Tiny Lungs, Big Differences: Navigating the Varied COVID-19 Landscape in Neonates vs. Infants via Biomarkers and Lung Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
- Subjects born from mothers who tested positive for COVID-19 at birth, indicating vertical transmission.
- Subjects who acquired the SARS-CoV-2 infection while being hospitalized, indicating postnatal transmission.
- Subjects who were discharged from the hospital but developed SARS-CoV-2 infection within the first 28 days of life. All the neonates included were full-term.
- Hospitalized patients (neonates and infants) with SARS-CoV-2 infection for a duration of less than three days;
- Neonates and infants with preexistent chronic lung diseases such as bronchopulmonary dysplasia, immunodeficiency, cystic fibrosis, and similar conditions;
- The premature neonates were excluded from the analysis in order to avoid introducing bias in the interpretation of the results.
- Neonates and infants who do not have the consent of their parents or legal guardians.
- LUSS = 0 was assigned for a normal or physiological pattern exhibiting A-lines, along with one or two B-lines per intercostal space;
- LUSS = 1 was an observation of more than two B-lines (referred to as sparse B-lines) per intercostal space, coupled with associated pleural abnormalities such as irregularities or thickening;
- LUSS = 2 was allocated for the presence of coalescent or merging B-lines, a ‘white-lung’ appearance, or small peripheral consolidations smaller than 1 cm;
- A maximum score of 3 points was given for substantial peripheral consolidations wider than 1 cm, whether or not they were associated with air bronchograms.
3. Results
3.1. Demographic Data
3.2. Comparison between the Evaluation of SARS-CoV-2 in Neonates and Infants
3.3. Comparison between Biomarkers, Signs, and Symptoms in Subgroups
4. Discussion
4.1. Limitations
- Sample size: The study’s sample size of infants and neonates might limit the generalizability of the findings, although it is still the largest one included in such a comprehensive study. An expanded group of participants could provide a deeper understanding of the observed disparities.
- Variability in clinical practices: Variations in healthcare practices across different settings or regions might influence the observed differences in symptomatology, diagnosis, and management.
- Limited data on long-term outcomes: The study’s focus on immediate clinical presentations might overlook potential long-term effects or outcomes in infants and neonates post-infection.
4.2. Further Directions
- Expanded comparative studies: conducting larger-scale studies involving more diverse cohorts of infants and neonates could provide a broader understanding of the nuances in lung involvement and validate the trends observed in this study.
- Longitudinal LUS investigations: examining the evolution of LUS findings over time in infants and neonates with SARS-CoV-2 could offer insights into the progression or resolution of lung abnormalities.
- Comprehensive LUS protocols: developing comprehensive LUS protocols that encompass a wider array of lung pathology and standardizing the scoring systems could enhance the accuracy and reproducibility of assessments.
