Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data
Abstract
:1. Introduction
2. Aromatic Plants and Volatile Compounds
3. Anti-Ageing Potential of Low-Molecular-Weight Terpenes
3.1. Ageing Hallmarks
3.2. Monoterpenes and Essential Oils in Ageing Hallmarks
3.2.1. Primary Hallmarks
Genomic Instability
3.2.2. Antagonistic Hallmarks
Mitochondrial Dysfunction
Cellular Senescence
3.2.3. Integrative Hallmarks
Disabled Macroautophagy
Inflammation
Dysbiosis
4. Discussion and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Ageing. Available online: https://www.who.int/health-topics/ageing#tab=tab_2 (accessed on 20 December 2023).
- Li, Z.; Zhang, Z.; Ren, Y.; Wang, Y.; Fang, J.; Yue, H.; Ma, S.; Guan, F. Aging and age-related diseases: From mechanisms to therapeutic strategies. Biogerontology 2021, 22, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Ros, M.; Carrascosa, J.M. Current nutritional and pharmacological anti-aging interventions. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165612. [Google Scholar] [CrossRef] [PubMed]
- Donati Zeppa, S.; Agostini, D.; Ferrini, F.; Gervasi, M.; Barbieri, E.; Bartolacci, A.; Piccoli, G.; Saltarelli, R.; Sestili, P.; Stocchi, V. Interventions on gut microbiota for healthy aging. Cells 2022, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Schmauck-Medina, T.; Molière, A.; Lautrup, S.; Zhang, J.; Chlopicki, S.; Madsen, H.B.; Cao, S.; Soendenbroe, C.; Mansell, E.; Vestergaard, M.B.; et al. New hallmarks of ageing: A 2022 Copenhagen ageing meeting summary. Aging 2022, 14, 6829–6839. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Xu, M.; Pirtskhalava, T.; Farr, J.N.; Weigand, B.M.; Palmer, A.K.; Weivoda, M.M.; Inman, C.L.; Ogrodnik, M.B.; Hachfeld, C.M.; Fraser, D.G.; et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 2018, 24, 1246–1256. [Google Scholar] [CrossRef]
- Baar, M.P.; Brandt, R.M.C.; Putavet, D.A.; Klein, J.D.D.; Derks, K.W.J.; Bourgeois, B.R.M.; Stryeck, S.; Rijksen, Y.; van Willigenburg, H.; Feijtel, D.A.; et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017, 169, 132–147.e16. [Google Scholar] [CrossRef]
- Justice, J.N.; Nambiar, A.M.; Tchkonia, T.; LeBrasseur, N.K.; Pascual, R.; Hashmi, S.K.; Prata, L.; Masternak, M.M.; Kritchevsky, S.B.; Musi, N.; et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 2019, 40, 554–563. [Google Scholar] [CrossRef]
- Gao, L.; Liu, X.; Luo, X.; Lou, X.; Li, P.; Li, X.; Liu, X. Antiaging effects of dietary supplements and natural products. Front. Pharmacol. 2023, 14, 1192714. [Google Scholar] [CrossRef] [PubMed]
- Potocka, W.; Assy, Z.; Bikker, F.J.; Laine, M.L. Current and potential applications of monoterpenes and their derivatives in oral health care. Molecules 2023, 28, 7178. [Google Scholar] [CrossRef] [PubMed]
- ISO 9235:2013; Aromatic Natural Raw Materials—Vocabulary. ISO: Geneva, Switzerland, 2013.
- European Directorate for the Quality of Medicines & HealthCare (EDQM). European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- European Medicines Agency European Union Monographs and List Entries. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/herbal-medicinal-products/european-union-monographs-and-list-entries (accessed on 20 December 2023).
- Zuzarte, M.; Salgueiro, L. Essential Oils Chemistry. In Bioactive Essential Oils and Cancer; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–61. [Google Scholar]
- Salakhutdinov, N.F.; Volcho, K.P.; Yarovaya, O.I. Monoterpenes as a renewable source of biologically active compounds. Pure Appl. Chem. 2017, 89, 1105–1117. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives—Recent development in biological and medical applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef]
- Fulop, T.; Witkowski, J.M.; Olivieri, F.; Larbi, A. The integration of inflammaging in age-related diseases. Semin. Immunol. 2018, 40, 17–35. [Google Scholar] [CrossRef]
- Sierra, F. The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb. Perspect. Med. 2016, 6, a025163. [Google Scholar] [CrossRef]
- Gantchev, J.; Ramchatesingh, B.; Berman-Rosa, M.; Sikorski, D.; Raveendra, K.; Amar, L.; Xu, H.H.; Villarreal, A.M.; Ordaz, D.J.G.; Litvinov, I.V. Tools used to assay genomic instability in cancers and cancer meiomitosis. J. Cell Commun. Signal. 2022, 16, 159–177. [Google Scholar] [CrossRef]
- Catanzaro, I.; Caradonna, F.; Barbata, G.; Saverini, M.; Mauro, M.; Sciandrello, G. Genomic instability induced by α-pinene in Chinese hamster cell line. Mutagenesis 2012, 27, 463–469. [Google Scholar] [CrossRef]
- Mauro, M.; Catanzaro, I.; Naselli, F.; Sciandrello, G.; Caradonna, F. Abnormal mitotic spindle assembly and cytokinesis induced by D-Limonene in cultured mammalian cells. Mutagenesis 2013, 28, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Warman, D.J.; Jia, H.; Kato, H. Effects of Thyme (Thymus vulgaris L.) Essential oil on aging-induced brain inflammation and blood telomere attrition in chronologically aged C57BL/6J mice. Antioxidants 2023, 12, 1178. [Google Scholar] [CrossRef] [PubMed]
- Cherry, A.D.; Piantadosi, C.A. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. Antioxid. Redox Signal. 2015, 22, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Zuzarte, M.; Marques, C.; Viana, S.; Preguiça, I.; Baptista, R.; Ferreira, C.; Cavaleiro, C.; Domingues, N.; Sardão, V.A.; et al. 1,8-Cineole ameliorates right ventricle dysfunction associated with pulmonary arterial hypertension by restoring connexin43 and mitochondrial homeostasis. Pharmacol. Res. 2022, 180, 106151. [Google Scholar] [CrossRef]
- Chen, L.; Tao, D.; Yu, F.; Wang, T.; Qi, M.; Xu, S. Cineole regulates Wnt/β-catenin pathway through Nrf2/keap1/ROS to inhibit bisphenol A-induced apoptosis, autophagy inhibition and immunosuppression of grass carp hepatocytes. Fish Shellfish Immunol. 2022, 131, 30–41. [Google Scholar] [CrossRef]
- Sun, W.; Liu, H.; Zhu, H.; Gao, M.; Xu, S. Eucalyptol antagonized the apoptosis and immune dysfunction of grass carp hepatocytes induced by tetrabromobisphenol A by regulating ROS/ASK1/JNK pathway. Environ. Toxicol. 2023, 38, 820–832. [Google Scholar] [CrossRef]
- Liu, H.; Sun, W.; Zhu, H.; Guo, J.; Liu, M.; Xu, S. Eucalyptol relieves the toxicity of diisobutyl phthalate in Ctenopharyngodon idellus kidney cells through Keap1/Nrf2/HO-1 pathway: Apoptosis-autophagy crosstalk and immunoregulation. Fish Shellfish Immunol. 2022, 130, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Kim, J.; Moon, B.S.; Park, S.M.; Jung, D.E.; Kang, S.Y.; Lee, S.J.; Oh, S.J.; Kwon, S.H.; Nam, M.H.; et al. Camphene attenuates skeletal muscle atrophy by regulating oxidative stress and lipid metabolism in rats. Nutrients 2020, 12, 3731. [Google Scholar] [CrossRef]
- Chenet, A.L.; Duarte, A.R.; de Almeida, F.J.S.; Andrade, C.M.B.; de Oliveira, M.R. Carvacrol depends on heme oxygenase-1 (HO-1) to exert antioxidant, anti-inflammatory, and mitochondria-related protection in the human neuroblastoma SH-SY5Y cells line exposed to hydrogen peroxide. Neurochem. Res. 2019, 44, 884–896. [Google Scholar] [CrossRef]
- Rekha, K.R.; Inmozhi Sivakamasundari, R. Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s Disease. Neurochem. Res. 2018, 43, 1947–1962. [Google Scholar] [CrossRef]
- Kumar, K.J.S.; Vani, M.G.; Wang, S. Limonene protects human skin keratinocytes against UVB-induced photodamage and photoaging by activating the Nrf2-dependent antioxidant defense system. Environ. Toxicol. 2022, 37, 2897–2909. [Google Scholar] [CrossRef]
- Suh, K.S.; Chon, S.; Choi, E.M. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function. Chem. Biol. Interact. 2017, 278, 15–21. [Google Scholar] [CrossRef]
- Sabogal-Guáqueta, A.M.; Hobbie, F.; Keerthi, A.; Oun, A.; Kortholt, A.; Boddeke, E.; Dolga, A. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed. Pharmacother. 2019, 118, 109295. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Acharya, T.K.; Halder, R.R.; Mahapatra, P.; Chang, Y.-T.; Goswami, C. Menthol causes mitochondrial Ca2+-influx, affects structure-function relationship and cools mitochondria. Life Sci. 2023, 331, 122032. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.; Ngo, H.T.T.; Park, B.; Seo, S.-A.; Yang, J.-E.; Yi, T.-H. Myrcene, an aromatic volatile compound, ameliorates human skin extrinsic aging via regulation of MMPs production. Am. J. Chin. Med. 2017, 45, 1113–1124. [Google Scholar] [CrossRef]
- Ahmed, S.; Panda, S.R.; Kwatra, M.; Sahu, B.D.; Naidu, V. Perillyl alcohol attenuates NLRP3 inflammasome activation and rescues dopaminergic neurons in experimental in vitro and in vivo models of Parkinson’s Disease. ACS Chem. Neurosci. 2022, 13, 53–68. [Google Scholar] [CrossRef]
- Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Fatima, M.; Mobarak Hossain, M. Evaluation of phytomedicinal potential of perillyl alcohol in an in vitro Parkinson’s Disease model. Drug Dev. Res. 2018, 79, 218–224. [Google Scholar] [CrossRef]
- Zafeer, M.F.; Firdaus, F.; Ahmad, F.; Ullah, R.; Anis, E.; Waseem, M.; Ali, A.; Hossain, M.M. Perillyl alcohol alleviates amyloid-β peptides-induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. Int. J. Biol. Macromol. 2018, 109, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Arruri, V.K.; Gundu, C.; Kalvala, A.K.; Sherkhane, B.; Khatri, D.K.; Singh, S.B. Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr. Neurosci. 2022, 25, 1731–1746. [Google Scholar] [CrossRef]
- Prasad, S.N.; Muralidhara. Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: Relevance to neuropathy. J. Insect Physiol. 2014, 60, 7–16. [Google Scholar] [CrossRef]
