT 2011, 27, 44–46. [Google Scholar] [CrossRef]
- Xiao, W.; Zhan, Q.; Ye, F.; Tang, X.; Li, J.; Dong, H.; Sha, W.; Zhang, X. Elevated serum vascular endothelial growth factor in treatment-resistant schizophrenia treated with electroconvulsive therapy: Positive association with therapeutic effects. World J. Biol. Psychiatry 2019, 20, 150–158. [Google Scholar] [CrossRef]
- Akbas, I.; Balaban, O.D. Changes in serum levels of brain-derived neurotrophic factor with electroconvulsive therapy and pharmacotherapy and its clinical correlates in male schizophrenia patients. Acta Neuropsychiatr. 2022, 34, 99–105. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Massuda, R.; Torres, M.; Camargo, D.; Fries, G.R.; Gama, C.S.; Belmonte-de-Abreu, P.S.; Kapczinski, F.; Lobato, M.I. Improvement of schizophrenia with electroconvulsive therapy and serum brain-derived neurotrophic factor levels: Lack of association in a pilot study. Psychiatry Clin. Neurosci. 2010, 64, 663–665. [Google Scholar] [CrossRef]
- Ivanov, M.V.; Zubov, D.S. Electroconvulsive therapy in treatment of resistant schizophrenia: Biological markers of efficacy and safety. Zh. Nevrol. Psikhiatrii Im. S.S. Korsakova 2019, 119, 92–97. [Google Scholar] [CrossRef]
- Valiuliene, G.; Valiulis, V.; Dapsys, K.; Vitkeviciene, A.; Gerulskis, G.; Navakauskiene, R.; Germanavicius, A. Brain stimulation effects on serum BDNF, VEGF, and TNFα in treatment-resistant psychiatric disorders. Eur. J. Neurosci. 2021, 53, 3791–3802. [Google Scholar] [CrossRef]
- Kartalci, S.; Karabulut, A.B.; Erbay, L.G.; Acar, C. Effects of Electroconvulsive Therapy on Some Inflammatory Factors in Patients with Treatment-Resistant Schizophrenia. J. ECT 2016, 32, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Nucifora, F.C., Jr.; Woznica, E.; Lee, B.J.; Cascella, N.; Sawa, A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol. Dis. 2019, 131, 104257. [Google Scholar] [CrossRef] [PubMed]
- Campana, M.; Falkai, P.; Siskind, D.; Hasan, A.; Wagner, E. Characteristics and definitions of ultra-treatment-resistant schizophrenia—A systematic review and meta-analysis. Schizophr. Res. 2021, 228, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Samara, M.; Heres, S.; Davis, J.M. Dose Equivalents for Antipsychotic Drugs: The DDD Method. Schizophr. Bull. 2016, 42, S90–S94. [Google Scholar] [CrossRef]
- Gronau, Q.F.; Ly, A.; Wagenmakers, E.J. Informed Bayesian t-Tests. Am. Stat. 2019, 74, 137–143. [Google Scholar] [CrossRef]
- Lee, M.D.; Wagenmakers, E.J. Bayesian Modeling for Cognitive Science: A Practical Course; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- van de Schoot, R.; Depaoli, S.; King, R.; Kramer, B.; Märtens, K.; Tadesse, M.G.; Vannucci, M.; Gelman, A.; Veen, D.; Willemsen, J.; et al. Bayesian statistics and modelling. Nat. Rev. Methods Primers 2021, 1, 1. [Google Scholar] [CrossRef]
- Lin, A.; Kenis, G.; Bignotti, S.; Tura, G.J.; De Jong, R.; Bosmans, E.; Pioli, R.; Altamura, C.; Scharpé, S.; Maes, M. The inflammatory response system in treatment-resistant schizophrenia: Increased serum interleukin-6. Schizophr. Res. 1998, 32, 9–15. [Google Scholar] [CrossRef]