- Validation studies with complementary modalities: conducting validation studies correlating LUS findings with other imaging modalities or clinical outcomes could validate the accuracy and reliability of LUS as a diagnostic tool in this context.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manti, S.; Licari, A.; Montagna, L.; Votto, M.; Leonardi, S.; Brambilla, I.; Castagnoli, R.; Foiadelli, T.; Marseglia, G.L.; Cardinale, F.; et al. SARS-CoV-2 Infection in Pediatric Population. Acta Biomedica Atenei Parm. 2020, 91, e2020003. [Google Scholar] [CrossRef]
- Duke, T.; English, M.; Carai, S.; Qazi, S. Paediatric Care in the Time of COVID-19 in Countries with under-Resourced Healthcare Systems. Arch. Dis. Child. 2020, 105, 616–617. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.M.; Mytton, O.T.; Bonell, C.; Melendez-Torres, G.J.; Ward, J.; Hudson, L.; Waddington, C.; Thomas, J.; Russell, S.; Van Der Klis, F.; et al. Susceptibility to SARS-CoV-2 Infection Among Children and Adolescents Compared With Adults: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2021, 175, 143. [Google Scholar] [CrossRef] [PubMed]
- Ryan, L.; Plötz, F.B.; van den Hoogen, A.; Latour, J.M.; Degtyareva, M.; Keuning, M.; Klingenberg, C.; Reiss, I.K.M.; Giannoni, E.; Roehr, C.; et al. Neonates and COVID-19: State of the Art: Neonatal Sepsis Series. Pediatr. Res. 2022, 91, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Spoulou, V.; Noni, M.; Koukou, D.; Kossyvakis, A.; Michos, A. Clinical Characteristics of COVID-19 in Neonates and Young Infants. Eur. J. Pediatr. 2021, 180, 3041–3045. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Khalil, A.; Magboul, S.; Alomari, O.; Abdalla, T.; Alsliman, H.; Alhothi, A.; Al Maslamani, E.; AlAmri, M.; Soliman, A. Neonates and Young Infants With COVID-19 Presented with Sepsis-Like Syndrome: A Retrospective Case Controlled Study. Front. Pediatr. 2021, 9, 634844. [Google Scholar] [CrossRef] [PubMed]
- Gregorio-Hernández, R.; Escobar-Izquierdo, A.B.; Cobas-Pazos, J.; Martínez-Gimeno, A. Point-of-Care Lung Ultrasound in Three Neonates with COVID-19. Eur. J. Pediatr. 2020, 179, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Xia, S.; Yuan, W.; Yan, K.; Xiao, F.; Shao, J.; Zhou, W. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. 2020, 174, 722. [Google Scholar] [CrossRef]
- Stoicescu, E.R.; Ciuca, I.M.; Iacob, R.; Iacob, E.R.; Marc, M.S.; Birsasteanu, F.; Manolescu, D.L.; Iacob, D. Is Lung Ultrasound Helpful in COVID-19 Neonates?—A Systematic Review. Diagnostics 2021, 11, 2296. [Google Scholar] [CrossRef]
- Vardhelli, V.; Pandita, A.; Pillai, A.; Badatya, S.K. Perinatal COVID-19: Review of Current Evidence and Practical Approach towards Prevention and Management. Eur. J. Pediatr. 2021, 180, 1009–1031. [Google Scholar] [CrossRef]
- Ciuca, I.M.; Pop, L.L.; Dediu, M.; Stoicescu, E.R.; Marc, M.S.; Manea, A.M.; Manolescu, D.L. Lung Ultrasound in Children with Cystic Fibrosis in Comparison with Chest Computed Tomography: A Feasibility Study. Diagnostics 2022, 12, 376. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Vetrugno, L. Lung Ultrasound in Adults and Children with COVID-19: From First Discoveries to Recent Advances. JCM 2022, 11, 4340. [Google Scholar] [CrossRef] [PubMed]