- Prasad, S.N.; Muralidhara. Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: Attenuation of behavioral impairments and biochemical perturbations. J. Neurosci. Res. 2014, 92, 1205–1216. [Google Scholar] [CrossRef]
- Prasad, S.N.; Muralidhara. Mitigation of acrylamide-induced behavioral deficits, oxidative impairments and neurotoxicity by oral supplements of geraniol (a monoterpene) in a rat model. Chem. Biol. Interact. 2014, 223, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Eddin, L.B.; Azimullah, S.; Jha, N.K.; Nagoor Meeran, M.F.; Beiram, R.; Ojha, S. Limonene, a monoterpene, mitigates rotenone-induced dopaminergic neurodegeneration by modulating neuroinflammation, Hippo signaling and apoptosis in rats. Int. J. Mol. Sci. 2023, 24, 5222. [Google Scholar] [CrossRef] [PubMed]
- Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Khan, A.A.; Hossain, M.M. Perillyl alcohol mitigates behavioural changes and limits cell death and mitochondrial changes in unilateral 6-OHDA lesion model of Parkinson’s Disease through alleviation of oxidative stress. Neurotox. Res. 2020, 38, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Morselli, M.B.; Baldissera, M.D.; Souza, C.F.; Reis, J.H.; Baldisserotto, B.; Sousa, A.A.; Zimmer, F.; Lopes, D.L.A.; Petrolli, T.G.; Da Silva, A.S. Effects of thymol supplementation on performance, mortality and branchial energetic metabolism in grass carp experimentally infected by Aeromonas hydrophila. Microb. Pathog. 2020, 139, 103915. [Google Scholar] [CrossRef] [PubMed]
- Nagoor Meeran, M.F.; Jagadeesh, G.S.; Selvaraj, P. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress. Chem. Biol. Interact. 2016, 244, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef]
- Yu, G.J.; Choi, I.-W.; Kim, G.-Y.; Hwang, H.J.; Kim, B.W.; Kim, C.M.; Kim, W.-J.; Yoo, Y.H.; Choi, Y.H. Induction of reactive oxygen species–mediated apoptosis by purified Schisandrae semen essential oil in human leukemia U937 cells through activation of the caspase cascades and nuclear relocation of mitochondrial apoptogenic factors. Nutr. Res. 2015, 35, 910–920. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Q.; Jia, Z.; Yang, X.; Zhang, H.; Luo, H. Volatile oil from Alpinia officinarum promotes lung cancer regression in vitro and in vivo. Food Funct. 2018, 9, 4998–5006. [Google Scholar] [CrossRef]
- Chang, W.; Cheng, F.; Wang, S.; Chou, S.; Shih, Y. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. Environ. Toxicol. 2017, 32, 456–468. [Google Scholar] [CrossRef]
- Cavalcanti, B.C.; Magalhães, I.L.; Rocha, D.D.; Stefânio Barreto, F.; de Andrade Neto, J.B.; Magalhães, H.I.F.; dos Santos, C.C.; de Moraes, M.O. In vitro evaluation of cytotoxic potential of essential oil extracted from leaves of Croton heliotropiifolius Kunth in human tumor cells. J. Toxicol. Environ. Health Part A 2024, 87, 91–107. [Google Scholar] [CrossRef]
- Khan, I.; Bahuguna, A.; Bhardwaj, M.; Pal Khaket, T.; Kang, S.C. Carvacrol nanoemulsion evokes cell cycle arrest, apoptosis induction and autophagy inhibition in doxorubicin resistant-A549 cell line. Artif. Cells Nanomed. Biotechnol. 2018, 46, 664–675. [Google Scholar] [CrossRef]
- Zhang, G.; He, J.; Ye, X.; Zhu, J.; Hu, X.; Shen, M.; Ma, Y.; Mao, Z.; Song, H.; Chen, F. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Shahina, Z.; Al Homsi, R.; Price, J.D.W.; Whiteway, M.; Sultana, T.; Dahms, T.E.S. Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS ONE 2022, 17, e0277097. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Famous, E.; Pan, S.; Peng, X.; Tian, J. Antioxidant, hepatoprotective and antifungal activities of black pepper (Piper nigrum L.) essential oil. Food Chem. 2021, 346, 128845. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Ban, X.; Zeng, H.; He, J.; Chen, Y.; Wang, Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE 2012, 7, e30147. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, H.; Tian, J.; Ban, X.; Ma, B.; Wang, Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J. Med. Microbiol. 2013, 62, 1175–1183. [Google Scholar] [CrossRef]
- de Carvalho, N.R.; Rodrigues, N.R.; Macedo, G.E.; Bristot, I.J.; Boligon, A.A.; de Campos, M.M.; Cunha, F.A.B.; Coutinho, H.D.; Klamt, F.; Merritt, T.J.S.; et al. Eugenia uniflora leaf essential oil promotes mitochondrial dysfunction in Drosophila melanogaster through the inhibition of oxidative phosphorylation. Toxicol. Res. 2017, 6, 526–534. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Baldisserotto, B. Melaleuca alternifolia essential oil prevents bioenergetics dysfunction in spleen of silver catfish naturally infected with Ichthyophthirius multifiliis. Microb. Pathog. 2018, 123, 47–51. [Google Scholar] [CrossRef]
- Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 2018, 28, 436–453. [Google Scholar] [CrossRef]
- Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular senescence: Aging, cancer, and injury. Physiol. Rev. 2019, 99, 1047–1078. [Google Scholar] [CrossRef]
- Freund, A.; Orjalo, A.V.; Desprez, P.-Y.; Campisi, J. Inflammatory networks during cellular senescence: Causes and consequences. Trends Mol. Med. 2010, 16, 238–246. [Google Scholar] [CrossRef]
- Soto-Gamez, A.; Demaria, M. Therapeutic interventions for aging: The case of cellular senescence. Drug Discov. Today 2017, 22, 786–795. [Google Scholar] [CrossRef]
- González-Gualda, E.; Baker, A.G.; Fruk, L.; Muñoz-Espín, D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021, 288, 56–80. [Google Scholar] [CrossRef]
- Tran, T.A.; Ho, M.T.; Song, Y.W.; Cho, M.; Cho, S.K. Camphor induces proliferative and anti-senescence activities in human primary dermal fibroblasts and inhibits UV-induced wrinkle formation in mouse skin. Phyther. Res. 2015, 29, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Cherng, J.Y.; Chen, L.Y.; Shih, M.F. Preventive Effects of β-thujaplicin against UVB-induced MMP-1 and MMP-3 mRNA expressions in skin fibroblasts. Am. J. Chin. Med. 2012, 40, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, R.; Kanimozhi, G.; Prasad, N.R.; Agilan, B.; Ganesan, M.; Srithar, G. Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sci. 2018, 212, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, R.; Kanimozhi, G.; Madahavan, N.R.; Agilan, B.; Ganesan, M.; Prasad, N.R.; Rathinaraj, P. Alpha-pinene attenuates UVA-induced photoaging through inhibition of matrix metalloproteinases expression in mouse skin. Life Sci. 2019, 217, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Lagoumtzi, S.M.; Chondrogianni, N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic. Biol. Med. 2021, 171, 169–190. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.L.; Ford, J.M.; Hollander, M.C.; Bortnick, R.A.; Amundson, S.A.; Seo, Y.R.; Deng, C.-X.; Hanawalt, P.C.; Fornace, A.J. p53-Mediated DNA repair responses to UV radiation: Studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol. Cell. Biol. 2000, 20, 3705–3714. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Erster, S.; Zaika, A.; Petrenko, O.; Chittenden, T.; Pancoska, P.; Moll, U.M. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 2003, 11, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-C.; Chen, H.-Y.; Chuang, W.-L.; Wang, H.-C.; Hsieh, C.-P.; Huang, Y.-F. Different cell responses to hinokitiol treatment result in senescence or apoptosis in Hhuman osteosarcoma cell lines. Int. J. Mol. Sci. 2022, 23, 1632. [Google Scholar] [CrossRef]
- Li, L.-H.; Wu, P.; Lee, J.-Y.; Li, P.-R.; Hsieh, W.-Y.; Ho, C.-C.; Ho, C.-L.; Chen, W.-J.; Wang, C.-C.; Yen, M.-Y.; et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE 2014, 9, e104203. [Google Scholar] [CrossRef]
- Rodenak-Kladniew, B.; Castro, A.; Stärkel, P.; Galle, M.; Crespo, R. 1,8-Cineole promotes G0/G1 cell cycle arrest and oxidative stress-induced senescence in HepG2 cells and sensitizes cells to anti-senescence drugs. Life Sci. 2020, 243, 117271. [Google Scholar] [CrossRef]
- Jeon, J.-H. Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int. J. Oncol. 2011, 40, 1683–1690. [Google Scholar] [CrossRef]
- Naksawat, M.; Norkaew, C.; Charoensedtasin, K.; Roytrakul, S.; Tanyong, D. Anti-leukemic effect of menthol, a peppermint compound, on induction of apoptosis and autophagy. PeerJ 2023, 11, e15049. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.-C.; Hsieh, S.-L.; Chen, C.-T.; Chung, J.-G.; Wang, J.-J.; Wu, C.-C. Induction of α-Pphellandrene on autophagy in human liver tumor cells. Am. J. Chin. Med. 2015, 43, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Pedreiro, S.; Cavaleiro, C.; Cruz, M.T.; Figueirinha, A.; Salgueiro, L. Effect of Thymbra capitata (L.) Cav. on inflammation, senescence and cell migration. Nutrients 2023, 15, 1930. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Gonçalves, M.J.; Silva, A.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Chemical profile, anti-microbial and anti-inflammaging activities of Santolina rosmarinifolia L. essential oil from Portugal. Antibiotics 2023, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Maccioni, D.; Cocco, E.; Gonçalves, M.J.; Porcedda, S.; Piras, A.; Cruz, M.T.; Salgueiro, L.; Maxia, A. Advances in the phytochemical characterisation and bioactivities of Salvia aurea L. Essential Oil. Plants 2023, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Moreira, P.; Cavaleiro, C.; Pereira, C.; Cruz, M.T.; Salgueiro, L. Effect of Ferulago lutea (Poir.) Grande essential oil on molecular hallmarks of skin aging. Plants 2023, 12, 3741. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.; Sousa, F.J.; Matos, P.; Brites, G.S.; Gonçalves, M.J.; Cavaleiro, C.; Figueirinha, A.; Salgueiro, L.; Batista, M.T.; Branco, P.C.; et al. Chemical composition and effect against skin alterations of bioactive extracts obtained by the hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics 2022, 14, 561. [Google Scholar] [CrossRef]