- Eftekharian, M.M.; Omrani, M.D.; Arsang-Jang, S.; Taheri, M.; Ghafouri-Fard, S. Serum cytokine profile in schizophrenic patients. Hum. Antibodies 2019, 27, 23–29. [Google Scholar] [CrossRef]
- Maes, M.; Meltzer, H.Y.; Bosmans, E. Immune-inflammatory markers in schizophrenia: Comparison to normal controls and effects of clozapine. Acta Psychiatr. Scand. 1994, 89, 346–351. [Google Scholar] [CrossRef]
- Tourjman, V.; Kouassi, É.; Koué, M.È.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. [Google Scholar] [CrossRef]
- Patlola, S.R.; Donohoe, G.; McKernan, D.P. Anti-inflammatory effects of 2nd generation antipsychotics in patients with schizophrenia: A systematic review and meta-analysis. J. Psychiatr. Res. 2023, 160, 126–136. [Google Scholar] [CrossRef]
- Sobiś, J.; Rykaczewska-Czerwińska, M.; Świętochowska, E.; Gorczyca, P. Therapeutic effect of aripiprazole in chronic schizophrenia is accompanied by anti-inflammatory activity. Pharmacol. Rep. 2015, 67, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Ajami, A.; Abedian, F.; Hamzeh Hosseini, S.; Akbarian, E.; Alizadeh-Navaei, R.; Taghipour, M. Serum TNF-α, IL-10 and IL-2 in schizophrenic patients before and after treatment with risperidone and clozapine. Iran J. Immunol. 2014, 11, 200–209. [Google Scholar] [PubMed]
- Frydecka, D.; Krzystek-Korpacka, M.; Lubeiro, A.; Stramecki, F.; Stańczykiewicz, B.; Beszłej, J.A.; Piotrowski, P.; Kotowicz, K.; Szewczuk-Bogusławska, M.; Pawlak-Adamska, E.; et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav. Immun. 2018, 71, 28–36. [Google Scholar] [CrossRef]
- Chen, Y.; Bidwell, L.C.; Norton, D. Trait vs. State Markers for Schizophrenia: Identification and Characterization through Visual Processes. Curr. Psychiatry Rev. 2006, 2, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, V.; Ciufolini, S.; Belvederi Murri, M.; Bonaccorso, S.; Di Forti, M.; Giordano, A.; Marques, T.R.; Zunszain, P.A.; Morgan, C.; Murray, R.M.; et al. Cortisol and Inflammatory Biomarkers Predict Poor Treatment Response in First Episode Psychosis. Schizophr. Bull. 2015, 41, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine Alterations in Schizophrenia: An Updated Review. Front. Psychiatry 2019, 6, 892. [Google Scholar] [CrossRef]
- Martins, P.L.B.; Moura, I.A.; Mendes, G.; Ribeiro, V.C.A.F.; Arnaud, A.; Gama, C.S.; Maes, M.; Macedo, D.S.; Pinto, J.P. Immunoinflammatory and oxidative alterations in subjects with schizophrenia under clozapine: A meta-analysis. Eur. Neuropsychopharmacol. 2023, 4, 82–95. [Google Scholar] [CrossRef]
- Halstead, S.; Siskind, D.; Amft, M.; Wagner, E.; Yakimov, V.; Shih-Jung Liu, Z.; Walder, K.; Warren, N. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: A systematic review and network meta-analysis. Lancet Psychiatr. 2023, 10, 260–271. [Google Scholar] [CrossRef]
- Dahan, S.; Bragazzi, N.L.; Yogev, A.; Bar-Gad, M.; Barak, V.; Amital, H.; Amital, D. The relationship between serum cytokine levels and degree of psychosis in patients with schizophrenia. Psychiatry Res. 2018, 268, 467–472. [Google Scholar] [CrossRef]