- Lovrenski, J. Pediatric Lung Ultrasound—Pros and Potentials. Pediatr. Radiol. 2020, 50, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, M.W.; da Rocha, S.M.S.; Gibelli, M.A.B.C.; Nicolau, C.M.; de Carvalho, W.B.; Suzuki, L. Use of Lung Ultrasound in Neonates during the COVID-19 Pandemic. Radiol. Bras. 2020, 53, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Ciuca, I.M.; Dediu, M.; Marc, M.S.; Lukic, M.; Horhat, D.I.; Pop, L.L. Lung Ultrasound Is More Sensitive for Hospitalized Consolidated Pneumonia Diagnosis Compared to CXR in Children. Children 2021, 8, 659. [Google Scholar] [CrossRef]
- Oakley, P.A.; Harrison, D.E. Death of the ALARA Radiation Protection Principle as Used in the Medical Sector. Dose Response 2020, 18, 1559325820921641. [Google Scholar] [CrossRef] [PubMed]
- Lovrenski, J. Pediatric Lung Ultrasound Cons—Are They Really Strong Enough? Pediatr. Radiol. 2020, 50, 321–322. [Google Scholar] [CrossRef]
- Denina, M.; Scolfaro, C.; Silvestro, E.; Pruccoli, G.; Mignone, F.; Zoppo, M.; Ramenghi, U.; Garazzino, S. Lung Ultrasound in Children With COVID-19. Pediatrics 2020, 146, e20201157. [Google Scholar] [CrossRef]
- García-Vera, C.; Castejón-Ramírez, S.; Laín Miranda, E.; Hernández Abadía, R.; García Ventura, M.; Borque Navarro, E.; Rubio Sánchez, P.; Baeta Ruiz, Á.; Mengual Gil, J.M. COVID-19 in Children: Clinical and Epidemiological Spectrum in the Community. Eur. J. Pediatr. 2022, 181, 1235–1242. [Google Scholar] [CrossRef]
- Stoicescu, E.R.; Manolescu, D.L.; Iacob, R.; Cerbu, S.; Dima, M.; Iacob, E.R.; Ciuca, I.M.; Oancea, C.; Iacob, D. The Assessment of COVID-19 Pneumonia in Neonates: Observed by Lung Ultrasound Technique and Correlated with Biomarkers and Symptoms. JCM 2022, 11, 3555. [Google Scholar] [CrossRef]
- Panahi, L.; Amiri, M.; Pouy, S. Clinical Characteristics of COVID-19 Infection in Newborns and Pediatrics: A Systematic Review. Arch. Acad. Emerg. Med. 2020, 8, e50. [Google Scholar]
- Ciuca, I.M.; Dediu, M.; Pop, L.L. Pediatric Pneumonia (PedPne) Lung Ultrasound Score and Inflammatory Markers: A Pilot Study. Pediatr. Pulmonol. 2022, 57, 576–582. [Google Scholar] [CrossRef]
- Azadbakht, J.; Saffari, M.; Talarie, H.; Esfahani, M.M.; Barzegar, M. Diagnostic Accuracy and Prognostic Value of Lung Ultrasound in Coronavirus Disease (COVID-19). Pol. J. Radiol. 2022, 87, e397–e408. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Ríos, D.; Enríquez-Estrada, A.C.; Serpa-Maldonado, E.V.; Miranda-Vega, A.L.; Villanueva-García, D.; Vázquez-Solano, E.P.; Márquez-González, H. Lung Ultrasound Characteristics in Neonates With Positive Real Time Polymerase Chain Reaction for SARS-CoV-2 on a Tertiary Level Referral Hospital in Mexico City. Front. Pediatr. 2022, 10, 859092. [Google Scholar] [CrossRef] [PubMed]
