In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics Statement
2.2. Demographic Data and Clinical Characteristics
2.3. Markers of Glycemic Control and Lipid Metabolism
2.4. Transcutaneous Oxygen Pressure Measurement
2.5. Ankle–Brachial Index
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Rayfield, E.J. How hyperglycemia promotes atherosclerosis: Molecular mechanisms. Cardiovasc. Diabetol. 2002, 1, 1. [Google Scholar] [CrossRef]
- Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000, 404, 787–790. [Google Scholar] [CrossRef]
- American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care 2003, 26, 3333–3341. [Google Scholar] [CrossRef]
- Creager, M.A.; White, C.J.; Hiatt, W.R.; Criqui, M.H.; Josephs, S.C.; Alberts, M.J.; Pearce, W.H.; Gray, B.H.; Rocha-Singh, K.J. Atherosclerotic peripheral vascular disease symposium II: Executive summary. Circulation 2008, 118, 2811–2825. [Google Scholar] [CrossRef]
- Marso, S.P.; Hiatt, W.R. Peripheral arterial disease in patients with diabetes. J. Am. Coll. Cardiol. 2006, 47, 921–929. [Google Scholar] [CrossRef]
- Mukherjee, D. Peripheral and cerebrovascular atherosclerotic disease in diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Spinetti, G.; Santopaolo, M.; Madeddu, P. Impaired regeneration contributes to poor outcomes in diabetic peripheral artery disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 34–44. [Google Scholar] [CrossRef]
- Fitridge, R.; Pena, G.; Mills, J.L. The patient presenting with chronic limb-threatening ischaemia. Does diabetes influence presentation, limb outcomes and survival? Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3242. [Google Scholar] [CrossRef]
- Bandyk, D.F. The diabetic foot: Pathophysiology, evaluation, and treatment. Semin. Vasc. Surg. 2018, 31, 43–48. [Google Scholar] [CrossRef]
- Regufe, V.; Pinto, C.; Perez, P. Metabolic syndrome in type 2 diabetic patients: A review of current evidence. Porto Biomed. J. 2020, 6, e101. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Cie’slar, G.; Stanek, A. Nitrotyrosine, Nitrated Lipoproteins, and Cardiovascular Dysfunction in Patients with Type 2 Diabetes: What Do We Know and What Remains to Be Explained? Antioxidants 2022, 11, 856. [Google Scholar] [CrossRef]
- Stanek, A.; Grygiel-Górniak, B.; Brożyna-Tkaczyk, K.; Myśliński, W.; Cholewka, A.; Zolghadri, S. The Influence of Dietary Interventions on Arterial Stiffness in Overweight and Obese Subjects. Nutrients 2023, 15, 1440. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; Martagón, A.J.; Mehta, R.; Arellano-Campos, O.; Gómez-Velasco, D.V.; Almeda-Valdés, P.; Cruz-Bautista, I.; Melgarejo-Hernandez, M.A.; et al. Prediction of incident hypertension and arterial stiffness using the non–insulin-based metabolic score for insulin resistance (METS-IR) index. J. Clin. Hypertens. 2019, 21, 1063–1070. [Google Scholar] [CrossRef]
- Achim, A.; Stanek, A.; Homorodean, C.; Spinu, M.; Onea, H.L.; Lazăr, L.; Marc, M.; Ruzsa, Z.; Olinic, D.M. Approaches to Peripheral Artery Disease in Diabetes: Are There Any Differences? Int. J. Environ. Res. Public Health 2022, 19, 9801. [Google Scholar] [CrossRef]