- Ledrhem, M.; Nakamura, M.; Obitsu, M.; Hirae, K.; Kameyama, J.; Bouamama, H.; Gadhi, C.; Katakura, Y. Essential oils derived from Cistus species activate mitochondria by inducing SIRT1 expression in human keratinocytes, leading to senescence inhibition. Molecules 2022, 27, 2053. [Google Scholar] [CrossRef]
- Salsabila, D.; Wardani, R.; Hasanah, N.; Tafrihani, A.; Zulfin, U.; Ikawati, M.; Meiyanto, E. Cytoprotective properties of citronella oil (Cymbopogon nardus (L.) Rendl.) and lemongrass oil (Cymbopogon citratus (DC.) Stapf) through attenuation of senescent-induced chemotherapeutic agent doxorubicin on Vero and NIH-3T3 Cells. Asian Pac. J. Cancer Prev. 2023, 24, 1667–1675. [Google Scholar] [CrossRef]
- Liao, J.; Fu, L.; Tai, S.; Xu, Y.; Wang, S.; Guo, L.; Guo, D.; Du, Y.; He, J.; Yang, H.; et al. Essential oil from Fructus Alpiniae zerumbet ameliorates vascular endothelial cell senescence in diabetes by regulating PPAR-γ signalling: A 4D label-free quantitative proteomics and network pharmacology study. J. Ethnopharmacol. 2024, 321, 117550. [Google Scholar] [CrossRef]
- Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; et al. Molecular definitions of autophagy and related processes. EMBO J. 2017, 36, 1811–1836. [Google Scholar] [CrossRef]
- Netea-Maier, R.T.; Plantinga, T.S.; van de Veerdonk, F.L.; Smit, J.W.; Netea, M.G. Modulation of inflammation by autophagy: Consequences for human disease. Autophagy 2016, 12, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Fang, X.; Wang, X. Autophagy and inflammation. Clin. Transl. Med. 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Leidal, A.M.; Levine, B.; Debnath, J. Autophagy and the cell biology of age-related disease. Nat. Cell Biol. 2018, 20, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Singh, R.; Aschner, M. Methods for the detection of autophagy in mammalian cells. Curr. Protoc. Toxicol. 2016, 69, 20.12.1–20.12.26. [Google Scholar] [CrossRef]
- Joshi, S.; Kundu, S.; Priya, V.V.; Kulhari, U.; Mugale, M.N.; Sahu, B.D. Anti-inflammatory activity of carvacrol protects the heart from lipopolysaccharide-induced cardiac dysfunction by inhibiting pyroptosis via NLRP3/Caspase1/Gasdermin D signaling axis. Life Sci. 2023, 324, 121743. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Hu, Q.; Wang, S.; Tao, L.; Hu, X.; Shen, X. 1,8-Cineole ameliorates endothelial injury and hypertension induced by L-NAME through regulation of autophagy via PI3K/mTOR signaling pathway. Eur. J. Pharmacol. 2023, 954, 175863. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.; Orak, D.; Yilmaz, D.; Cimen, H.; Sipahi, H. Modulation of cigarette smoke extract-induced human bronchial epithelial damage by eucalyptol and curcumin. Hum. Exp. Toxicol. 2021, 40, 1445–1462. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-H.; Lee, J.-H.; Lee, Y.-J.; Park, S.-Y. Hinokitiol protects primary neuron cells against prion peptide-induced toxicity via autophagy flux regulated by hypoxia inducing factor-1. Oncotarget 2016, 7, 29944–29957. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Liang, S.; Cai, Q.; Liu, J.; Jin, L.; Yang, Z.; Chen, X. Hinokitiol protects cardiomyocyte from oxidative damage by inhibiting GSK3β-mediated autophagy. Oxid. Med. Cell. Longev. 2022, 2022, 2700000. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, W.; Jia, Y.; Ye, B.; Liu, S.; Fu, S.; Liu, J.; Hu, G. Menthol targeting AMPK alleviates the inflammatory response of bovine mammary epithelial cells and restores the synthesis of milk fat and milk protein. Front. Immunol. 2021, 12, 782989. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zheng, L.; Chen, S.; Liang, X.; Song, X.; Wang, Y.; Hua, B.; Qiu, L. Thymol ameliorates ethanol-induced hepatotoxicity via regulating metabolism and autophagy. Chem. Biol. Interact. 2023, 370, 110308. [Google Scholar] [CrossRef]
- Yu, B.; Ruan, M.; Liang, T.; Huang, S.-W.; Yu, Y.; Cheng, H.-B.; Shen, X.-C. The synergic effect of tetramethylpyrazine phosphate and borneol for protecting against ischemia injury in cortex and hippocampus regions by modulating apoptosis and autophagy. J. Mol. Neurosci. 2017, 63, 70–83. [Google Scholar] [CrossRef]
- Jayaraj, R.L.; Azimullah, S.; Parekh, K.A.; Ojha, S.K.; Beiram, R. Effect of citronellol on oxidative stress, neuroinflammation and autophagy pathways in an in vivo model of Parkinson’s disease. Heliyon 2022, 8, e11434. [Google Scholar] [CrossRef]
- Younis, N.S.; Abduldaium, M.S.; Mohamed, M.E. Protective Effect of geraniol on oxidative, inflammatory and apoptotic alterations in isoproterenol-induced cardiotoxicity: Role of the Keap1/Nrf2/HO-1 and PI3K/Akt/mTOR pathways. Antioxidants 2020, 9, 977. [Google Scholar] [CrossRef]
- Azimullah, S.; Jayaraj, R.L.; Meeran, M.F.N.; Jalal, F.Y.; Adem, A.; Ojha, S.; Beiram, R. Myrcene salvages rotenone-induced loss of dopaminergic neurons by inhibiting oxidative stress, inflammation, apoptosis, and autophagy. Molecules 2023, 28, 685. [Google Scholar] [CrossRef]
- Dou, X.; Yan, D.; Liu, S.; Gao, L.; Shan, A. Thymol alleviates LPS-induced liver inflammation and apoptosis by inhibiting NLRP3 inflammasome activation and the AMPK-mTOR-autophagy pathway. Nutrients 2022, 14, 2809. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, B.-K.; Chen, P.-H.; Chen, L.-C. Hinokitiol induces cell death and inhibits epidermal growth factor-induced cell migration and signaling pathways in human cervical adenocarcinoma. Taiwan J. Obstet. Gynecol. 2020, 59, 698–705. [Google Scholar] [CrossRef]
- Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyż, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 2019, 134, 172–181. [Google Scholar] [CrossRef]
- Banjerdpongchai, R.; Khaw-on, P. Terpinen-4-ol induces autophagic and apoptotic cell death in human leukemic HL-60 Cells. Asian Pac. J. Cancer Prev. 2013, 14, 7537–7542. [Google Scholar] [CrossRef]
- Athamneh, K.; Alneyadi, A.; Alsamri, H.; Alrashedi, A.; Palakott, A.; El-Tarabily, K.A.; Eid, A.H.; Al Dhaheri, Y.; Iratni, R. Origanum majorana essential oil triggers p38 MAPK-mediated protective autophagy, apoptosis, and caspase-dependent cleavage of P70S6K in colorectal cancer cells. Biomolecules 2020, 10, 412. [Google Scholar] [CrossRef]
- Zhao, J.; Ding, K.; Hou, M.; Li, Y.; Hou, X.; Dai, W.; Li, Z.; Zhao, J.; Liu, W.; Bai, Z. Schisandra chinensis essential oil attenuates acetaminophen-induced liver injury through alleviating oxidative stress and activating autophagy. Pharm. Biol. 2022, 60, 958–967. [Google Scholar] [CrossRef]
- Chen, X.; Liao, D.; Sun, M.; Cui, X.; Wang, H. Essential oil of Acorus tatarinowii Schott ameliorates Aβ-induced toxicity in Caenorhabditis elegans through an autophagy pathway. Oxid. Med. Cell. Longev. 2020, 2020, 3515609. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Kushner, I. It’s time to redefine inflammation. FASEB J. 2017, 31, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A.; Ascaso, F.J.; Huerva, V. Age-related macular degeneration in the aspect of chronic low-grade inflammation (Pathophysiological paraInflammation). Mediators Inflamm. 2014, 2014, 930671. [Google Scholar] [CrossRef] [PubMed]
- Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 580–592. [Google Scholar] [CrossRef]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic inflammation and the hallmarks of aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef]
- Zhao, W.; Deng, C.; Han, Q.; Xu, H.; Chen, Y. Carvacrol may alleviate vascular inflammation in diabetic db/db mice. Int. J. Mol. Med. 2020, 46, 977–988. [Google Scholar] [CrossRef]
- Sousa, C.; Neves, B.M.; Leitão, A.J.; Mendes, A.F. Elucidation of the mechanism underlying the anti-inflammatory properties of (S)-(+)-Carvone identifies a novel class of Sirtuin-1 activators in a murine macrophage cell line. Biomedicines 2021, 9, 777. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Neves, B.M.; Leitão, A.J.; Mendes, A.F. Molecular mechanisms underlying the anti-inflammatory properties of (R)-(-)-Carvone: Potential roles of JNK1, Nrf2 and NF-κB. Pharmaceutics 2023, 15, 249. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol. 2020, 177, 2042–2057. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yu, C.; Chen, Y.; Liu, S.; Azevedo, P.; Gong, J.; Karmin, O.; Yang, C. Citral alleviates peptidoglycan-induced inflammation and disruption of barrier functions in porcine intestinal epithelial cells. J. Cell. Physiol. 2022, 237, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.B.M.; das Neves Selis, N.; Brito, T.L.S.; Sampaio, B.A.; de Souza Bittencourt, R.; Oliveira, C.N.T.; Júnior, M.N.S.; Almeida, C.F.; Almeida, P.P.; Campos, G.B.; et al. Citral modulates human monocyte responses to Staphylococcus aureus infection. Sci. Rep. 2021, 11, 22029. [Google Scholar] [CrossRef] [PubMed]
- Horváth, G.; Horváth, A.; Reichert, G.; Böszörményi, A.; Sipos, K.; Pandur, E. Three chemotypes of thyme (Thymus vulgaris L.) essential oil and their main compounds affect differently the IL-6 and TNFα cytokine secretions of BV-2 microglia by modulating the NF-κB and C/EBPβ signalling pathways. BMC Complement. Med. Ther. 2021, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xu, Y.; Zhang, M.; Li, Y. Geraniol ameliorates acute liver failure induced by lipopolysaccharide/D-galactosamine via regulating macrophage polarization and NLRP3 inflammasome activation by PPAR-γ methylation Geraniol alleviates acute liver failure. Biochem. Pharmacol. 2023, 210, 115467. [Google Scholar] [CrossRef] [PubMed]
