Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children’s Hospital at Baylor College of Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Mice
2.3. Tail Vein Injection (TVI) of Samples
2.4. Peripheral Blood (PB) Monitoring for Engraftment
2.5. Euthanasia and Harvesting Tissue
2.6. Serial Transplantation of Samples
2.7. Flow Cytometry
2.8. Tissue Banking
2.9. DNA Extraction/Short Tandem Repeat (STR) Testing
2.10. Histology
2.11. Fluorescence In Situ Hybridization (FISH)
2.12. Targeted Next-Generation Sequencing
3. Results
3.1. Description of Patient Samples Used to Generate PDXs
3.2. Time to Engraftment and Strains Engrafted
3.3. Characterization of Stable PDX Models
3.4. Public Availability of Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puumala, S.E.; Ross, J.A.; Aplenc, R.; Spector, L.G. Epidemiology of childhood acute myeloid leukemia. Pediatr. Blood Cancer 2013, 60, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Elgarten, C.W.; Aplenc, R. Pediatric acute myeloid leukemia: Updates on biology, risk stratification, and therapy. Curr. Opin. Pediatr. 2020, 32, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Deschler, B.; Lübbert, M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006, 107, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Bolouri, H.; Farrar, J.E.; Triche, T., Jr.; Ries, R.E.; Lim, E.L.; Alonzo, T.A.; Ma, Y.; Moore, R.; Mungall, A.J.; Marra, M.A.; et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 2018, 24, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ge, Z. Recent advances of targeted therapy in relapsed/refractory acute myeloid leukemia. Bosn. J. Basic. Med. Sci. 2021, 21, 409–421. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.P.; et al. Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- McNerney, K.O.; Teachey, D.T. Xenograft models for pediatric cancer therapies. Fac. Rev. 2021, 10, 11. [Google Scholar] [CrossRef]
- Reaman, G.; Stancato, L.; Vassal, G.; Maris, J.M. Crossing Oceans: Preclinical Collaboration to Improve Pediatric Drug Development. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 409–416. [Google Scholar] [CrossRef]
- Shan, W.L.; Ma, X.L. How to establish acute myeloid leukemia xenograft models using immunodeficient mice. Asian Pac. J. Cancer Prev. 2013, 14, 7057–7063. [Google Scholar] [CrossRef]
- Zeng, A.G.X.; Bansal, S.; Jin, L.; Mitchell, A.; Chen, W.C.; Abbas, H.A.; Chan-Seng-Yue, M.; Voisin, V.; van Galen, P.; Tierens, A.; et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nat. Med. 2022, 28, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Kurmasheva, R.T. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol. Rev. 2019, 71, 671–697. [Google Scholar] [CrossRef] [PubMed]
- Griessinger, E.; Andreeff, M. NSG-S mice for acute myeloid leukemia, yes. For myelodysplastic syndrome, no. Haematologica 2018, 103, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Griessinger, E.; Vargaftig, J.; Horswell, S.; Taussig, D.C.; Gribben, J.; Bonnet, D. Acute myeloid leukemia xenograft success prediction: Saving time. Exp. Hematol. 2018, 59, 66–71.e64. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, W.; Cutler, J.A.; Aubrey, B.J.; Wenge, D.; Perner, F.; Martucci, C.; Henrich, J.A.; Klega, K.; Nowak, R.P.; Donovan, K.A.; et al. Mezigdomide is effective alone and in combination with Menin inhibition in pre-clinical models of KMT2A-r and NPM1c AML. Blood, 2023; ahead of print. [Google Scholar] [CrossRef]