- Wilcox, T.; Newman, J.D.; Maldonado, T.S.; Rockman, C.; Berger, J.S. Peripheral vascular disease risk in diabetic individuals without coronary heart disease. Atherosclerosis 2018, 275, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Chronic Lower Extremity Ischemia and Its Association with the Frailty Syndrome in Patients with Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 9339. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed]
- Casey, S.; Lanting, S.; Oldmeadow, C.; Chuter, V. The reliability of the ankle brachial index: A systematic review. J. Foot Ankle Res. 2019, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Sung, Y.-W.; Huang, Y.-T.; Chung, Y.-C.; Lee, M.-Y. Better Detection of Peripheral Arterial Disease with Toe-Brachial Index Compared to Ankle-Brachial Index among Taiwanese Patients with Diabetic Kidney Disease. J. Clin. Med. 2023, 12, 7393. [Google Scholar] [CrossRef] [PubMed]
- Leenstra, B.; Wijnand, J.; Verhoeven, B.; Koning, O.; Teraa, M.; Verhaar, M.C.; de Borst, G.J. Applicability of Transcutaneous Oxygen Tension Measurement in the Assessment of Chronic Limb-Threatening Ischemia. Angiology 2020, 71, 208–216. [Google Scholar] [CrossRef]
- Leenstra, B.; de Kleijn, R.; Kuppens, G.; Verhoeven, B.A.N.; Hinnen, J.W.; de Borst, G.J. Photo-Optical Transcutaneous Oxygen Tension Measurement Is of Added Value to Predict Diabetic Foot Ulcer Healing: An Observational Study. J. Clin. Med. 2020, 9, 3291. [Google Scholar] [CrossRef]
- Nasra, K.; Osher, M. Sonography Vascular Peripheral Arterial Assessment, Protocols, and Interpretation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570577/ (accessed on 30 January 2024).
- Kim, T.I.; Guzman, R.J. Medial artery calcification in peripheral artery disease. Front. Cardiovasc. Med. 2023, 10, 1093355. [Google Scholar] [CrossRef]
- Fontaine, R.; Kim, M.; Kieny, R. Surgical treatment of peripheral circulation disorders. Helv. Chir. Acta 1954, 21, 499–533. (In German) [Google Scholar] [PubMed]
- López-Moral, M.; García-Madrid, M.; Molines-Barroso, R.J.; García-Álvarez, Y.; Tardáguila-García, A.; Lázaro-Martínez, J.L. Analyses of transcutaneous oxygen pressure values stratified for foot angiosomes to predict diabetic foot ulcer healing. J. Tissue Viability 2023, 32, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Li, B.; Pan, T.; Zhao, E.; Ju, S.; Li, X.; Li, X.; Zhu, Y.; Cai, Y.; Huang, L.; et al. Risk factors for at-risk foot and peripheral artery disease among the population with diabetes: A multicommunity-based cross-sectional study. Diabetes Res. Clin. Pract. 2023, 203, 110869. [Google Scholar] [CrossRef] [PubMed]
- Catella, J.; Long, A.; Mazzolai, L. What Is Currently the Role of TcPO2 in the Choice of the Amputation Level of Lower Limbs? A Comprehensive Review. J. Clin. Med. 2021, 10, 1413. [Google Scholar] [CrossRef] [PubMed]
- Thiruvoipati, T.; Kielhorn, C.E.; Armstrong, E.J. Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World J. Diabetes 2015, 6, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Aronow, W.S. Peripheral arterial disease in the elderly. Clin. Interv. Aging 2007, 2, 645–654. [Google Scholar] [CrossRef]
- Aronow, W.S.; Ahn, C.; Gutstein, H. Prevalence and incidence of cardiovascular disease in 1160 older men and 2464 older women in a long-term health care facility. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M45–M46. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. Cardiovascular disease and risk management: Standards of care in diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S179–S218. [Google Scholar] [CrossRef]