- Ammar, R.B.; Mohamed, M.E.; Alfwuaires, M.; Abdulaziz Alamer, S.; Bani Ismail, M.; Veeraraghavan, V.P.; Sekar, A.K.; Ksouri, R.; Rajendran, P. Anti-inflammatory activity of geraniol isolated from lemon grass on Ox-LDL-stimulated endothelial cells by upregulation of Heme Oxygenase-1 via PI3K/Akt and Nrf-2 signaling pathways. Nutrients 2022, 14, 4817. [Google Scholar] [CrossRef]
- Hiyoshi, T.; Domon, H.; Maekawa, T.; Yonezawa, D.; Kunitomo, E.; Tabeta, K.; Terao, Y. Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice. Arch. Oral Biol. 2020, 112, 104679. [Google Scholar] [CrossRef]
- Du, J.; Liu, D.; Zhang, X.; Zhou, A.; Su, Y.; He, D.; Fu, S.; Gao, F. Menthol protects dopaminergic neurons against inflammation-mediated damage in lipopolysaccharide (LPS)-Evoked model of Parkinson’s disease. Int. Immunopharmacol. 2020, 85, 106679. [Google Scholar] [CrossRef]
- Sudha Yalamarthi, S.; Puppala, E.R.; Abubakar, M.; Saha, P.; Challa, V.S.; NP, S.; USN, M.; Gangasani, J.K.; Naidu, V.G.M. Perillyl alcohol inhibits keratinocyte proliferation and attenuates imiquimod-induced psoriasis like skin-inflammation by modulating NF-κB and STAT3 signaling pathways. Int. Immunopharmacol. 2022, 103, 108436. [Google Scholar] [CrossRef]
- Puppala, E.R.; Aochenlar, S.L.; Shantanu, P.; Ahmed, S.; Jannu, A.K.; Jala, A.; Yalamarthi, S.S.; Borkar, R.M.; Tripathi, D.M.; Naidu, V.G.M. Perillyl alcohol attenuates chronic restraint stress aggravated dextran sulfate sodium-induced ulcerative colitis by modulating TLR4/NF-κB and JAK2/STAT3 signaling pathways. Phytomedicine 2022, 106, 154415. [Google Scholar] [CrossRef]
- Fan, Y.; Li, C.; Peng, X.; Jiang, N.; Hu, L.; Gu, L.; Zhu, G.; Zhao, G.; Lin, J. Perillaldehyde ameliorates Aspergillus fumigatus keratitis by activating the Nrf2/HO-1 signaling Ppathway and inhibiting dectin-1-mediated inflammation. Investig. Opthalmology Vis. Sci. 2020, 61, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, D.-L.; Xie, L.-N.; Ma, Y.; Wu, P.-P.; Li, C.; Liu, W.-F.; Zhang, K.; Zhou, R.-P.; Xu, X.-T.; et al. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation. Phytomedicine 2020, 78, 153309. [Google Scholar] [CrossRef] [PubMed]
- Bansod, S.; Chilvery, S.; Saifi, M.A.; Das, T.J.; Tag, H.; Godugu, C. Borneol protects against cerulein-induced oxidative stress and inflammation in acute pancreatitis mice model. Environ. Toxicol. 2021, 36, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Al Kury, L.T.; Atzaz, N.; Alattar, A.; Alshaman, R.; Shah, F.A.; Li, S. Carvacrol alleviates hyperuricemia-induced oxidative stress and Iinflammation by modulating the NLRP3/NF-κB pathway. Drug Des. Devel. Ther. 2022, 16, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, M.O.; Çelik, H.; Caglayan, C.; Genç, A.; Doğan, T.; Satıcı, E. Neuroprotective effects of carvacrol against cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. Metab. Brain Dis. 2022, 37, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Yesildag, K.; Gur, C.; Ileriturk, M.; Kandemir, F.M. Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Mol. Biol. Rep. 2022, 49, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Wu, S.; Lv, Y.; Pang, P.; Deng, L.; Xu, H.; Shi, Y.; Chen, X. Carvacrol inhibits the excessive immune response induced by influenza virus A via suppressing viral replication and TLR/RLR pattern recognition. J. Ethnopharmacol. 2021, 268, 113555. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D. Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats. Korean J. Physiol. Pharmacol. 2020, 24, 27. [Google Scholar] [CrossRef] [PubMed]
- Cerrah, S.; Ozcicek, F.; Gundogdu, B.; Cicek, B.; Coban, T.A.; Suleyman, B.; Altuner, D.; Bulut, S.; Suleyman, H. Carvacrol prevents acrylamide-induced oxidative and inflammatory liver damage and dysfunction in rats. Front. Pharmacol. 2023, 14, 1161448. [Google Scholar] [CrossRef]
- Alvi, A.M.; Al Kury, L.T.; Alattar, A.; Ullah, I.; Muhammad, A.J.; Alshaman, R.; Shah, F.A.; Khan, A.U.; Feng, J.; Li, S. Carveol attenuates seizure severity and neuroinflammation in pentylenetetrazole-kindled epileptic rats by regulating the Nrf2 signaling pathway. Oxid. Med. Cell. Longev. 2021, 2021, 9966663. [Google Scholar] [CrossRef]
- Asle-Rousta, M.; Amini, R.; Aghazadeh, S. Carvone suppresses oxidative stress and inflammation in the liver of immobilised rats. Arch. Physiol. Biochem. 2023, 129, 597–602. [Google Scholar] [CrossRef]
- Dai, M.; Wu, L.; Yu, K.; Xu, R.; Wei, Y.; Chinnathambi, A.; Alahmadi, T.A.; Zhou, M. D-Carvone inhibit cerebral ischemia/reperfusion induced inflammatory response TLR4/NLRP3 signaling pathway. Biomed. Pharmacother. 2020, 132, 110870. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Younis, N.S. Ameliorative Effect of D-carvone against hepatic ischemia-reperfusion-induced injury in rats. Life 2022, 12, 1502. [Google Scholar] [CrossRef]
- Xu, G.; Guo, J.; Sun, C. Eucalyptol ameliorates early brain injury after subarachnoid haemorrhage via antioxidant and anti-inflammatory effects in a rat model. Pharm. Biol. 2021, 59, 112–118. [Google Scholar] [CrossRef]
- Venkataraman, B.; Almarzooqi, S.; Raj, V.; Bhongade, B.A.; Patil, R.B.; Subramanian, V.S.; Attoub, S.; Rizvi, T.A.; Adrian, T.E.; Subramanya, S.B. Molecular docking identifies 1,8-Cineole (Eucalyptol) as a novel PPARγ agonist that alleviates colon inflammation. Int. J. Mol. Sci. 2023, 24, 6160. [Google Scholar] [CrossRef]
- Shi, C.; Jin, T.; Guo, D.; Zhang, W.; Yang, B.; Su, D.; Xia, X. Citral attenuated intestinal inflammation induced by Cronobacter sakazakii in newborn Mice. Foodborne Pathog. Dis. 2020, 17, 243–252. [Google Scholar] [CrossRef]
- Formiga, R.d.O.; Alves Júnior, E.B.; Vasconcelos, R.C.; Guerra, G.C.B.; Antunes de Araújo, A.; de Carvalho, T.G.; Garcia, V.B.; de Araújo Junior, R.F.; Gadelha, F.A.A.F.; Vieira, G.C.; et al. p-Cymene and rosmarinic acid ameliorate TNBS-induced intestinal inflammation upkeeping ZO-1 and MUC-2: Role of antioxidant system and immunomodulation. Int. J. Mol. Sci. 2020, 21, 5870. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, S.; Irfan, H.M.; Alamgeer; Arshad, L.; Jahan, S. Attenuation of CFA-induced chronic inflammation by a bicyclic monoterpene fenchone targeting inducible nitric oxide, prostaglandins, C-reactive protein and urea. Inflammopharmacology 2023, 31, 2479–2491. [Google Scholar] [CrossRef]
- Zou, G.; Wan, J.; Balupillai, A.; David, E.; Ranganathan, B.; Saravanan, K. Geraniol enhances peroxiredoxin-1, and prevents isoproterenol-induced oxidative stress and inflammation associated with myocardial infarction in experimental animal models. J. Biochem. Mol. Toxicol. 2022, 36, e23098. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Duan, X.; Cheng, K.; Fei, Y.Y.; Liu, L.; Duan, H.; Hu, Q.; Xia, S.; Wang, X.; Cheng, Z. Geraniol relieves mycoplasma pneumonia infection-induced lung injury in mice through the regulation of ERK/JNK and NF-κB signaling pathways. J. Biochem. Mol. Toxicol. 2022, 36, e22984. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, N.M.; Elshazly, S.M.; Rezq, S. Geraniol protects against cyclosporine A-induced renal injury in rats: Role of Wnt/β-catenin and PPARγ signaling pathways. Life Sci. 2022, 291, 120259. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.N.H.; Tahir, M.N.; Alsahli, T.G.; Tusher, M.M.H.; Alzarea, S.I.; Alsuwayt, B.; Jahan, S.; Gomaa, H.A.M.; Shaker, M.E.; Ali, M.; et al. Geraniol suppresses oxidative stress, inflammation, and interstitial collagenase to protect against inflammatory arthritis. ACS Omega 2023, 8, 37128–37139. [Google Scholar] [CrossRef] [PubMed]
- Babaeenezhad, E.; Hadipour Moradi, F.; Rahimi Monfared, S.; Fattahi, M.D.; Nasri, M.; Amini, A.; Dezfoulian, O.; Ahmadvand, H. D-Limonene alleviates acute kidney injury following gentamicin administration in rats: Role of NF-κB pathway, mitochondrial apoptosis, oxidative stress, and PCNA. Oxid. Med. Cell. Longev. 2021, 2021, 6670007. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Qi, H.; Niu, J. L-limonene reduces aortic artery atherosclerosis by inhibiting oxidative stress/inflammatory responses in diabetic rats fed high-fat diet. Chin. J. Physiol. 2023, 66, 129. [Google Scholar] [CrossRef]
- Zhu, S.-M.; Xue, R.; Chen, Y.-F.; Zhang, Y.; Du, J.; Luo, F.-Y.; Ma, H.; Yang, Y.; Xu, R.; Li, J.-C.; et al. Antidepressant-like effects of L-menthol mediated by alleviating neuroinflammation and upregulating the BDNF/TrkB signaling pathway in subchronically lipopolysaccharide-exposed mice. Brain Res. 2023, 1816, 148472. [Google Scholar] [CrossRef]
- Yang, L.; Liao, M. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi J. Biol. Sci. 2021, 28, 5555–5560. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.U.S.; Hellman, B.; Nyberg, F.; Amir, N.; Jayaraj, R.L.; Petroianu, G.; Adem, A. Myrcene attenuatesrenal inflammation and oxidative stress in the adrenalectomized rat model. Molecules 2020, 25, 4492. [Google Scholar] [CrossRef] [PubMed]
- Rathinam, A.; Pari, L.; Venkatesan, M.; Munusamy, S. Myrtenal attenuates oxidative stress and inflammation in a rat model of streptozotocin-induced diabetes. Arch. Physiol. Biochem. 2022, 128, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Xuemei, L.; Qiu, S.; Chen, G.; Liu, M. Myrtenol alleviates oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway. J. Biochem. Mol. Toxicol. 2021, 35, e22904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, H.; Yang, Z.; Cao, M.; Wang, K.; Wang, G.; Zhao, Y. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum. Exp. Toxicol. 2020, 39, 1596–1606. [Google Scholar] [CrossRef]
- Khan, R.; Jori, C.; Ansari, M.M.; Ahmad, A.; Nadeem, A.; Siddiqui, N.; Sultana, S. α-Terpineol mitigates dextran sulfate sodium-induced colitis in rats by attenuating inflammation and apoptosis. ACS Omega 2023, 8, 29794–29802. [Google Scholar] [CrossRef]