- Larrue, C.; Mouche, S.; Lin, S.; Simonetta, F.; Scheidegger, N.K.; Poulain, L.; Birsen, R.; Sarry, J.E.; Stegmaier, K.; Tamburini, J. Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia. Leukemia 2023, 37, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Niswander, L.M.; Graff, Z.T.; Chien, C.D.; Chukinas, J.A.; Meadows, C.A.; Leach, L.C.; Loftus, J.P.; Kohler, M.E.; Tasian, S.K.; Fry, T.J. Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against FLT3- mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia. Haematologica 2023, 108, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Barajas, J.M.; Rasouli, M.; Umeda, M.; Hiltenbrand, R.L.; Abdelhamed, S.; Mohnani, R.; Arthur, B.; Westover, T.; Thomas, M.E., 3rd; Ashtiani, M.; et al. Acute myeloid leukemias with UBTF tandem duplications are sensitive to Menin inhibitors. Blood 2023. ahead of print. [Google Scholar] [CrossRef]
- Le, Q.; Hadland, B.; Smith, J.L.; Leonti, A.; Huang, B.J.; Ries, R.; Hylkema, T.A.; Castro, S.; Tang, T.T.; McKay, C.N.; et al. CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target. J. Clin. Investig. 2022, 132, e157101. [Google Scholar] [CrossRef] [PubMed]
- Lehner, K.M.; Gopalakrishnapillai, A.; Kolb, E.A.; Barwe, S.P. Bone Marrow Microenvironment-Induced Chemoprotection in KMT2A Rearranged Pediatric AML Is Overcome by Azacitidine-Panobinostat Combination. Cancers 2023, 15, 3112. [Google Scholar] [CrossRef]
- Shultz, L.D.; Lyons, B.L.; Burzenski, L.M.; Gott, B.; Chen, X.; Chaleff, S.; Kotb, M.; Gillies, S.D.; King, M.; Mangada, J.; et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 2005, 174, 6477–6489. [Google Scholar] [CrossRef]
- Wunderlich, M.; Chou, F.S.; Link, K.A.; Mizukawa, B.; Perry, R.L.; Carroll, M.; Mulloy, J.C. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010, 24, 1785–1788. [Google Scholar] [CrossRef]
- Rongvaux, A.; Willinger, T.; Martinek, J.; Strowig, T.; Gearty, S.V.; Teichmann, L.L.; Saito, Y.; Marches, F.; Halene, S.; Palucka, A.K.; et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 2014, 32, 364–372. [Google Scholar] [CrossRef]
- Sefik, E.; Israelow, B.; Mirza, H.; Zhao, J.; Qu, R.; Kaffe, E.; Song, E.; Halene, S.; Meffre, E.; Kluger, Y.; et al. A humanized mouse model of chronic COVID-19. Nat. Biotechnol. 2022, 40, 906–920. [Google Scholar] [CrossRef] [PubMed]
- Loken, M.; Brodersen, L.; Wells, D. Monitoring AML Response Using “Difference from Normal” Flow Cytometry. In Minimal Residual Disease Testing, Current Innovations and Future Directions; Druley, T., Ed.; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 101–137. [Google Scholar]
- Zhou, T.; Bloomquist, M.S.; Ferguson, L.S.; Reuther, J.; Marcogliese, A.N.; Elghetany, M.T.; Roy, A.; Rao, P.H.; Lopez-Terrada, D.H.; Redell, M.S.; et al. Pediatric myeloid sarcoma: A single institution clinicopathologic and molecular analysis. Pediatr. Hematol. Oncol. 2020, 37, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Chandramohan, R.; Reuther, J.; Gandhi, I.; Voicu, H.; Alvarez, K.R.; Plon, S.E.; Lopez-Terrada, D.H.; Fisher, K.E.; Parsons, D.W.; Roy, A. A Validation Framework for Somatic Copy Number Detection in Targeted Sequencing Panels. J. Mol. Diagn. 2022, 24, 760–774. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Sukhai, M.A.; Craddock, K.J.; Thomas, M.; Hansen, A.R.; Zhang, T.; Siu, L.; Bedard, P.; Stockley, T.L.; Kamel-Reid, S. A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. Genet. Med. 2016, 18, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, H.H.; Neumann, H.A.; Henss, H.; Koch, H.; Kaiser, D.; Arnold, H. Development of three human small cell lung cancer models in nude mice. Recent. Results Cancer Res. 1985, 97, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J.A.; Houghton, P.J.; Green, A.A. Chemotherapy of childhood rhabdomyosarcomas growing as xenografts in immune-deprived mice. Cancer Res. 1982, 42, 535–539. [Google Scholar] [PubMed]
- Blanco, T.M.; Mantalaris, A.; Bismarck, A.; Panoskaltsis, N. The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials 2010, 31, 2243–2251. [Google Scholar] [CrossRef]