- Ito, G.N.W.; Rodrigues, V.A.C.; Hümmelgen, J.; Meschino, G.S.P.G.; Abou-Rejaile, G.M.; Brenny, I.D.; de Castro Júnior, C.R.; Artigas, R.C.; Munhoz, J.P.S.; Cardoso, G.C.; et al. COVID-19 Pathophysiology and Ultrasound Imaging: A Multiorgan Review. J. Clin. Ultrasound 2022, 50, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Ghenciu, L.A.; Faur, A.C.; Bolintineanu, S.L.; Salavat, M.C.; Maghiari, A.L. Recent Advances in Diagnosis and Treatment Approaches in Fungal Keratitis: A Narrative Review. Microorganisms 2024, 12, 161. [Google Scholar] [CrossRef]
- Zolotovskaia, I.A.; Shatskaia, P.R.; Davydkin, I.L.; Shavlovskaya, O.A. Postcovid-19 Asthenic Syndrome. Neurosci. Behav. Physiol. 2022, 52, 191–195. [Google Scholar] [CrossRef]
- Eilers, L.; Harrington, J.W. Neonatal Lethargy, Seizures, and Asphyxiation. Pediatr. Rev. 2017, 38, 290–291. [Google Scholar] [CrossRef]
- Gerson, R.; Malas, N.; Feuer, V.; Silver, G.H.; Prasad, R.; Mroczkowski, M.M. Best Practices for Evaluation and Treatment of Agitated Children and Adolescents (BETA) in the Emergency Department: Consensus Statement of the American Association for Emergency Psychiatry. West. J. Emerg. Med. 2019, 20, 409–418. [Google Scholar] [CrossRef]
- Tripodi, B.; Matarese, I.; Carbone, M.G. A Critical Review of the Psychomotor Agitation Treatment in Youth. Life 2023, 13, 293. [Google Scholar] [CrossRef]
- Mongodi, S.; Bouhemad, B.; Orlando, A.; Stella, A.; Tavazzi, G.; Via, G.; Iotti, G.A.; Braschi, A.; Mojoli, F. Modified Lung Ultrasound Score for Assessing and Monitoring Pulmonary Aeration. Ultraschall Med. 2017, 38, 530–537. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hart, A. Mann-Whitney Test Is Not Just a Test of Medians: Differences in Spread Can Be Important. BMJ 2001, 323, 391–393. [Google Scholar] [CrossRef]
- Dima, M.; Enatescu, I.; Craina, M.; Petre, I.; Iacob, E.R.; Iacob, D. First Neonates with Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Romania: Three Case Reports. Medicine 2020, 99, e21284. [Google Scholar] [CrossRef] [PubMed]
- Smargiassi, A.; Soldati, G.; Borghetti, A.; Scoppettuolo, G.; Tamburrini, E.; Testa, A.C.; Moro, F.; Natale, L.; Larici, A.R.; Buonsenso, D.; et al. Lung Ultrasonography for Early Management of Patients with Respiratory Symptoms during COVID-19 Pandemic. J. Ultrasound 2020, 23, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Ostojic, D.; Isler, H.; Bassler, D.; Wolf, M.; Karen, T. Reference Ranges for Hemoglobin and Hematocrit Levels in Neonates as a Function of Gestational Age (22–42 Weeks) and Postnatal Age (0–29 Days): Mathematical Modeling. Children 2019, 6, 38. [Google Scholar] [CrossRef]
- Roy, S.; Jha, V.N.; Ranjan, B. A Case Series of Coagulopathy in Preterm or Growth-Restricted Term Neonates Born to Mothers with Antenatal SARS-CoV-2 Infection: Neonatal Post-COVID-19 Coagulopathy? J. Fam. Med. Prim. Care 2022, 11, 7483–7490. [Google Scholar] [CrossRef]
- Gámez-González, L.B.; Escárcega-Juárez Ana Silvia, A.S.; Aguilar-Soto, D.E.; Colmenero Rascón, M.; García Espinosa, A.C.; Yamazaki-Nakashimada, M.A. Multisystem Inflammatory Syndrome in Neonates Associated with SARS-CoV-2 Infection, a Different Entity? NPM J. Neonatal Perinatal Med. 2023, 16, 169–177. [Google Scholar] [CrossRef]
- Shaiba, L.A.; More, K.; Hadid, A.; Almaghrabi, R.; Al Marri, M.; Alnamnakani, M.; Shah, P. Multisystemic Inflammatory Syndrome in Neonates: A Systematic Review. Neonatology 2022, 119, 405–417. [Google Scholar] [CrossRef]