- Trollor, J.N.; Sachdev, P.S. Electroconvulsive Treatment of Neuroleptic Malignant Syndrome: A Review and Report of Cases. Aust. N. Z. J. Psychiatry 1999, 33, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Liva, S.M.; de Vellis, J. IL-5 induces proliferation and activation of microglia via an unknown receptor. Neurochem. Res. 2001, 26, 629–637. [Google Scholar] [CrossRef]
- Kho, K.H.; Blansjaar, B.A.; de Vries, S.; Babuskova, D.; Zwinderman, A.H.; Linszen, D.H. Electroconvulsive therapy for the treatment of clozapine nonresponders suffering from schizophrenia—An open label study. Eur. Arch. Psychiatry Clin. Neurosci. 2004, 254, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, D.H.; Lee, S.; Yantis, J.; Valdez, C.; Paredes, R.M.; Braida, N. Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: Potential role for IL-17 pathway. Schizophr. Res. 2013, 151, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.; Li, N.; Wang, F.; Xiang, H.; Zhang, Z. Plasma levelsof Th17 related cytokines and complement C3 correlated with aggressive behavior in patients with schizophrenia. Psychiatry Res. 2016, 246, 700–706. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Yang, M.; Xu, L.; Chen, W.; Sun, Y.; Zhang, X. Catalase a interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J. Psychiatry 2023, 79, 103400. [Google Scholar] [CrossRef]
- Enache, D.; Nikkheslat, N.; Fathalla, D.; Morgan, B.P.; Lewis, S.; Drake, R.; Deakin, B.; Walters, J.; Lawrie, S.M.; Egerton, A.; et al. Peripheral immune markers and antipsychotic non-response in psychosis. Schizophr. Res. 2021, 230, 1–8. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Huang, Z.; Liu, X.; Lv, L.; Li, Y. Relationship Between Curative Effect and Serum Inflammatory Factors Level in Male Patients with First-Episode Schizophrenia Treated with Olanzapine. Front. Psychiatry 2021, 12, 782289. [Google Scholar] [CrossRef]
- Lin, Y.; Peng, Y.; Zhu, C.; Su, Y.; Shi, Y.; Lin, Z.; Chen, J.; Cui, D. Pretreatment Serum MCP-1 Level Predicts Response to Risperidone in Schizophrenia. Shanghai Arch. Psychiatry 2017, 29, 287–294. [Google Scholar]
- Zhang, X.Y.; Zhou, D.F.; Cao, L.Y.; Wu, G.Y.; Shen, Y.C. Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: Association with psychopathology and response to antipsychotics. Neuropsychopharmacology 2005, 30, 1532–1538. [Google Scholar] [CrossRef]
- Petrides, G.; Malur, C.; Braga, R.J.; Bailine, S.H.; Schooler, N.R.; Malhotra, A.K.; Kane, J.M.; Sanghani, S.; Goldberg, T.E.; John, M.; et al. Electroconvulsive Therapy Augmentation in Clozapine-Resistant Schizophrenia: A Prospective, Randomized Study. Focus (Am. Psychiatr. Publ.) 2019, 17, 76–82. [Google Scholar] [CrossRef] [PubMed]