- Abd-Elhakim, Y.M.; Saber, T.M.; Metwally, M.M.M.; Abd-Allah, N.A.; Mohamed, R.M.S.M.; Ahmed, G.A. Thymol abates the detrimental impacts of imidacloprid on rat brains by lessening oxidative damage and apoptotic and inflammatory reactions. Chem. Biol. Interact. 2023, 383, 110690. [Google Scholar] [CrossRef]
- Hussein, R.M.; Arafa, E.-S.A.; Raheem, S.A.; Mohamed, W.R. Thymol protects against bleomycin-induced pulmonary fibrosis via abrogation of oxidative stress, inflammation, and modulation of miR-29a/TGF-β and PI3K/Akt signaling in mice. Life Sci. 2023, 314, 121256. [Google Scholar] [CrossRef]
- Sousa, C.; Leitão, A.J.; Neves, B.M.; Judas, F.; Cavaleiro, C.; Mendes, A.F. Standardised comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity. Sci. Rep. 2020, 10, 7199. [Google Scholar] [CrossRef] [PubMed]
- Daldal, H.; Nazıroğlu, M. Carvacrol protects the ARPE19 retinal pigment epithelial cells against high glucose-induced oxidative stress, apoptosis, and inflammation by suppressing the TRPM2 channel signaling pathways. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2567–2583. [Google Scholar] [CrossRef] [PubMed]
- Wijesundara, N.; Lee, S.; Davidson, R.; Cheng, Z.; Rupasinghe, H. Carvacrol suppresses inflammatory biomarkers production by lipoteichoic acid- and peptidoglycan-stimulated human tonsil epithelial cells. Nutrients 2022, 14, 503. [Google Scholar] [CrossRef]
- Nouri, A.; Izak-Shirian, F.; Fanaei, V.; Dastan, M.; Abolfathi, M.; Moradi, A.; Khaledi, M.; Mirshekari-Jahangiri, H. Carvacrol exerts nephroprotective effect in rat model of diclofenac-induced renal injury through regulation of oxidative stress and suppression of inflammatory response. Heliyon 2021, 7, e08358. [Google Scholar] [CrossRef]
- Amin, F.; Memarzia, A.; Kazemi Rad, H.; Shakeri, F.; Boskabady, M.H. Systemic inflammation and oxidative stress induced by inhaled paraquat in rat improved by carvacrol, possible role of PPARγ receptors. BioFactors 2021, 47, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, Q.; Yin, K.; Song, N.; Wang, B.; Lin, H. DEHP-induce damage in grass carp hepatocytes and the remedy of Eucalyptol. Ecotoxicol. Environ. Saf. 2020, 206, 111151. [Google Scholar] [CrossRef] [PubMed]
- Rui, Y.; Han, X.; Jiang, A.; Hu, J.; Li, M.; Liu, B.; Qian, F.; Huang, L. Eucalyptol prevents bleomycin-induced pulmonary fibrosis and M2 macrophage polarization. Eur. J. Pharmacol. 2022, 931, 175184. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Bai, F.; Zhan, X.; Zhang, W.; Jin, T.; Wang, Y.; Xia, X.; Shi, C. Citral mitigates inflammation of Caco-2 cells induced by Cronobacter sakazakii. Food Funct. 2022, 13, 3540–3550. [Google Scholar] [CrossRef] [PubMed]
- Emílio-Silva, M.T.; Rodrigues, V.P.; Bueno, G.; Ohara, R.; Martins, M.G.; Horta-Júnior, J.A.C.; Branco, L.G.S.; Rocha, L.R.M.; Hiruma-Lima, C.A. Hypothermic Effect of acute citral treatment during LPS-induced systemic inflammation in obese mice: Reduction of serum TNF-α and leptin levels. Biomolecules 2020, 10, 1454. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Li, N.; Liu, S.; Qi, S.; Mu, S. Protective effect of isopulegol in alleviating neuroinflammation in lipopolysaccharide-induced BV-2 cells and in Parkinson Disease model induced with MPTP. J. Environ. Pathol. Toxicol. Oncol. 2021, 40, 75–85. [Google Scholar] [CrossRef]
- Rai, V.K.; Sinha, P.; Yadav, K.S.; Shukla, A.; Saxena, A.; Bawankule, D.U.; Tandon, S.; Khan, F.; Chanotiya, C.S.; Yadav, N.P. Anti-psoriatic effect of Lavandula angustifolia essential oil and its major components linalool and linalyl acetate. J. Ethnopharmacol. 2020, 261, 113127. [Google Scholar] [CrossRef]
- Nawaz, S.; Muhammad Irfan, H.; Alamgeer; Akram, M.; Jahan, S. Linalool: Monoterpene alcohol effectiveness in chronic synovitis through lowering Interleukin-17, spleen and thymus indices. Int. Immunopharmacol. 2023, 121, 110517. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Zhao, Z.; Huang, X.; Xiong, H.; Mei, Z. Thymol activates TRPM8-mediated Ca2+ influx for its antipruritic effects and alleviates inflammatory response in Imiquimod-induced mice. Toxicol. Appl. Pharmacol. 2020, 407, 115247. [Google Scholar] [CrossRef]
- Şehitoğlu, M.H.; Öztopuz, R.Ö.; Kılınç, N.; Ovalı, M.A.; Büyük, B.; Gulcin, İ. Thymol regulates the Endothelin-1 at gene expression and protein synthesis levels in septic rats. Chem. Biol. Interact. 2023, 375, 110426. [Google Scholar] [CrossRef] [PubMed]
- Tada, A.; Nakayama-Imaohji, H.; Yamasaki, H.; Elahi, M.; Nagao, T.; Yagi, H.; Ishikawa, M.; Shibuya, K.; Kuwahara, T. Effect of thymoquinone on Fusobacterium nucleatum-associated biofilm and inflammation. Mol. Med. Rep. 2020, 22, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. The anti-inflammatory potential of Cinnamomum camphora (L.) J. Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zong, S.-B.; Li, J.-C.; Lv, Y.-Z.; Liu, L.-N.; Wang, Z.-Z.; Zhou, J.; Cao, L.; Kou, J.-P.; Xiao, W. The essential oil from the twigs of Cinnamomum cassia Presl alleviates pain and inflammation in mice. J. Ethnopharmacol. 2016, 194, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Sousa, C.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. The anti-inflammatory rresponse of Lavandula luisieri and Lavandula pedunculata essential oils. Plants 2022, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Francisco, V.; Neves, B.; Liberal, J.; Cavaleiro, C.; Canhoto, J.; Salgueiro, L.; Cruz, M.T. Lavandula viridis L’Hér. essential oil inhibits the inflammatory response in macrophages through blockade of NF-KB signaling cascade. Front. Pharmacol. 2022, 12, 695911. [Google Scholar] [CrossRef] [PubMed]
- Roxo, M.; Zuzarte, M.; Gonçalves, M.J.; Alves-Silva, J.M.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Antifungal and anti-inflammatory potential of the endangered aromatic plant Thymus albicans. Sci. Rep. 2020, 10, 18859. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Alves-Silva, J.M.; Alves, M.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. New insights on the anti-inflammatory potential and safety profile of Thymus carnosus and Thymus camphoratus essential oils and their main compounds. J. Ethnopharmacol. 2018, 225, 10–17. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Jiang, J.-G.; Zhu, W.; Ou-Yang, Q. Anti-inflammatory effect of essential oil from Citrus aurantium L. var. amara Engl. J. Agric. Food Chem. 2017, 65, 8586–8594. [Google Scholar] [CrossRef]
- Maurya, A.K.; Mohanty, S.; Pal, A.; Chanotiya, C.S.; Bawankule, D.U. The essential oil from Citrus limetta Risso peels alleviates skin inflammation: In-vitro and in-vivo study. J. Ethnopharmacol. 2018, 212, 86–94. [Google Scholar] [CrossRef]
- Lombardo, G.E.; Cirmi, S.; Musumeci, L.; Pergolizzi, S.; Maugeri, A.; Russo, C.; Mannucci, C.; Calapai, G.; Navarra, M. Mechanisms Underlying the anti-inflammatory activity of bergamot essential oil and its antinociceptive effects. Plants 2020, 9, 704. [Google Scholar] [CrossRef]
- Muthaiyan, A. Determinants of the Gut Microbiota. In Gut Microbiome and Its Impact on Health and Diseases; Springer International Publishing: Cham, Switzerland, 2020; pp. 19–62. [Google Scholar]
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s role in health and diseases. Environ. Sci. Pollut. Res. 2021, 28, 36967–36983. [Google Scholar] [CrossRef]
- Holmannova, D.; Borsky, P.; Parova, H.; Stverakova, T.; Vosmik, M.; Hruska, L.; Fiala, Z.; Borska, L. Non-genomic hallmarks of aging—The Review. Int. J. Mol. Sci. 2023, 24, 15468. [Google Scholar] [CrossRef]
- Malik, J.A.; Zafar, M.A.; Lamba, T.; Nanda, S.; Khan, M.A.; Agrewala, J.N. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes 2023, 15, 2290643. [Google Scholar] [CrossRef]
- Liu, S.; He, Y.; Zhang, Y.; Zhang, Z.; Huang, K.; Deng, L.; Liao, B.; Zhong, Y.; Feng, J. Targeting gut microbiota in aging-related cardiovascular dysfunction: Focus on the mechanisms. Gut Microbes 2023, 15, 2290331. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Hong, Y.; Fu, X.; Tan, H.; Chen, Y.; Wang, Y.; Chen, D. The role of the microbiota in glaucoma. Mol. Asp. Med. 2023, 94, 101221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Du, W.; Hu, X.; Yu, X.; Guo, C.; Jin, X.; Wang, W. Targeting the blood–brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm. Sin. B 2023, 13, 4667–4687. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Peña, J.; Hanson, B. Tools for analysis of the microbiome. Dig. Dis. Sci. 2020, 65, 674–685. [Google Scholar] [CrossRef] [PubMed]
- De Fazio, L.; Spisni, E.; Cavazza, E.; Strillacci, A.; Candela, M.; Centanni, M.; Ricci, C.; Rizzello, F.; Campieri, M.; Valerii, M.C. Dietary geraniol by oral or enema administration strongly reduces dysbiosis and systemic inflammation in dextran sulfate sodium-treated mice. Front. Pharmacol. 2016, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Hawrelak, J.A.; Cattley, T.; Myers, S.P. Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern. Med. Rev. 2009, 14, 380–384. [Google Scholar]
- Wei, D.; Zhao, Y.; Zhang, M.; Zhu, L.; Wang, L.; Yuan, X.; Wu, C. The volatile oil of Zanthoxylum bungeanum pericarp improved the hypothalamic-pituitary-adrenal axis and gut microbiota to attenuate chronic unpredictable stress-induced anxiety behavior in rats. Drug Des. Devel. Ther. 2021, 15, 769–786. [Google Scholar] [CrossRef]