- Kaftan, A.; Hussain, M.; Algenabi, A.; Naser, F.; Enaya, M. Predictive Value of C-Reactive Protein, Lactate Dehydrogenase, Ferritin and D-Dimer Levels in Diagnosing COVID-19 Patients: A Retrospective Study. Acta Inf. Inform. Med. 2021, 29, 45. [Google Scholar] [CrossRef]
- Stoicescu, E.R.; Lovrenski, J.; Iacob, R.; Cerbu, S.; Iacob, D.; Iacob, E.R.; Susa, S.R.; Ciuca, I.M.; Bolintineanu (Ghenciu), L.A.; Ciornei-Hoffman, A.; et al. COVID-19 in Infants and Children under 2 Years—Could Lung Ultrasound Score Be Correlated with Biomarkers and Symptoms? Biomedicines 2023, 11, 2620. [Google Scholar] [CrossRef] [PubMed]
- Caroselli, C.; Blaivas, M.; Falzetti, S. Diagnostic Imaging in Newborns, Children and Adolescents Infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Is There a Realistic Alternative to Lung High-Resolution Computed Tomography (HRCT) and Chest X-Rays? A Systematic Review of the Literature. Ultrasound Med. Biol. 2021, 47, 3034–3040. [Google Scholar] [CrossRef] [PubMed]
- Gil-Rodríguez, J.; Pérez De Rojas, J.; Aranda-Laserna, P.; Benavente-Fernández, A.; Martos-Ruiz, M.; Peregrina-Rivas, J.-A.; Guirao-Arrabal, E. Ultrasound Findings of Lung Ultrasonography in COVID-19: A Systematic Review. Eur. J. Radiol. 2022, 148, 110156. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.H.; Saha, B.K.; Conuel, E.; Chopra, A. The Incidence of Pleural Effusion in COVID-19 Pneumonia: State-of-the-Art Review. Heart Lung 2021, 50, 481–490. [Google Scholar] [CrossRef]
- Ökmen, K.; Yildiz, D.K.; Soyaslan, E.; Ceylan, İ.; Sayan, H.E.; Aytünür, C.S. Comparison of Two Different Lung Ultrasound Imaging Protocols in COVID-19 Pneumonia. Ultrasonography 2022, 41, 212–221. [Google Scholar] [CrossRef]
- Jeganathan, K.; Paul, A.B. Vertical Transmission of SARS-CoV-2: A Systematic Review. Obs. Obstet. Med. 2022, 15, 91–98. [Google Scholar] [CrossRef]
- Kotlyar, A.M.; Grechukhina, O.; Chen, A.; Popkhadze, S.; Grimshaw, A.; Tal, O.; Taylor, H.S.; Tal, R. Vertical Transmission of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Am. J. Obs. Gynecol 2021, 224, 35–53. [Google Scholar] [CrossRef]
- Musa, S.S.; Bello, U.M.; Zhao, S.; Abdullahi, Z.U.; Lawan, M.A.; He, D. Vertical Transmission of SARS-CoV-2: A Systematic Review of Systematic Reviews. Viruses 2021, 13, 1877. [Google Scholar] [CrossRef]
- Cribiù, F.M.; Erra, R.; Pugni, L.; Rubio-Perez, C.; Alonso, L.; Simonetti, S.; Croci, G.A.; Serna, G.; Ronchi, A.; Pietrasanta, C.; et al. Severe SARS-CoV-2 Placenta Infection Can Impact Neonatal Outcome in the Absence of Vertical Transmission. J. Clin. Investig. 2021, 131, e145427. [Google Scholar] [CrossRef]
Parameters | Median and (IQR) for Infants (i = 23) | Median and (IQR) for Neonates (n = 19) | Mann–Whitney Test | Test Statistic Z | p Value |
---|---|---|---|---|---|
Total PCR tests | 3; [3;4] | 4; [3;5] | 131.50 | −2.36 | 0.0181 |
PCR positive tests | 1; [1;2] | 2; [1.25; 2] | 125 | −2.61 | 0.0089 |
Days of hospitalization | 5; [3; 5.75] | 10; [6; 16] | 74 | −3.67 | 0.0002 |
Hemoglobin (g/dL) | 11.70; [10.92; 12.10] | 14.70; [12.02; 15.87] | 78.50 | −3.54 | 0.0004 |