- James, D.V.; Gray, N.S. Elective combined electroconvulsive and clozapine therapy. Int. Clin. Psychopharmacol. 1999, 14, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Masoudzadeh, A.; Khalilian, A.R. Comparative study of clozapine, electroshock and the combination of ECT with clozapine in treatment-resistant schizophrenic patients. Pak. J. Biol. Sci. 2007, 10, 4287–4290. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, S.H.; Lee, N.Y.; Youn, T.; Lee, J.H.; Chung, S.; Kim, Y.S.; Chung, I.W. Effectiveness of Electroconvulsive Therapy Augmentation on Clozapine-Resistant Schizophrenia. Psychiatry Investig. 2017, 14, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Ravanić, D.B.; Pantović, M.M.; Milovanović, D.R.; Dukić-Dejanović, S.; Janjić, V.; Ignjatović, D.R.; Jović, S.D.; Jurisić, V.; Jevtović, I. Long-term efficacy of electroconvulsive therapy combined with different antipsychotic drugs in previously resistant schizophrenia. Psychiatr. Danub. 2009, 21, 179–186. [Google Scholar] [PubMed]
- Ahmed, S.; Khan, A.M.; Mekala, H.M.; Venigalla, H.; Ahmed, R.; Etman, A.; Esang, M.; Qureshi, M. Combined use of electroconvulsive therapy and antipsychotics (both clozapine and non-clozapine) in treatment resistant schizophrenia: A comparative meta-analysis. Heliyon 2017, 3, e00429. [Google Scholar] [CrossRef]
- Rojas, M.; Ariza, D.; Ortega, Á.; Riaño-Garzón, M.E.; Chávez-Castillo, M.; Pérez, J.L.; Cudris-Torres, L.; Bautista, M.J.; Medina-Ortiz, O.; Rojas-Quintero, J.; et al. Electroconvulsive Therapy in Psychiatric Disorders: A Narrative Review Exploring Neuroendocrine-Immune Therapeutic Mechanisms and Clinical Implications. Int. J. Mol. Sci. 2022, 23, 6918. [Google Scholar] [CrossRef]
- Moon, S.Y.; Kim, M.; Lho, S.K.; Oh, S.; Kim, S.H.; Kwon, J.S. Systematic Review of the Neural Effect of Electroconvulsive Therapy in Patients with Schizophrenia: Hippocampus and Insula as the Key Regions of Modulation. Psychiatry Investig. 2021, 18, 486–499. [Google Scholar] [CrossRef]
- Arancibia, M.; Vargas, C.; Abarca, M.; Fernández, J.; Peña, D.; Cavieres, Á. Posibles mecanismos de acción de la terapia electroconvulsiva en esquizofrenia: Revisión de la evidencia disponible en investigación con seres humanos [A review about the putative mechanisms of action of electroconvulsive therapy in schizophrenia in human research]. Rev. Méd. Chile 2022, 150, 1493–1500. [Google Scholar]
- Wang, Y.; Zhang, X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res. 2024, 332, 115708. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Gong, M.; Yang, Y.; Ling, Y.; Fang, X.; Zhu, T.; Wang, Z.; Zhang, X.; Zhang, C. Systemic inflammatory biomarkers in Schizophrenia are changed by ECT administration and related to the treatment efficacy. BMC Psychiatry 2024, 24, 53–59. [Google Scholar] [CrossRef]
- Davarinejad, O.; Hendesi, K.; Shahi, H.; Brand, S.; Khazaie, H. A Pilot Study on Daily Intensive ECT over 8 Days Improved Positive and Negative Symptoms and General Psychopathology of Patients with Treatment-Resistant Schizophrenia up to 4 Weeks After Treatment. Neuropsychobiology 2019, 77, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Yamasaki, S.; Kubota, M.; Hazama, M.; Fushimi, Y.; Miyata, J.; Murai, T.; Suwa, T. Commonalities and differences in ECT-induced gray matter volume change between depression and schizophrenia. Neuroimage Clin. 2023, 38, 103429. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.; Kim, M.; Choi, S.; Oh, H.; Jang, M.; Park, S.; Kwon, J.S. MRI textural plasticity in limbic gray matter associated with clinical response to electroconvulsive therapy for psychosis. Mol. Psychiatry 2024, 26, 1–8. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Z.; Xi, Y.; Sun, J.; Liu, P.; Li, P.; Jia, J.; Yin, H.; Qin, W. Predicting responses to electro convulsive therapy in schizophrenia patients undergoing antipsychotic treat ment: Baseline functional connectivity among regions with strong electric field distributions. Psychiatry Res. Neuroimaging 2020, 299, 111059. [Google Scholar] [CrossRef] [PubMed]
- Kanchanatawan, B.; Maes, M. The effects of the tryptophan catabolite pathway on negative symptoms and deficit schizophrenia and partly mediated by executive impairments: Result of partial least squares path modeling. CNS Neurol. Disord. Drug Targets 2018, 17, 473–486. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, L.; Li, X.; Tang, Y.; Wang, P.; Li, C.; Yao, D.; Wang, J.; Luo, C. Common increased hippocampal volume but specific changes in functional connectivity in schizophrenia patients in remission and non-remission following electroconvulsive therapy: A preliminary study. Neuroimage Clin. 2019, 24, 102081. [Google Scholar] [CrossRef]
- Jiang, Y.; Xia, M.; Li, X.; Tang, Y.; Li, C.; Huang, H.; Dong, D.; Jiang, S.; Wang, J.; Xu, J.; et al. Insular changes induced by electroconvulsive therapy response to symptom improvements in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 254–262. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Tang, Y.; Xia, M.; Curtin, A.; Li, J.; Sheng, J.; Zhang, T.; Li, C.; Hui, L.; et al. Altered functional connectivity of the thalamus induced by modified electroconvulsive therapy for schizophrenia. Schizophr. Res. 2020, 218, 209–218. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, Y.; Xia, M.; Tang, Y.; Zhang, T.; Cui, H.; Wang, J.; Xu, L.; Curtin, A.; Sheng, J.; et al. Functional reconfiguration of cerebellum-cerebral neural loop in schizophrenia following electroconvulsive therapy. Psychiatry Res. Neuroimaging 2022, 320, 111441. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, Y.; Xia, M.; Tang, Y.; Zhang, T.; Cui, H.; Wang, J.; Li, Y.; Xu, L.; Curtin, A.; et al. Increased resting-state global functional connectivity density of default mode network in schizophrenia subjects treated with electroconvulsive therapy. Schizophr. Res. 2018, 197, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, Y.; Curtin, A.; Xia, M.; Tang, X.; Zhao, Y.; Li, Y.; Qian, Z.; Sheng, J.; Zhang, T.; et al. ECT-induced brain plasticity correlates with positive symptom improvement in schizophrenia by voxel-based morphometry analysis of grey matter. Brain Stimul. 2019, 12, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.M.M.; Ramos, D.; Xavier, R.F.; Ito, J.T.; de Souza, A.P.; Fernandes, R.A.; Cecchini, R.; e Silva, R.C.R.; Macchione, M.; de Toledo-Arruda, A.C.; et al. Nasal and systemic inflammatory profile after short term smoking cessation. Respir. Med. 2014, 108, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N. Measurement of circulating cytokines and immune-activation markers by multiplex technology in the clinical setting: What are we really measuring? Immunopathol. Dis. Therap. 2015, 6, 19–22. [Google Scholar] [CrossRef]
- Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015, 3, 207–215. [Google Scholar] [CrossRef]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun. 2017, 64, 208–219. [Google Scholar] [CrossRef]
- Stelzhammer, V.; Rothermundt, M.; Guest, P.C.; Michael, N.; Sondermann, C.; Kluge, W.; Martins-de-Souza, D.; Rahmoune, H.; Bahn, S. Proteomic changes induced by anaesthesia and muscle relaxant treatment prior to electroconvulsive therapy. Proteom. Clin. Appl. 2011, 5, 644–649. [Google Scholar] [CrossRef]
- Ryan, K.M.; McLoughlin, D.M. Peripheral blood inflammatory markers in depression: Response to electroconvulsive therapy and relationship with cognitive performance. Psychiatry Res. 2022, 315, 114725. [Google Scholar] [CrossRef]
- Zhou, X.; Fragala, M.S.; Mcelhaney, J.E.; Kuchel, G.A. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 541–547. [Google Scholar] [CrossRef]
No | Sex | Age | Type of Disease | Length of Disease | ECT History | Suicidal Attempts History | SUD # | Clozapine Dose | Chlorpromazine Equivalent of Combined AP | Somatic Comorbidity | PANSS Positive Pre/Post-ECT (% Change) | PANSS Negative Pre/Post-ECT (% Change) | PANSS General Pre/Post-ECT (% Change) | PANSS Total Pre/Post-ECT (% Change) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | M | 24 | R | 3 | No | Yes | Yes | 700 mg | 1870 mg | - | 17/13 (23.5%) | 21/19 (9.5%) | 45/28 (28.9%) | 83/60 (27.7%) |
2. | F | 41 | P | 22 | No | No | Yes | 150 mg | 1150 mg | diabetes, hyperthyroidism | 27/18 (33.3%) | 33/16 (51.5%) | 72/54 (25%) | 132/88 (33.3%) |
3. | M | 20 | P | 4 | Yes | Yes | Yes | - | 525 mg | - | 25/14 (44%) | 33/28 (15.2%) | 58/43 (25.9%) | 116/85 (26.7%) |
4. | M | 41 | P | 20 | No | Yes | No | 300 mg | 675 mg | - | 21/17 (19%) | 24/16 (33.3%) | 58/43 (25.9%) | 103/76 (27%) |
5. | F | 40 | R | 23 | No | No | Yes $ | - | 635 mg | - | 11/9 (18.2%) | 27/17 (37%) | 52/36 (30.8%) | 90/59 (34.4%) |
6. | M | 41 | P | 22 | No | No | Yes $ | 750 mg | 1875 mg | diabetes, hypertension | 24/8 (66.7%) | 28/23 (17.9%) | 62/43 (30.6%) | 114/74 (35.1%) |
7. | M | 33 | P | 12 | No | No | No | - | 325 mg | hypertension | 21/12 (42.9%) | 33/21 (36.4%) | 65/41 (36.9%) | 119/74 (37.8%) |
8. | F | 40 | P | 5 | No | No | No | 675 mg | 1810 mg | - | 25/13 (48%) | 33/19 (42.4%) | 63/28 (55.6%) | 121/60 (50.4%) |
PANSS mean % change | 37% | 30.4% | 32.5% | 34.1% |
Pre-ECT Mean (±SD) | Post-ECT Mean (±SD) | Bayesian t-Test for Dependent Variables | |
---|---|---|---|
PANSS positive symptoms | 21.4 (±5.2) | 13 (±3.5) | 0.002 |
PANSS negative symptoms | 29 (±4.8) | 19.9 (±4.1) | 0.001 |
PANSS general | 59.4 (±8.2) | 39.5 (±8.7) | p < 0.001 |
PANSS total score | 109.8 (±16.5) | 72 (±11.4) | p < 0.001 |
Cytokine | Pre-ECT Mean SD | Post-ECT Mean SD | Controls Mean SD | Pre-ECT vs. Controls | Post-ECT vs. Controls | Pre-ECT vs. Post-ECT |
---|---|---|---|---|---|---|
IL-6 | 458.4 238.91 | 167.4 160.77 | 148.5 78.92 | 0.757 | 0.002 * | 0.011 * |
IL-12 | 108.9 45.82 | 74 15.05 | 14.8 5.44 | 0.234 | 0.006 * | 0.05 * |
IL-5 | 11.2 1.02 | 16.5 10.83 | 5.6 2.81 | 0.153 | 0.822 | 0.202 |