- Sánchez-Quintero, M.J.; Delgado, J.; Medina-Vera, D.; Becerra-Muñoz, V.M.; Queipo-Ortuño, M.I.; Estévez, M.; Plaza-Andrades, I.; Rodríguez-Capitán, J.; Sánchez, P.L.; Crespo-Leiro, M.G.; et al. Beneficial effects of essential oils from the Mediterranean diet on gut microbiota and their metabolites in ischemic heart disease and Type-2 Diabetes Mellitus. Nutrients 2022, 14, 4650. [Google Scholar] [CrossRef] [PubMed]
- Lazar, V.; Holban, A.-M.; Curutiu, C.; Ditu, L.M. Modulation of gut microbiota by essential oils and inorganic nanoparticles: Impact in nutrition and health. Front. Nutr. 2022, 9, 920413. [Google Scholar] [CrossRef] [PubMed]
- Alavinezhad, A.; Khazdair, M.R.; Boskabady, M.H. Possible therapeutic effect of carvacrol on asthmatic patients: A randomized, double blind, placebo-controlled, Phase II clinical trial. Phyther. Res. 2018, 32, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Khazdair, M.R.; Alavinezhad, A.; Boskabady, M.H. Carvacrol ameliorates haematological parameters, oxidant/antioxidant biomarkers and pulmonary function tests in patients with sulphur mustard-induced lung disorders: A randomized double-blind clinical trial. J. Clin. Pharm. Ther. 2018, 43, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Ghorani, V.; Alavinezhad, A.; Rajabi, O.; Boskabady, M.H. Carvacrol improves pulmonary function tests, oxidant/antioxidant parameters and cytokine levels in asthmatic patients: A randomized, double-blind, clinical trial. Phytomedicine 2021, 85, 153539. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, F.; Ricci, C.; Scandella, M.; Cavazza, E.; Giovanardi, E.; Valerii, M.C.; Campieri, M.; Comparone, A.; De Fazio, L.; Candela, M.; et al. Dietary geraniol ameliorates intestinal dysbiosis and relieves symptoms in irritable bowel syndrome patients: A pilot study. BMC Complement. Altern. Med. 2018, 18, 338. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C.; Rizzello, F.; Valerii, M.C.; Spisni, E.; Gionchetti, P.; Turroni, S.; Candela, M.; D’Amico, F.; Spigarelli, R.; Bellocchio, I.; et al. Geraniol treatment for irritable bowel syndrome: A double-blind randomized clinical trial. Nutrients 2022, 14, 4208. [Google Scholar] [CrossRef]
- Zuzarte, M.; Vitorino, C.; Salgueiro, L.; Girão, H. Plant nanovesicles for essential oil delivery. Pharmaceutics 2022, 14, 2581. [Google Scholar] [CrossRef]
Compound | Study Model | Observed Effects | Ref. |
---|---|---|---|
In vitro | |||
α-Pinene | Chinese hamster cell line—V79-Cl3 (25–50 µM; 1 h) | ↑ Apoptic cells (40 and 50 µM); Multipolar or incorrectly localized spindles; ↑ Hypodiploid metaphases; ↑ Endoreduplicated cells; ↑ Chromosome breaks; ↑ Kinetochore-negative micronuclei; ↑ DNA lesions; ↑ ROS production | [23] |
D-Limonene | Chinese hamster cell line—V79 (0.1–2.5 mM; 1 h) | At 2–2.5 mM: ↑ Nuclear abnormalities; ↑ Aberrant spindles; Cytokinesis failure | [24] |
Compound | Study Model | Effect | Ref. |
---|---|---|---|
In vitro | |||
1,8-Cineole | Cardiomyoblast cell line—H9c2 and primary neonatal cardiomiocytes (400 µg/mL; 24 h in cells submitted to high pressure—80 mmHg) | ↓ Mitophagy; ↓ Mitochondrial fission; Restored complexes III and V protein levels | [28] |
Grass carp hepatocytes—L8824 (20 µM, in the presence of 200 nM of BPA; 24 h) | ↓ ROS production; ↑ Mitochondrial membrane potential | [29] | |
Grass carp hepatocytes—L8824 (20 µM, in the presence of 8 µg/mL of TPPBA; 24 h) | ↓ ROS production; ↑ Mitochondrial membrane potential | [30] | |
Grass carp kidney cells—CIK (20 µM, in the presence of 27.8 µg/mL of DiBP; 24 h) | ↓ ROS production | [31] | |
Camphene | Myoblast cell line—L6 (300 µM in serum-free medium; 48 h) | Prevented mitochondrial shape alteration | [32] |
Carvacrol | Neuroblastoma cell line—SH-SY5Y (100 µM; 4 h before the addition of 300 µM of H2O2; 24 h) | ↑ Complexes I and V activities; ↑ ATP levels; ↑ Mitochondrial membrane potential; ↑ aconitase, α-KGDH, and SDH activities | [33] |
Geraniol | Neuroblastoma cell line—SK-N-SH (60 nM; 2 h followed by 24 h with 100 nM of rotenone) | ↓ ROS production; ↑ Mitochondrial membrane potential; ↑ Complex I activity; ↑ ATP production; ↑ Mitophagy of damaged mitochondria | [34] |
Limonene | Skin epidermal keratinocytes cell line—HaCaT (25, 50 and 100 µM; 2 h before UVB irradation; 30 min to 24 h) | ↓ ROS production; ↑ HO-1, NQO-1 and γ-GCLC protein levels; ↑ Nrf2 expression | [35] |
MG-induced damage in osteoblast—MC3T3-E1 (0.01—1 µM for 1 h prior to 48 h stimulation with 400 µM of MG) | ↓ Mitochondrial superoxide levels; ↓ Cardiolipin peroxidation; ↑ ATP production; ↑ Mitochondrial membrane potential | [36] | |
Linalool | Hippocampal neuronal cell line— HT-22 (100 µM in the presence of 6 mM of glutamate; Respiratory capacity assays: 100 and 200 µM; 24 h) | ↓ Mitochondrial fragmentation; ↓ Mitochondrial ROS production; ↑ Mitochondrial membrane potential; ↓ Mitochondrial Ca2+ levels; ↑ Mitochondrial respiratory capacity | [37] |
Menthol | Osteosarcoma cell line—Saos2 (100 µM; 6 h) | ↑ Intracellular and mitochondrial Ca2+ levels; ↑ Mitochondrial circularity; ↑ ATP production; ↓ Mitochondrial membrane potential; ↑ Mitochondrial ROS and cardiolipin levels; ↑ ER–mitochondria contact sites; Restored mitochondrial membrane potential in the presence of CCCP | [38] |
Myrcene | Dermal fibroblasts—primary cultures (0.1, 1 and 10 μM; 24 h or 72 h after UVB irradiation) | ↓ ROS production | [39] |
Perillyl alcohol | Human microglial cell line—HMC-3 (100 and 200 µM in the presence of LPS/H2O2; 24 h) | ↑ Mitochondrial membrane potential; ↓ Mitochondrial ROS production; ↓ H2O2 release; ↑ Parkin translocation to damaged mitochondria | [40] |
Neuroblastoma cell line—SH-SY5Y (10 and 20 µM; 1 h prior to an overnight incubation with 150 µM of 6-OHDA) | ↓ Intracellular ROS production; ↑ Mitochondrial membrane potential | [41] | |
Neuroblastoma cell line—SH-SY5Y (10 and 20 µM; 1 h followed by 24 h with 40 µM of β-amyloid 25–35) | ↓ ROS production; ↑ Mitochondrial membrane potential (20 µM); ↑ mPTP opening | [42] | |
In vivo | |||
1,8-Cineole | Monocrotaline-induced pulmonary arterial hypertension rat model (25 mg/Kg transdermally; daily for 3 weeks) | ↓ Mitophagy; ↓ Mitochondrial fission | [28] |
Carvacrol | Neuropathic pain animal model (30 and 60 mg/Kg p.o.; 14 days) | ↓ NO production; ↑ ATP production; ↑ NRF-1, TFAM, PGC-1α, complex I and ATP synthase C protein levels; ↓ Drp1 and Fis1 protein levels | [43] |
Geraniol | ACR-induced neurotoxicity in Drosophila melanogaster (5 and 10 µM in culture medium; 7 days) | ↓ ROS production; ↑ MTT reduction; ↑ SDH and CS activity | [44] |
STZ-induced diabetic neuropathy in rats (100 mg/Kg/day p.o.; 8 weeks) | ↓ ROS production in sciatic nerve and brain; ↓ NO levels; ↑ MTT reduction; ↑ Complexes I–III, SDH, CS activity | [45] | |
ACR-induced neuropathy in rats (100 mg/Kg/day p.o. and simultaneous administration of ACR, 50 mg/Kg i.p.; twice a week for 4 weeks) | ↓ ROS production in sciatic nerve and brain regions; ↓ Mitochondrial ROS production in cortex and cerebellum; ↑ MTT reduction in cortex and cerebellum; ↑ Complexes I–III, complexes II and III and CS activities | [46] | |
Limonene | Rotenone-induced dopaminergic neurodegeneration in rats (50 mg/Kg p.o. and Rot 2.5 mg/Kg, i.p.; 5 days a week for 28 days) | ↑ Mitochondrial respiratory capacity; ↑ Complex I levels | [47] |
Perillyl alcohol | 6-OHDA-induced Parkinson’s disease rat model (100 mg/Kg p.o.; 7-day pre- and 7-day post-surgery) | ↓ Intracellular ROS production; ↑ PGC-1α mRNA and protein levels in striatum; ↑ Complexes I and IV levels; ↓ Bax and Drp1 protein levels; ↑ Nuclear accumulation of Nrf2 and PGC-1α | [48] |
MPTP-induced Parkinson’s disease rat model (100 and 200 mg/Kg/day p.o.; 14 days following 5 consecutive days of 25 mg/Kg of MPTP) | ↑ ATP levels | [40] | |
Thymol | Grass carp (100–300 mg/Kg before a 7-day infection with Aeromonas hydrophylla; 68 days) | ↑ Cytosolic and mitochondrial CK (100 mg/Kg); ↑ Branchial AK activity (100 and 300 mg/Kg); ↑ Branchial ATP levels; ↓ Branchial ROS production | [49] |
ISO-induced myocardial infarction rat model (7.5 mg/Kg intragastric; 7 days with ISO (100 mg/Kg), s.c., administered on days 6 and 7) | ↑ Mitochondrial enzymes activity; ↓ Mitochondrial Ca2+ levels; ↑ ATP production; Maintained mitochondrial architecture; ↓ Mitochondrial swelling | [50] |
Compound | Study Model | Effect | Ref. |
---|---|---|---|
In vitro | |||
Camphor | Primary cultures of dermal fibroblasts (65, 130 and 260 µM; 24 h and 260 µM; 6, 12 or 24 h) | ↓ Elastase activity; ↑ Elastin and collagen productions; ↓ SA-β-galactosidase activity (in the presence of H2O2) | [69] |
Hinokitiol | Skin fibroblast cell line—966SK following UVB irradiation (4, 8 and 12 µM; 24 h) | ↓ Secreted MMP-1 levels; ↓ MMP-1 and MMP-3 mRNA levels; ↑ Procollagen mRNA levels | [70] |
D-Limonene | Skin epidermal keratinocytes cell line—HaCaT (25, 50 and 100 µM for 2 h before UVB irradation; 30 min to 24 h) | ↓ α-MSH intracellular levels; ↓ POMC mRNA; ↓ Phosphorylated levels of p53; Maintained skin barrier function | [35] |
Myrcene | Normal human dermal fibroblasts (0.1, 1 and 10 μM; 1, 4, 24 or 72 h after UVB irradiation) | ↓ ROS production; ↓ MMP-1 and MMP-3 secretion; ↓ IL-6 secretion; ↑ Procollagen-1 and TGF-1β secretion; ↓ MMP-1 mRNA levels; ↑ Procollagen mRNA levels; ↓ MAPK activation; ↓ AP-1 activation | [39] |
α-Pinene | Skin epidermal keratinocytes cell line—HaCaT (30 µM; 30 min before UVA irradiation, then cultured for 24 h) | ↓ Single-strand DNA damage; ↓ Pyrimidine dimers formation; ↑ NER pathway-associated proteins expression; ↑ p53 and p21 protein levels | [71] |
In vivo | |||
Camphor | UV-induced wrinkle formation in mice (26 and 52 mM, topical; for 2 weeks after 4 weeks of UV irradiation) | ↑ Collagen 1, collagen II and elastin production; ↓ MMP-1 protein levels; ↓ Epidermis and subcutaneous fat layer thickness | [69] |