- Emdin, C.A.; Anderson, S.G.; Callender, T.; Conrad, N.; Salimi-Khorshidi, G.; Mohseni, H.; Woodward, M.; Rahimi, K. Usual blood pressure, peripheral arterial disease, and vascular risk: Cohort study of 4.2 million adults. BMJ 2015, 351, h4865. [Google Scholar] [CrossRef]
- Safar, M.E.; Priollet, P.; Luizy, F.; Mourad, J.-J.; Cacoub, P.; Levesque, H.; Benelbaz, J.; Michon, P.; Herrmann, M.-A.; Blacher, J. Peripheral arterial disease and isolated systolic hypertension: The ATTEST study. J. Hum. Hypertens. 2009, 23, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Itoga, N.K.; Tawfik, D.S.; Lee, C.K.; Maruyama, S.; Leeper, N.J.; Chang, T.I. Association of Blood Pressure Measurements with Peripheral Artery Disease Events. Circulation 2018, 138, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Frary, J.M.C.; Pareek, M.; Byrne, C.; Vaduganathan, M.; Biering-Sørensen, T.; Rujic, D.; Kragholm, K.H.; Olesen, T.B.; Olsen, M.H.; Bhatt, D.L. Intensive blood pressure control appears to be effective and safe in patients with peripheral artery disease: The Systolic Blood Pressure Intervention Trial. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, e38–e40. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y. Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population. Life 2023, 13, 1588. [Google Scholar] [CrossRef]
- Rubio-Guerra, A.F.; Garro-Almendaro, A.K.; Lozano-Nuevo, J.L.; Arana-Pazos, K.C.; Duran-Salgado, M.B.; Morales-López, H. Prehypertension is associated with peripheral arterial disease and low ankle-brachial index. Indian Heart J. 2018, 70, 502–505. [Google Scholar] [CrossRef]
- Omboni, S.; Posokhov, I.N.; Rogoza, A.N. Relationships between 24-h blood pressure variability and 24-h central arterial pressure, pulse wave velocity and augmentation index in hypertensive patients. Hypertens. Res. 2017, 40, 385–391. [Google Scholar] [CrossRef]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus–Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef]
- Bornfeldt, K.E. Does Elevated Glucose Promote Atherosclerosis? Pros and Cons. Circ. Res. 2016, 119, 190–193. [Google Scholar] [CrossRef]
- Katakami, N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J. Atheroscler. Thromb. 2018, 25, 27–39. [Google Scholar] [CrossRef]
- Tabit, C.E.; Shenouda, S.M.; Holbrook, M.; Fetterman, J.L.; Kiani, S.; Frame, A.A.; Kluge, M.A.; Held, A.; Dohadwala, M.M.; Gokce, N.; et al. Protein kinase C-β contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation 2013, 127, 86–95. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Newton, A.C. Regulation of the ABC kinases by phosphorylation: Protein kinase C as a paradigm. Biochem. J. 2008, 88, 1341–1378. [Google Scholar] [CrossRef] [PubMed]