IL-10 | 101.1 38.55 | 8.7 6.26 | 473.3 118.09 | <0.001 ** | 0.194 | 0.001 * |
TGF-β1 | 465.3 94.57 | 558.8 123.66 | 291 237.78 | 0.93 | 0.124 | 0.177 |
Post-ECT Pre-ECT | IL-6 | IL-12 | IL-5 | IL-10 | TGF-β1 | PANSS Positive Symptoms | PANSS Negative Symptoms | PANSS General | PANSS Total Score |
---|---|---|---|---|---|---|---|---|---|
IL-6 | 0.54 | −0.01 | 0.08 | 0.44 | −0.14 | 0.57 | −0.15 | −0.30 | 0.09 |
IL-12 | −0.07 | 0.17 | 0.33 | 0.24 | −0.50 | 0.53 | −0.22 | 0.32 | 0.48 |
IL-5 | 0.10 | −0.36 | 0.19 | 0.12 | 0.17 | −0.01 | −0.22 | 0.06 | 0.05 |
rIL-10 | 0.19 | −0.21 | 0.19 | 0.05 | −0.05 | 0.17 | 0.21 | −0.15 | 0.16 |
TGF-β1 | −0.14 | −0.05 | −0.14 | 0.02 | −0.26 | −0.79 * | 0.59 | −0.49 | −0.53 |
PANSS positive symptoms | 0.43 | 0.02 | −0.06 | 0.37 | 0.24 | 0.71 * | −0.49 | 0.43 | 0.69 |
PANSS negative symptoms | 0.03 | 0.01 | −0.01 | −0.08 | −0.06 | 0.75 * | 0.63 * | −0.11 | −0.02 |
PANSS general | −0.18 | 0.40 | 0.00 | 0.08 | 0.24 | 0.72 * | 0.80 * | 0.61 * | 0.88 ** |
PANSS total score | 0.07 | 0.17 | 0.12 | 0.14 | 0.12 | 0.86 ** | 0.91 ** | 0.93 ** | 0.85 ** |
IL-6 | IL-12 | IL-5 | IL-10 | TGF-β1 | |
---|---|---|---|---|---|
IL-6 | 1 | 0.14 | 0.48 | −0.01 | 0.78 ** |
IL-12 | 1 | 0 | 0.42 | 0.15 | |
IL-5 | 1 | 0.24 | 0.47 | ||
IL-10 | 1 | 0.12 | |||
TGF-β1 | 1 |
Variable | IL-6 Pre/Post-ECT | IL-12 Pre/Post-ECT | IL-5 Pre/Post-ECT | IL-10 Pre/Post-ECT | TGF-β1 Pre/Post-ECT | PANSS Positive Pre/Post-ECT | PANSS Negative Pre/Post-ECT | PANSS General Pre/Post-ECT | PANSS Total Pre/Post-ECT |
---|---|---|---|---|---|---|---|---|---|
IL-6 pre-ECT | 0.57 | −0.12 | 0.36 | 0.31 | 0.48 | −0.08 | −0.14 | −0.56 | −0.40 |
IL-6 post-ECT | −0.23 | −0.06 | −0.14 | 0.54 | −0.02 | −0.04 | −0.24 | −0.11 | −0.31 |
IL-12 pre-ECT | −0.24 | 0.93 ** | 0.02 | −0.43 | 0.00 | −0.19 | 0.13 | 0.01 | −0.04 |
IL-12 post-ECT | 0.45 | 0.05 | −0.24 | −0.07 | 0.43 | 0.28 | 0.87 ** | 0.35 | 0.74 * |
IL-5 pre-ECT | 0.10 | −0.40 | −0.14 | 0.24 | 0.12 | −0.39 | 0.56 | 0.22 | 0.20 |
IL-5 post-ECT | −0.26 | 0.00 | −0.98 ** | 0.52 | 0.00 | 0.55 | 0.46 | 0.69 | 0.59 |
IL-10 pre-ECT | −0.38 | −0.10 | −0.64 | 0.95 ** | −0.26 | 0.48 | −0.08 | 0.44 | 0.12 |
IL-10 post-ECT | −0.33 | 0.14 | −0.24 | −0.17 | −0.10 | 0.18 | 0.02 | 0.17 | 0.19 |
TGF-β1 pre-ECT | 0.33 | −0.17 | −0.52 | 0.00 | 0.57 | 0.22 | 0.18 | −0.10 | 0.07 |
TGF-β1 post-ECT | −0.76 * | 0.19 | −0.14 | 0.33 | −0.93 ** | 0.36 | −0.40 | 0.57 | 0.13 |
PANSS positive pre-ECT | 0.47 | 0.02 | −0.35 | 0.39 | 0.39 | 0.71 * | 0.44 | 0.25 | 0.55 |
PANSS positive post-ECT | 0.49 | 0.11 | 0.04 | 0.08 | 0.66 | −0.15 | 0.28 | −0.37 | −0.13 |
PANSS negative pre-ECT | 0.39 | 0.04 | −0.10 | −0.05 | 0.14 | 0.60 | 0.63 | 0.45 | 0.84 ** |
PANSS negative post-ECT | −0.16 | −0.02 | 0.22 | 0.08 | −0.51 | 0.62 | −0.47 | 0.16 | 0.15 |
PANSS general pre-ECT | 0.13 | 0.37 | −0.49 | −0.04 | 0.17 | 0.53 | 0.78 * | 0.61 | 0.85 ** |
PANSS general post-ECT | 0.58 | 0.36 | −0.01 | −0.28 | 0.65 | 0.21 | 0.17 | −0.32 | 0.02 |
PANSS total score pre-ECT | 0.33 | 0.14 | −0.38 | 0.10 | 0.26 | 0.58 | 0.78 * | 0.53 | 0.85 ** |