α-Pinene | UVA-induced photoageing mice model (100 mg/Kg, topical; 1 h prior to irradiation) | ↑ Collagen staining; ↓ MMP-2 staining; ↓ MMP-9 and MMP-13 mRNA expression; ↓ MMP-1 and MMP-9 protein levels | [72] |
Compound | Study Model | Effect | Ref. |
---|---|---|---|
In vitro | |||
Carvacrol | Cardiomyoblasts—H9c2 cells (2.5, 5 and 10 µg/mL; 6 h followed by 1 µg/mL of LPS; 18 h) | ↑ Beclin-1 protein levels; ↓ p62 protein levels | [95] |
1,8-Cineole | Grass carp hepatocytes—L8824 (20 µM and 200 nM of BPA; 24 h) | ↑ LC3B fluorescence; ↓ p62 fluorescence; ↑ LC3, Atg5 and beclin-1 mRNA and protein levels; ↓ p62 mRNA and protein levels | [29] |
Human umbilical vein endothelial cells—HUVEC (5 and 50 µM; 1.5 h followed by 300 µM of L-NAME; 24 h) | ↓ LC3-II/LC3-I ratio; ↑ p62 mRNA and protein levels; ↓ LC3 fluorescence; ↑ PI3K and mTOR phosphorylated levels | [96] | |
Human bronchial epithelial cell line—BEAS-2B (6.25–200 µM; 2 h, before 4 h with CSE) | ↓ LC3-II/LC3-I ratio | [97] | |
Ctenopharyngodon idellus kidney cells (20 µM and 27.8 µg/mL of DiBP; 24 h) | ↑ Autophagosome formation; ↑ Atg5, beclin-1 and LC3 mRNA levels; ↓ p62 mRNA and protein levels; ↑ LC3 and beclin-1 protein levels | [31] | |
Hinokitiol | Neuroblastoma cell line—SK-N-SH (2, 4 and 8 µM; 6 h followed by 100 µM of PrP; 6 h) | ↑ LC3-II/LC3-I ratio; ↑ LC3 puncta; ↑ Autophagosome formation; ↑ p62 mRNA and protein levels | [98] |
Cardiomyocyte cell line—AC16 (20 µM; 30 min followed by 1 mM of H2O2; 2 h) | ↑ Phosphorylated form of mTOR and p62 protein levels; ↓ Beclin-1 protein levels and LC3-II/LC3-I ratio; ↓ LC3-positive cells | [99] | |
Menthol | Bovine mammary epithelial cells (200 µM; 1 h followed by 5 µg/mL of LPS; 12 h) | ↓ p62 protein levels; ↑ LC3-II protein levels; ↑ Autophagosomes and autophagolysosome formation | [100] |
Thymol | Mouse liver cell line—AML12 (100 µM in the presence of 100 mM of EtOH; 48 h) | ↓ LC3-II and p62 protein levels; ↓ LC3-II/LC3-I ratio | [101] |
In vivo | |||
Borneol | Cerebral ischemia/reperfusion rat model (0.16 mg/Kg/day p.o.; 7 days) | Cortex: ↑ ULK1 protein levels and LC3-II/LC3-I ratio Hippocampus: ↑ ULK1 protein levels and LC3-II/LC3-I ratio; ↓ mTOR | [102] |
Carvacrol | LPS-induced cardiac dysfunction mice model (50 and 100 mg/Kg i.p.; 2 h prior to 10 mg/Kg of LPS; 12 h) | ↑ Beclin-1 protein levels; ↓ p62 protein levels | [95] |
Chronic constriction injury of sciatic-nerve-induced neuropathic pain in rats (30 and 60 mg/Kg/day p.o.; 14 days) | ↑ Beclin-1, LC3-II, Atg7 and Atg16 protein levels; ↓ p62 protein levels and immunostaining | [43] | |
1,8-Cineole | L-NAME-induced hypertension rat model (20 and 40 mg/Kg/day, gavage on weeks 5 to 8 during an 8-week administration of L-NAME 40 mg/Kg/day) | ↓ LC3-II/LC3-I ratio; ↑ p62 mRNA and protein levels; ↓ LC3 immunohistochemical staining in rat blood vessels; ↑ PI3K and mTOR phosphorylated levels | [96] |
Citronellol | Rotenone-induced Parkinson’s disease rat model (25 mg/Kg p.o.; 30 min before 2.5 mg/Kg i.p. of Rot; 4 weeks) | ↓ LC3 and p62 protein levels | [103] |
Geraniol | ISO-induced myocardial infarction (100 and 200 mg/Kg/day p.o. followed by 100 mg/Kg s.c. of ISO on days 13 and 14) | ↑ PI3K, Akt and mTOR mRNA levels; ↑ Phosphorylated levels of PI3K, Akt and mTOR | [104] |
Myrcene | Rotenone-induced Parkinson’s disease rat model (25 mg/Kg p.o.; 30 min before 2.5 mg/Kg i.p. of Rot; 5 days a week for 28 days) | ↓ Beclin-1, p62 and LC3B protein levels; ↑ p-mTOR/mTOR ratio | [105] |
Thymol | LPS-induced liver inflammation mouse model (80 mg/Kg/day, gavage, for 34 days followed by 10 mg/Kg, i.p. of LPS; 4 h) | ↓ p62 mRNA levels; ↑ Atg7 mRNA levels; ↑ phosphorylated levels of AMPK | [106] |
Compound | Study Model | Observed Effects | Ref. |
---|---|---|---|
In vitro | |||
Carvacrol | Human umbilical vein endothelial cells—HUVEC (10 mg/Kg; 24 h in HG medium) | ↓ IKK, NALP3, NF-κB and TLR4 mRNA and protein levels | [118] |
(S)-(+)-Carvone | Mouse leukemic cell line—RAW 264.7 (666 µM; 5 min and 1 h, before 1 µg/mL of LPS) | ↓ p-JNK 1; ↓ Ac-p65; ↓ IκB-α resynthesis; ↑ SIRT 1 activity (in chemico) | [119] |
(R)-(-)-Carvone | Mouse leukemic cell line—RAW 264.7 (666 µM; 5 min, 1 h and 18 h before 1 µg/mL of LPS) | ↓ p-JNK 1; ↓ Ac-p65 (tendency); ↓ IκB-α resynthesis; ↑ Nrf2 translocation (tendency); ↑ HO-1 protein level (tendency) | [120] |
1,8-Cineole | Human bronchial epithelial cell line—BEAS-2B (6.25–200 µM; 2 h, before 4 h with CSE) | ↑ Nrf2 nuclear translocation; ↓ ROS and IL-6 levels | [97] |
Mouse leukemic cell line—RAW 264.7 (0.1, 1, 5 and 10 µM; 20 min, before 0.5 mg/mL of MSU for 4 h) | ↑ Nrf2 protein levels; ↓ TNF-α, IL-6, CXCL1 and CXCL2 mRNA expression | [121] | |
Citral | Porcine jejunal epithelial cell line—IPEC-J2 (PGN-stimulated cells) | ↓ Cytokine expression; ↓ TLR2 protein levels; ↓ TLR2/NF-κB signaling pathway | [122] |
Human peripheral blood mononuclear cells—PBMC (4, 2 and 1%; 30 min before and after innoculation with S. aureus for 6 h—TI/IT, respectively) | TI: ↓ IL-1β, IL-6, IL-12p70, IL-23, IFN-γ and TNF-α levels IT: ↓ IL-1β, TNF-α and IL-6 (only 4%) | [123] | |
Geraniol | Microglial cell line—BV-2 (200-, 500- and 1000-fold concentrations; 24 h pretreatment with geraniol followed by 24 h with 1 µg/mL of LPS. Pretreatment with LPS; 24 h, followed by 24 h with geraniol, co-stimulation with LPS and geraniol for 24 h) | Geraniol pretreatment: ↓ TNF-α and IL-6 mRNA and secretion; ↓ p50 and p-C/EBP-β chromatin-bound protein levels LPS pretreatment: ↓ TNF-α and IL-6 mRNA and secretion; ↓ p50 and p-C/EBP-β chromatin-bound protein levels Co-treatment: ↓ TNF-α and IL-6 mRNA and secretion; ↓ p50 and p65 chromatin-bound protein levels | [124] |
Primary cultures of macrophages (5, 25 and 50 µM; 12 h followed by 1 µg/mL of LPS for 24 h) | ↓ IL-1β protein levels; ↓ IL-1β and NLRP3 mRNA expression; ↓ TNF-α mRNA expression; ↑ IL-4 and IL-10 mRNA expressions | [125] | |
Human umbilical vein endothelial cells—HUVEC (0–100 µmol/mL; 2 h before 100 µg/mL of OxLDL for 72 h) | ↓ TNF-α, IL-6, IL-1β, ICAM-1, VCAM-1 and TGF-β protein levels; ↓ IL-6, VCAM-1 and ICAM-1 mRNA levels; ↓ p-IκBα and p-p65 protein levels | [126] | |
Hinokitiol | Mouse leukemic cell line—RAW 264.7 (5, 10 and 20 µg/mL; 1 h, before 100 ng/mL of LPS for 3 h) | ↓ IL-6, IL-1β, TNF-α and NLRP3 mRNA expression | [127] |
Linalool | Microglial cell line—BV-2 (200-, 500- and 1000-fold concentrations; 24 h pretreatment with linalool followed by 24 h with 1 µg/mL of LPS. Pretreatment with LPS; 24 h, followed by 24 h with linalool, co-stimulation with LPS and linalool for 24 h) | Linalool pretreatment: ↓ TNF-α and IL-6 mRNA and secretion; ↓ p50, p65 and p-C/EBP-β chromatin-bound protein levels LPS pretreatment: ↓ TNF-α mRNA and secretion; ↓ IL-6 secretion; ↓ p50 and p-C/EBP-β chromatin-bound protein levels Co-treatment: ↓ TNF-α secretion | [124] |
Menthol | Microglial cell line—BV-2 (5–40 µM; 2 h, before 1 µg/mL of LPS for 2 or 12 h) | ↓ iNOS and COX-2 mRNA and protein levels; ↓ IL-1β, IL-6 and TNF-α mRNA and protein expression; ↓ p-p65/p65, p-Akt/Akt, p-ERK/ERK, p-JNK/JNK and p-p38/p38 ratios | [128] |
Myrcene | Dermal fibroblasts—primary cultures (0.1, 1 and 10 μM; 24 h or 72 h after UVB irradiation) | ↓ IL-6 release | [39] |
Perillyl alcohol | Human keratinocytes cell line—HaCaT (50 and 100 µM; 2 h prior to 1 µg/mL of LPS for 22 h) | ↓ p-p65 and p-STAT3 nuclear accumulation | [129] |
Human embryonic kidney—HEK293 (25 and 50 µM; 24 h following 30 ng/mL of TNF-α for 2 h) | ↓ NF-κB activation; ↓ p-NF-κB and p-IκBα immunoreactivity | [130] | |
Perillaldehyde | Human corneal epithelial cell line—HCEC (0.6 mM; 4 h, followed by 8 h stimulation with A. fumigatus) | ↓ IL-1β, IL-6, TNF-α and IL-8 mRNA expression; ↓ IL-6, TNF-α and IL-8 secretion; ↑ Nrf2 and HO-1 mRNA and protein expression; ↓ Dectin-1 mRNA and protein levels | [131] |
α-Pinene | Skin epidermal keratinocytes cell line—HaCaT (30 µM; 30 min before UVA irradiation, cultured for an additional 24 h) | ↓ NF-κB, IL-6 and TNF-α protein levels | [71] |
Thujanol | Microglial cell line—BV-2 (200-, 500- and 1000-fold concentrations; 24 h pretreatment followed by 24 h with 1 µg/mL of LPS. Pretreatment with LPS; 24 h, followed by 24 h with thujanol, co-stimulation with LPS and thujanol for 24 h) | Thujanol pretreatment: ↓ TNF-α and mRNA and secretion; LPS pretreatment: ↓ TNF-α secretion; ↓ p50, p65 and p-C/EBP-β chromatin-bound protein levels. Co-treatment: ↓ p50 chromatin-bound protein levels | [124] |
Thymol | Mouse leukemic cell line—RAW 264.7 (30–150 µM; 2 h before 1 µg/mL of LPS for 24 h) | ↓ NO production; ↓ TNF-α and IL-6 release (120 µM); ↓ ROS production; ↓ COX-2 protein expression; ↓ p65 nuclear translocation | [132] |
In vivo | |||
Borneol | Cerulein-induced acute pancreatitis mice model (100 and 300 mg/Kg, p.o.; 7 days, on day 7, 6 injections of cerulein (50 µg/Kg, i.p.) were given 1 h apart, sacrifice 6 h after last injection) | ↓ NO, IL-1β and IL-6 levels; ↓ MPO activity; ↓ iNOS, IL-1β, p-NF-κB, TNF-α and IL-6 protein levels; ↓ Inflammatory cells infiltration | [133] |
Carvacrol | Hyperuricemia-induced inflammation rat model (20 and 50 mg/Kg i.p.; 7 days, 1 h after PO administration) | ↓ Monourate crystals; ↓ Lymphocyte infiltration; ↓ TNFα and NRLP3 levels; ↓ TNF-α and p-NF-κB staining | [134] |
CdCl2-induced neurotoxicity rat model (25 and 50 mg/mL wth 25 mg/Kg p.o. of CdCl2; daily for 7 days) | ↓ NF-κB release; ↓ Brain COX-2, MPO and PGE2 levels; ↓ Brain nNOS, iNOS, GFAP and MAO levels; ↓ TNF-α, IL-1β, MMP-9 and MMP-13 mRNA levels | [135] | |