- Zeadin, M.G.; Petlura, C.I.; Werstuck, G.H. Molecular mechanisms linking diabetes to the accelerated development of atherosclerosis. Can. J. Diabetes 2013, 37, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Lévigne, D.; Tobalem, M.; Modarressi, A.; Pittet-Cuénod, B. Hyperglycemia Increases Susceptibility to Ischemic Necrosis. BioMed Res. Int. 2013, 2013, 490964. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxidative Med. Cell. Longev. 2017, 2017, 1273042. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- Jacomella, V.; Gerber, P.A.; Mosimann, K.; Husmann, M.; Thalhammer, C.; Wilkinson, I.; Berneis, K.; Amann-Vesti, B.R. Small Dense Low Density Lipoprotein Particles Are Associated with Poor Outcome after Angioplasty in Peripheral Artery Disease. PLoS ONE 2014, 9, e108813. [Google Scholar] [CrossRef]
- Neubauer-Geryk, J.; Wielicka, M.; Kozera, G.M.; Brandt-Varma, A.; Wołoszyn-Durkiewicz, A.; Myśliwiec, M.; Bieniaszewski, L. Skin oxygenation impairment is associated with increased total cholesterol level in children with short-lasting type 1 diabetes mellitus. Adv. Dermatol. Allergol. 2021, 38, 615–621. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, T.; Geng, K.; Yuan, G.; Chen, Y.; Xu, Y. Smoking and the Pathophysiology of Peripheral Artery Disease. Front. Cardiovasc. Med. 2021, 8, 704106. [Google Scholar] [CrossRef]
- Lietz, M.; Berges, A.; Lebrun, S.; Meurrens, K.; Steffen, Y.; Stolle, K.; Schueller, J.; Boue, S.; Vuillaume, G.; Vanscheeuwijck, P.; et al. Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein E-deficient mice are attenuated by smoking cessation. Atherosclerosis 2013, 229, 86–93. [Google Scholar] [CrossRef]
- Ma, B.; Chen, Y.; Wang, X.; Zhang, R.; Niu, S.; Ni, L.; Di, X.; Han, Q.; Liu, C. Cigarette smoke exposure impairs lipid metabolism by decreasing low-density lipoprotein receptor expression in hepatocytes. Lipids Health Dis. 2020, 19, 88. [Google Scholar] [CrossRef]
- Siasos, G.; Tsigkou, V.; Kokkou, E.; Oikonomou, E.; Vavuranakis, M.; Vlachopoulos, C.; Verveniotis, A.; Limperi, M.; Genimata, V.; Papavassiliou, A.G.; et al. Smoking and atherosclerosis: Mechanisms of disease and new therapeutic approaches. Curr. Med. Chem. 2014, 21, 3936–3948. [Google Scholar] [CrossRef]
- Donato, A.J.; Morgan, R.G.; Walker, A.E.; Lesniewski, L.A. Cellular and molecular biology of aging endothelial cells. J. Mol. Cell. Cardiol. 2015, 89, 122–135. [Google Scholar] [CrossRef]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Higashi, Y. Smoking cessation and vascular endothelial function. Hypertens. Res. 2023, 46, 2670–2678. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Petriello, M.C.; Zhu, B.; Hennig, B. PCB 126 induces monocyte/macrophage polarization and inflammation through AhR and NF-κB pathways. Toxicol. Appl. Pharmacol. 2019, 367, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Duong-Quy, S.; Dao, P.; Hua-Huy, T.; Guilluy, C.; Pacaud, P.; Dinh-Xuan, A.T. Increased Rho-kinase expression and activity and pulmonary endothelial dysfunction in smokers with normal lung function. Eur. Respir. J. 2011, 37, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rooke, T.W.; Osmundson, P.J. The influence of age, sex, smoking, and diabetes on lower limb transcutaneous oxygen tension in patients with arterial occlusive disease. Arch. Intern. Med. 1990, 150, 129–132. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Special Eurobarometer 429: Attitudes of Europeans towards Tobacco and Electronic Cigarettes. 2020. Available online: https://health.ec.europa.eu/tobacco/overview_en#documents (accessed on 17 January 2023).