PANSS total score post-ECT | 0.51 | 0.41 | 0.00 | −0.12 | 0.58 | 0.29 | 0.16 | −0.27 | 0.06 |
Variable | IL-6 Pre/Post-ECT | IL-12 Pre/Post-ECT | IL-5 Pre/Post-ECT | IL-10 Pre/Post-ECT | TGF-β1 Pre/Post-ECT | PANSS Positive Pre/Post-ECT | PANSS Negative Pre/Post-ECT | PANSS General Pre/Post-ECT | PANSS Total Pre/Post-ECT |
---|---|---|---|---|---|---|---|---|---|
IL-6 pre/post-ECT | 1 | −0.38 | 0.31 | −0.21 | 0.83 * | −0.01 | 0.30 | −0.51 | 0.02 |
IL-12 pre/post-ECT | 1 | 0.07 | −0.26 | −0.29 | −0.06 | 0.02 | 0.18 | 0.01 | |
IL-5 pre/post-ECT | 1 | −0.48 | −0.02 | −0.51 | −0.36 | −0.61 | −0.49 | ||
IL-10 pre/post-ECT | 1 | −0.24 | 0.48 | −0.14 | 0.35 | 0.07 | |||
TGF-β1 pre/post-ECT | 1 | −0.14 | 0.35 | −0.55 | −0.08 | ||||
PANSS positive pre/post-ECT | 1 | 0.06 | 0.53 | 0.59 | |||||
PANSS negative pre/post-ECT | 1 | 0.48 | 0.77 * | ||||||
PANSS general pre/post-ECT | 1 | 0.81 * | |||||||
PANSS total score pre/post-ECT | 1 |
Study | Number of Participants | Changes in Inflammatory Factors Pre/Post-ECT in TRS Patients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TRS | C | BDNF | VEGF | TNF-α | IL-4 | NF-kB | TGF-β1 | IL-6 | IL-12 | IL-5 | IL-10 | |
Fernandes et al., 2010 [38] | 7 | 21 | ↔ | |||||||||
Martinotti et al., 2011 [35] | 1 | 0 | ↑ | |||||||||
Li et al., 2016 [33] | 80 | 77 | ↑ | |||||||||
Kartalci et al., 2016 [41] | 20 | 20 | ↑ | ↔ | ↑ | |||||||
Xiao et al., 2018 [36] | 40 | 43 | ↑ | |||||||||
Ivanov et al., 2019 [39] | 66 | N/A | ↔ | |||||||||
Akbas et al., 2021 [37] | 19 | 35 | ↔ | |||||||||
Valiuliene et al., 2021 [40] | 31 | 19 | ↔ | ↔ | ↓ | |||||||
Shahin et al., 2022 [34] | 45 | N/A | ↑ | |||||||||
This study | 8 | 13 | ↔ | ↓ | ↓ | ↔ | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szota, A.M.; Radajewska, I.; Ćwiklińska-Jurkowska, M.; Lis, K.; Grudzka, P.; Dróżdż, W. Changes in IL-6, IL-12, IL-5, IL-10 and TGF-β1 Concentration in Patients with Treatment-Resistant Schizophrenia (TRS) Following Electroconvulsive Therapy (ECT)—A Pilot Study. Biomedicines 2024, 12, 2637. https://doi.org/10.3390/biomedicines12112637
Szota AM, Radajewska I, Ćwiklińska-Jurkowska M, Lis K, Grudzka P, Dróżdż W. Changes in IL-6, IL-12, IL-5, IL-10 and TGF-β1 Concentration in Patients with Treatment-Resistant Schizophrenia (TRS) Following Electroconvulsive Therapy (ECT)—A Pilot Study. Biomedicines. 2024; 12(11):2637. https://doi.org/10.3390/biomedicines12112637
Chicago/Turabian StyleSzota, Anna Maria, Izabela Radajewska, Małgorzata Ćwiklińska-Jurkowska, Kinga Lis, Przemysław Grudzka, and Wiktor Dróżdż. 2024. "Changes in IL-6, IL-12, IL-5, IL-10 and TGF-β1 Concentration in Patients with Treatment-Resistant Schizophrenia (TRS) Following Electroconvulsive Therapy (ECT)—A Pilot Study" Biomedicines 12, no. 11: 2637. https://doi.org/10.3390/biomedicines12112637
APA StyleSzota, A. M., Radajewska, I., Ćwiklińska-Jurkowska, M., Lis, K., Grudzka, P., & Dróżdż, W. (2024). Changes in IL-6, IL-12, IL-5, IL-10 and TGF-β1 Concentration in Patients with Treatment-Resistant Schizophrenia (TRS) Following Electroconvulsive Therapy (ECT)—A Pilot Study. Biomedicines, 12(11), 2637. https://doi.org/10.3390/biomedicines12112637