- Frismantas, V.; Dobay, M.P.; Rinaldi, A.; Tchinda, J.; Dunn, S.H.; Kunz, J.; Richter-Pechanska, P.; Marovca, B.; Pail, O.; Jenni, S.; et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 2017, 129, e26–e37. [Google Scholar] [CrossRef] [PubMed]
Public Model Name | Age/Sex | Race/Ethnicity | Timepoint | Major Cytogenetic or Molecular Features | Passages | Time to Moribund—NSGS Weeks, Mode (Range) | Other Strains Engrafted |
---|---|---|---|---|---|---|---|
AML001 | 1/M | W/NH | Dx | ins(10;11) | 5 | 7 (7–24) | N, M, M6 |
AML002 | 20/F | B/NH | Relapse | t(7;21), −17 | 4 | 17 (9–18) | |
AML003 | 7/M | W/H | Dx t-AML | FLT3 (2 PMs), FANCG, STAG2 | 2 | 10 (9–13) | |
AML004 | 1/M | W/NH | Dx | t(1;21), IDH2, MUTYH | 5 | 9 (6–13) | M6 |
AML005a | 16/M | W/H | Dx | 3′ KMT2A deletion/KMT2A::MLLT4, PTPN11 | 2 | 10 (8–18) | M, M6 |
AML006 | 9/M | B/NH | Relapse | KMT2A::MLLT1, KRAS, SETD2, WT1 | 4 | 8 (7–9) | N, M, M6 |
AML007 | 11/M | W/NH | Induction Failure | PICALM::MLLT10, ETV6 loss, NRAS | 2 | N/A | M6 |
AML008 | 4/F | W/NH | Dx | RAD21 | 2 | N/A | M, M6 |
AML009 | 19/F | W/H | Relapse | KMT2A::ENL, TP53 | 3 | 16 (11–16) | M6 |
AML010 | 2/M | W/NH | Dx | +10/WT1 | 3 | 5 (5–6) | M, M6 |
AML011 | 19/F | W/H | Dx | FLT3-ITD, NPM1, WT1 | 3 | 26 (16–46) | M6 |
AML012a | 15/M | W/H | Dx | NUP98::NSD1, FLT3-ITD, WT1 | 2 | 35 (13–35) | M |
AML013 | 13/M | B/NH | Dx | t(6;11)/KMT2A::MLLT4 | 2 | 8 (8–15) | M, M6 |
AML014 | 0.6/F | W/NH | Dx | KMT2A::MLLT3 | 2 | 16 (12–35) | M6 |
AML016 | 15/F | W/H | Dx t-AML | multiple VUS | 5 | 18 (12–26) | |
AML018 | 3/M | B/NH | Relapse | KMT2A::MLLT3, ABL1, PTCH1 | 6 | 5 (4–11) | M6 |
AML019 | 11/M | W/NH | Dx | FLT3 (2 PMs), IDH1 | 2 | 27 (11–29) | |
AML901 | 10/F | W/NH | Dx | KMT2A::MLLT10, −10 | 4 | 10 (9–11) | |
AML902 | 19/M | W/NH | Dx | PICALM::MLLT10 | 5 | 18 (11–18) | |
AML903 | 17/F | Other/NH | Dx | NPM1 | 4 | 11 (11–11) | |
AML904 | 2/M | W/NH | Dx | KMT2A::MLLT10 | 4 | 10, 12 (10–17) | |
AML905 | 1/F | W/H | Dx | CBFA2T3::GLIS2, +8, +21 | 4 | 9 (8–15) | M6 |
AML906 | 15/M | A/NH | Dx | KMT2A::MLLT3 | 5 | 7 (6–16) | |
AML907 | 15/M | W/NH | Dx | NPM1 | 6 | 16 (15–42) | |
AML908 | 10/F | B/NH | Dx | KMT2A::MLLT3 | 4 | 12 (11–26) | |
AML909 | 0.5/F | AI/H | Dx | KMT2A::AFF3 | 2 | 10 (8–18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, A.M.; Terrell, M.; Rashid, R.; Fisher, K.E.; Marcogliese, A.N.; Gaikwad, A.; Rao, P.; Vrana, C.; Krueger, M.; Loken, M.; et al. Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children’s Hospital at Baylor College of Medicine. Biomedicines 2024, 12, 394. https://doi.org/10.3390/biomedicines12020394
Stevens AM, Terrell M, Rashid R, Fisher KE, Marcogliese AN, Gaikwad A, Rao P, Vrana C, Krueger M, Loken M, et al. Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children’s Hospital at Baylor College of Medicine. Biomedicines. 2024; 12(2):394. https://doi.org/10.3390/biomedicines12020394
Chicago/Turabian StyleStevens, Alexandra M., Maci Terrell, Raushan Rashid, Kevin E. Fisher, Andrea N. Marcogliese, Amos Gaikwad, Pulivarthi Rao, Chelsea Vrana, Michael Krueger, Michael Loken, and et al. 2024. "Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children’s Hospital at Baylor College of Medicine" Biomedicines 12, no. 2: 394. https://doi.org/10.3390/biomedicines12020394
APA StyleStevens, A. M., Terrell, M., Rashid, R., Fisher, K. E., Marcogliese, A. N., Gaikwad, A., Rao, P., Vrana, C., Krueger, M., Loken, M., Menssen, A. J., Cook, J. A., Keogh, N., Alozie, M., Oviedo, H., Gonzalez, A. K., Ilangovan, T., Kim, J., Sandhu, S., & Redell, M. S. (2024). Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children’s Hospital at Baylor College of Medicine. Biomedicines, 12(2), 394. https://doi.org/10.3390/biomedicines12020394