All Patients Included in the Study (n = 119) | |
---|---|
TcPO2 (mmHg) | 40.85 ± 13.97 |
Smoking (no/yes) (%) | 50.4/49.6 |
BMI (kg/m2) | 29.39 ± 4.88 |
WC (cm) | 106.2 ± 12.5 |
WHR | 0.99 ± 0.07 |
SBP (mmHg) | 140 (90–235) |
DBP (mmHg) | 80 (41–115) |
HbA1c (%) | 7.90 ± 1.62 |
fPG (mmol/L) | 8.16 ± 2.72 |
ppPG (mmol/L) | 10.78 ± 3.54 |
Total cholesterol (mmol/L) | 4.5 (2.5–9.2) |
HDL cholesterol (mmol/L) | 1.2 (0.4–2.3) |
LDL cholesterol (mmol/L) | 2.4 (0.3–4.9) |
Triglycerides (mmol/L) | 1.6 (0.6–9.5) |
ABI | 0.8 (0.3–1.3) |
TcPO2 ≥ 40 (n = 66) | TcPO2 < 40 (n = 53) | ta χb Zc | p | |
---|---|---|---|---|
TcPO2 (mmHg) | 50.34 ± 8.85 | 29.12 ± 9.49 | 17.767 a | <0.001 |
Age (years) | 70.00 ± 7.45 | 66.75 ± 7.89 | 3.248 a | 0.001 |
Smoking (no/yes) (%) | 59.5/40.5 | 38.7/61.3 | 10.201 b | 0.001 |
SBP (mmHg) | 140 (90–230) | 148 (100–235) | −2.267 c | 0.023 |
HbA1c (%) | 7.67 ± 1.58 | 8.20 ± 1.64 | −2.517 a | 0.013 |
fPG (mmol/L) | 7.85 ± 2.14 | 8.58 ± 3.25 | −2.082 a | 0.038 |
Total cholesterol (mmol/L) | 4.3 (2.5–9.1) | 4.8 (2.9–9.2) | −2.722 c | 0.006 |
LDL cholesterol (mmol/L) | 2.2 (0.3–4.7) | 2.6 (1.2–4.9) | −2.848 c | 0.004 |
ABI | 0.8 (0.5–1.2) | 0.7 (0.3–1.3) | 3.539 c | <0.001 |
TcPO2 | Smoking | |
---|---|---|
Smoking | −0.242 ** | 1.000 |
Age | 0.217 ** | −0.321 ** |
Gender (m/f) | −0.067 | −0.233 ** |
SBP | −0.200 * | 0.011 |
HbA1c | −0.219 ** | 0.295 ** |
fPG | −0.154 * | 0.051 |
ppPG | −0.032 | 0.138 * |
Total cholesterol | −0.224 ** | 0.096 |
LDL cholesterol | −0.129 * | 0.059 |
ABI | 0.286 ** | −0.006 |
TcPO2 | |||
---|---|---|---|
df | F | p | |
Smoking | 1 | 5.932 | 0.016 |
HbA1c gr. | 1 | 9.394 | 0.002 |
Smoking and HbA1c gr. | 1 | 0.656 | 0.419 |
Variable | Estimate | Standard Error | F | p | Adjusted R2 | R2 |
---|---|---|---|---|---|---|
Age | 0.355 | 13.716 | 9.65 | 0.0021 | 0.0353 | 0.211 |
Smoking | −3.051 | 13.656 | 11.83 | 0.0007 | 0.0439 | |
SBP | −0.145 | 13.645 | 12.21 | 0.0006 | 0.0454 | |
HbA1c | −2.032 | 13.598 | 13.93 | 0.0003 | 0.0519 | |
fPG | −1.109 | 13.665 | 11.46 | 0.0008 | 0.0424 | |
Total cholesterol | −1.959 | 13.771 | 7.71 | 0.0059 | 0.0277 | |
LDL cholesterol | −2.560 | 13.757 | 8.19 | 0.0046 | 0.0296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulum, T.; Brkljačić, N.; Tičinović Ivančić, A.; Čavlović, M.; Prkačin, I.; Tomić, M. In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes. Biomedicines 2024, 12, 381. https://doi.org/10.3390/biomedicines12020381
Bulum T, Brkljačić N, Tičinović Ivančić A, Čavlović M, Prkačin I, Tomić M. In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes. Biomedicines. 2024; 12(2):381. https://doi.org/10.3390/biomedicines12020381
Chicago/Turabian StyleBulum, Tomislav, Neva Brkljačić, Angelika Tičinović Ivančić, Maja Čavlović, Ingrid Prkačin, and Martina Tomić. 2024. "In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes" Biomedicines 12, no. 2: 381. https://doi.org/10.3390/biomedicines12020381
APA StyleBulum, T., Brkljačić, N., Tičinović Ivančić, A., Čavlović, M., Prkačin, I., & Tomić, M. (2024). In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes. Biomedicines, 12(2), 381. https://doi.org/10.3390/biomedicines12020381