CdCl2-induced lung injury rat model (25 and 50 mg/Kg, p.o.; 30 min after 25 mg/Kg, p.o. of CdCl2 for 7 days) | ↓ Lung NF-κB, iNOS, COX-2, MPO and PGE2 levels; ↓ TNF-α, IL-1β, MMP-2 and MMP-9 mRNA expression | [136] | |
T2DM db/db mice model (5 and 10 mg/Kg, gavage; 6 weeks) | ↓ IL-1β, IL-6, IL-18 and TNF-α secretion; ↓ IKK, NALP3, NF-κB and TLR4 mRNA and protein levels | [118] | |
FM1-induced viral infection mice model (50 mg/Kg, intranasally; 5 days post viral infection) | ↑ % of Treg cells; ↓ Th1/Th2 and Th17/Treg ratio; ↓ IFN-γ, IL-2, IL-4, IL-12, TNF-α, IL-1, IL-10 and IL-6 secretion; ↓ RIG-I, MyD88, NF-κB mRNA and protein levels | [137] | |
LPS-induced memory impairment rat model (25, 50 and 100 mg/Kg, i.p.; until 21 post-LPS sacrifice at day 28 post-LPS) | ↓ IL-1β, IL-6, TNF-α, COX-2 and NF-κB levels; ↓ iNOS, TLR4 and BDNF mRNA expression | [138] | |
ACR-induced liver damage rat model (50 mg/Kg, i.p., followed by 20 mg/Kg, p.o. of ACR; 30 days) | ↓ TNF-α, IL-1β and NF-κB protein levels | [139] | |
Carveol | PTZ-kindled epileptic rat model (10 and 20 mg/Kg 30 min before PTZ; repeated every 48 h for 15 days) | ↓ TNF-α, p-p65 and COX-2 protein levels | [140] |
S-Carvone | Stress-induced liver damage rat model (20 mg/Kg, gavage, with restraint for 6 h; daily for 21 days) | ↓ TNF-α, IL-6, IL-1β and NF-κB mRNA expression; ↓ Inflammatory cells infiltration | [141] |
Cerebral I/R-induced neuroinflammation rat model (10 and 20 mg/Kg, i.p.; 15 min before reperfusion daily for 15 days) | ↓ Serum and brain IL-1β and TNF-α levels; ↓ IL-6 and IL-4 levels; ↑ IL-10 levels; ↓ NLRP3, ASC, TLR4, IL-1β, TNF-α mRNA levels | [142] | |
Hepatic I/R-induced injury rat model (25 and 50 mg/Kg, gavage; 3 weeks before I/R) | ↓ HMGB1, TLR4, NF-κB and NLRP3 mRNA expression; ↓ TLR4 and NF-κB immunoreactivity; ↓ ICAM-1, MPO, IL-1β, IL-6 and TNF-α protein levels; ↑ IL-10 protein levels | [143] | |
1,8-Cineole | SAH-induced early brain injury rat model (100 mg/Kg, i.p.; 1 h before SAH and 30 min after) | ↓ Iba-1 and p65 protein levels; ↓ TNF-α, IL-1β and IL-6 mRNA levels | [144] |
MSU-induced gout arthritis mice model (30–600 mg/Kg, i.p.; 1 h before and 5, 23 and 47 h after 0.5 mg/20 µL of MSU, intra-articular) | ↓ Ankle edema; ↓ cell infiltration; ↓ MPO activity; ↓ NLRP3 and IL-1β mRNA and protein levels | [121] | |
DSS-induced ulcerative colitis mice model (100 and 200 mg/Kg with 2% DSS; 8 days) | ↓ IL-6, IL-1β, TNF-α, IL-17A protein and mRNA levels; ↓ iNOS and COX-2 mRNA and protein levels; ↓ p-p65/p65 ratio | [145] | |
Citral | C. sakazakii-induced intestinal inflammation in newborn mice (0.54 mg/mL, gavage; once per day for 8 days, starting on day 3 postnatal, at day 7, C. sakazakii p.o. was given, sacrifice at day 10) | ↓ IL-1β, TNF-α, PAF receptor, IL-6, IFN-γ, NF-κB p65 and iNOS mRNA levels; ↓ IL-6 and TNF-α levels; ↓ NF-κB p65 protein levels; ↑ IκBα protein levels | [146] |
p-Cymene | TNBS-induced intestinal inflammation rat model (25, 50, 100 and 200 mg/Kg, p.o.; 48 h, 24 h and 1 h before and 24 h after 10 mg/animal TNBS) | ↓ Inflammatory lesions; ↓ MPO activity; ↓ IL-1β and TNF-α secretion; ↑ IL-10 secretion;↓ COX-2, IFN-γ, iNOS, p65 and SOCS3 mRNA expression | [147] |
Fenchone | FCA-induced arthritis rat model (100, 200 and 400 mg/Kg; daily for 28 days post FCA injection) | ↓ Paw volume and arthritis severity; ↓ iNOS, IL-17, COX-2, IL-1β, TNF-α and IL-6 mRNA levels; ↑ IL-10 levels; ↓ NO and PGE2 production | [148] |
Geraniol | ISO-induced myocardial infarction rat model (100 mg/Kg/day p.o.; 14 days, 85 mg/Kg of ISO i.p., in the last 2 days) | ↓ TNF-α, IL-6 and NF-κB protein levels; ↓ MMP-9 and MMP-2 mRNA levels | [149] |
Mycoplasma pneumoniae-induced pneumonia mice model (20 mg/Kg; 3 days, after 2-day infection by M. pneumoniae) | ↓ IL-1, IL-6, IL-8, TNF-α and TGF levels; ↓ ERK1/2 and NF-κB mRNA expression | [150] | |
Cyclosporine A-induced renal injury rat model (50, 100 and 200 mg/Kg, intragastric, 1 h prior to 30 mg/Kg of cyclosporine; daily for 28 days) | ↓ NF-κB mRNA levels; ↓ Renal IL-18 and ICAM-1 levels; ↓ Renal TGF-β levels; ↓ MMP-9 mRNA expression | [151] | |
FCA-induced arthritis rat model (25, 50 and 100 mg/Kg, i.p.; days 7 to 35 post FCA injection, on alternate days) | ↓ Paw edema; ↓ Arthritis severity; ↓ NF-κB, IL-1β, TNF-α, COX-2, mPGES-1, PTGDS and MMP-1 mRNA levels | [152] | |
Hinokitiol | Tooth-ligation-induced periodontitis mice model (2 mg/mL injected into the palatal gingiva; daily for 7 days) | Prevented bone loss; ↓ IL-6, IL-1β, TNF-α and NLRP3 mRNA expression; | [127] |
Limonene | Gentamycin-induced acute kidney injury rat model (100 mg/Kg p.o.; 1 h before 100 mg/Kg, i.p., of gentamycin; daily for 12 days) | ↓ NO production; ↓ Renal TNF-α, IL-6 and NF-κB mRNA levels; ↓ TNF-α immunoreactivity | [153] |
HFD-induced atherosclerosis in diabetic rat model (200 mg/Kg, gavage on day 30, under HFD; for 8 weeks) | ↓ TNF-α and IL-6 protein levels; ↑ IL-10 protein levels; ↑ p-AMPK/APMK ratio; ↓ p-p65/p65 ratio | [154] | |
Menthol | LPS-induced Parkinson’s disease rat model (10 and 20 mg/Kg, gavage; 28 days post LPS injection) | ↓ Iba-1-positive cells; ↓ OX-42 protein levels; ↓ iNOS and COX-2 protein levels; ↓ IL-1β, IL-6, TNF-α, COX-2 and iNOS mRNA expression; ↓ p-p65/p65, p-Akt/Akt, p-ERK/ERK, p-JNK/JNK and p-p38/p38 ratios | [128] |
LPS-induced neuroinflammation mice model (26 and 52 mg/Kg, p.o. with 0.2 mg/Kg, i.p., of LPS; daily for 12 days) | ↓ Iba1-positive microglia; ↓ TNF-α, IL-1β and IL-6 protein levels; ↑ BDNF, TrkB protein levels and p-CREB/CREB ratio | [155] | |
Myrcene | STZ-induced diabetic rat (25 mg/Kg, 72 h after diabetes induction; for 45 days) | ↓ TNF-α and IL-6 serum levels; ↓ TGF-1β, TNF-α and NF-κB levels; ↓ MCP-1, VCAM-1 and ICAM-1 levels; ↑ MMP-2 protein levels; ↓ TIMP1- protein levels | [156] |
ADX-induced renal inflammation rat mode (100 mg/Kg; for 14 days post-surgery) | ↓ IL-1β, IL-6, TNF-α, p65, and IL-4 levels; ↑ IFN-γ and IL-10 levels; ↓ iNOS and COX-2 protein levels | [157] | |
Myrtenal | STZ-induced diabetes rat model (80 mg/Kg, p.o.; daily for 4 weeks) | ↓ TNF-α, IL-6 and NF-κB liver and pancreas mRNA and protein levels | [158] |
Myrtenol | STZ-induced diabetes in pregnant rat model (50 mg/Kg, p.o.; daily for 2 weeks, starting on gestational day 4) | ↓ TLR4, MyD88, p65 and NRLP3 mRNA levels; ↓ TNF-α and IL-1β production | [159] |
Perillyl alcohol | Imiquimod-induced psoriasis-like skin inflammation (100 and 200 mg/Kg, topical; days 3 to 7 post 62.5 mg/Kg imiquimod | ↓ Psoriasis severity (scaling, epidermal thickness, erythema); ↓ Skin NO, IL-1β, IL-6, IL-12/IL-23p40 and TNF-α levels; ↓ Skin TLR7, TLR8, IL-23, IL-17 and IL-22 mRNA expression; ↓ Skin iNOS, IL-17A, TNF-α, p-p65, COX-2, IL-22 and IL-10 protein levels | [129] |
DSS-induced ulcerative colitis mice model (100 and 200 mg/Kg, p.o.; from day 15 to day 28, chronic restraint stress days 1 to 28 and 2.5% DSS days 8 to 14) | ↓ NO, IL-1β, IL-6, TNF-α release; ↓ IL-1β, TNF-α, TLR4 and NF-κB mRNA expression; ↓ MPO activity; ↓ IL-6, p-IκBα and TNF-α protein levels; ↓ p-NF-κB/NF-κB ratio | [130] | |
α-Pinene | UVA-induced photoageing mice model (100 mg/Kg, topical; 1 h prior to irradiation) | ↓ COX-2, NF-κB, iNOS, VEGF and CD34 expression in mouse skin; ↓ COX-2, iNOS, VEGF protein levels; ↓ Nuclear translocation of NF-κB | [72] |
ISO-induced myocardial infarction rat model (50 mg/Kg, p.o.; 21 days with 85 mg/Kg, s.c., of ISO, on days 20 and 21) | ↓ TNF-α and IL-6 secretion; ↓ TNF-α, IL-6 and NF-κB protein levels | [160] | |
α-Terpineol | DSS-induced ulcerative colitis (50 mg/Kg, p.o.; 14 days, DSS in water from days 7 to 14) | ↓ NO and MPO content; ↓ Mast cell infiltration; ↓ NF-κB p65, COX-2 and iNOS immunoreactivity; | [161] |
Thymol | IMID-induced brain damage rat model (30 mg/Kg, p.o., 1 h before 22.5 mg/Kg, p.o., of IMID; 56 days) | ↓ NO and MPO content; ↓ NF-κB immunoreactivity | [162] |
Bleomycin-induced pulmonary fibrosis mice model (50 and 100 mg/Kg, p.o., with 15 mg/Kg, i.p., of bleomycin; daily for 4 weeks) | ↓ Inflammatory infiltrate and edema; ↓ TNF-α, IL-1β, IL-6 and NF-κB protein levels | [163] |
Compound | Study Model | Observed Effects | Ref. |
---|---|---|---|
Geraniol | DSS-induced colitis mouse model (30 and 120 mg/Kg, p.o., for 17 days (days 8–24), DSS (1.5%) was given in tap water for 7 days (days 17–23); total time 37 days | Maintained a microbiota composition similar to healthy mice (120 mg/Kg); ↑ Bacteriodetes population; ↑ Lactobacillaceae population higher than control (120 mg/Kg, day 25) | [196] |
DSS-induced colitis mouse model (120 mg/Kg, enema administration on days 19, 21, 23 and 25, DSS (1.5%) was given in tap water for 7 days (days 17–23); total time 37 days | Maintained a microbiota composition similar to healthy mice; ↑ Bacteriodetes population; ↑ Lactobacillaceae population higher than control (day 25) | [196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuzarte, M.; Sousa, C.; Alves-Silva, J.; Salgueiro, L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024, 12, 365. https://doi.org/10.3390/biomedicines12020365
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines. 2024; 12(2):365. https://doi.org/10.3390/biomedicines12020365
Chicago/Turabian StyleZuzarte, Mónica, Cátia Sousa, Jorge Alves-Silva, and Lígia Salgueiro. 2024. "Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data" Biomedicines 12, no. 2: 365. https://doi.org/10.3390/biomedicines12020365
APA StyleZuzarte, M., Sousa, C., Alves-Silva, J., & Salgueiro, L. (2024). Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines, 12(2), 365. https://doi.org/10.3390/biomedicines12020365