Leukocytes (×109/L) | 8170; [6400; 11,905] | 13,200; [11,125; 20,015] | 91.50 | −3.20 | 0.0013 |
Lymphocytes (×109/L) | 3960; [2427.50; 5787.50] | 5300; [4355; 7692.50] | 129 | n/a | 0.0234 |
Neutrophiles (×109/L) | 3180; [1612.50; 4685] | 5900; [2877.50; 11,020] | 121 | n/a | 0.0131 |
Monocytes (×109/L) | 1210; [797.50; 1677.50] | 1200; [885; 2595] | 200 | −0.46 | 0.6400 |
Thrombocytes (×109/L) | 345,000; [272,500; 410,750] | 258,000; [218,250; 345,750] | 153 | −1.65 | 0.0978 |
Procalcitonin (ng/mL) | 0.17; [0.10; 0.23] | 0.28; [0.13; 1.02] | 63.50 | −1.68 | 0.0930 |
CRP (mg/L) | 3.50; [2.29; 7.93] | 9.63; [4.52; 12.97] | 137 | n/a | 0.0397 |
Ferritin (µg/L) | 121.32; [69.89; 207.80] | 496.30; [282.50; 1172.50] | 28 | n/a | 0.0001 |
LDH (U/L) | 295; [232; 352] | 540; [447.75; 651.50] | 23 | −4.94 | <0.0001 |
AST (U/L) | 58; [33.12; 63.40] | 58; [49.25; 82.75] | 167 | −1.30 | 0.1930 |
ALT(U/L) | 23.90; [16.47; 29.52] | 26; [14.50; 32.25] | 210.50 | −0.20 | 0.8397 |
IL-6 (pg/mL) | 8.51; [1.73; 16.35] | 8.70; [4.32; 15.95] | 195 | −0.59 | 0.5526 |
D-dimer (mg/L) | 0.78; [0.57; 1.66] | 1.67; [1.20; 2.27] | 111.50 | −2.70 | 0.0068 |
O2 saturation (%) | 98; [98; 99] | 97; [96; 98] | 52 | −4.37 | <0.0001 |
LUSS | 4; [3; 6.75] | 13; [10; 14.75] | 15.50 | −5.14 | <0.0001 |
Signs and Symptoms | Number of Infants (i = 23) and Incidence (%) | Number of Neonates (n = 19) and Incidence (%) | Incidence Rate Difference | p Value |
---|---|---|---|---|
Psychomotor agitation | 4 (17.39%) | 12 (63.16%) | −0.45 | 0.01 |
Asthenic syndrome | 9 (39.13%) | 5 (26.32%) | 0.12 | 0.47 |
Fever | 19 (82.61%) | 7 (36.84%) | 0.36 | 0.06 |
Cough | 13 (56.52%) | 4 (21.05%) | 0.35 | 0.07 |
Rhinorrhea | 9 (39.13%) | 9 (47.37%) | −0.08 | 0.68 |
Acute dehydration syndrome | 19 (82.61%) | 7 (36.84%) | 0.45 | 0.06 |
Diarrhea | 5 (21.74%) | 4 (21.05%) | 0.006 | 0.96 |
Vomiting | 4 (17.39%) | 2 (10.53%) | 0.06 | 0.55 |
Lack of appetite | 13 (56.52%) | 10 (52.63%) | 0.03 | 0.86 |
Dyspnea | 1 (4.34%) | 3 (15.79%) | −0.11 | 0.23 |
Candidiasis | 3 (13.04%) | 9 (47.37%) | −0.34 | 0.03 |
LUS Findings | Number of Infants (i = 23) and Incidence (%) | Number of Neonates (n = 19) and Incidence (%) | Incidence Rate Difference | p Value |
---|---|---|---|---|
Sparse B-lines | 23 (100%) | 19 (100%) | 0 | 1.00 |
Confluent B-lines | 7 (30.43%) | 11 (57.89%) | −0.27 | 0.17 |
Pleural abnormalities | 10 (43.48%) | 13 (68.42%) | −0.24 | 0.27 |
Subpleural consolidation <1 cm | 4 (17.39%) | 6 (31.58%) | −0.14 | 0.55 |
Large consolidation >1 cm | 0 | 0 | 0 | 1.00 |
Pleural effusion | 1 (4.34%) | 1 (5.26%) | −0.009 | 0.89 |
Area of Interest | From a Total Score of LUSS (i = 105) | From a Total Score of LUSS (n = 232) | Incidence Rate Difference | p Value |
---|---|---|---|---|
L1—left anterior superior | 0 | 19 (8.19%) | −0.08 | 0.0034 |
L2—left anterior inferior | 1 (0.95%) | 21 (9.05%) | −0.08 | 0.0070 |
L3—left lateral superior | 6 (5.71%) | 19 (8.19%) | −0.02 | 0.4397 |
L4—left lateral inferior | 4 (3.81%) | 21 (9.05%) | −0.05 | 0.1018 |
L5—left posterior superior | 15 (14.29%) | 16 (6.89%) | 0.07 | 0.0383 |
L6—left posterior inferior | 18 (17.14%) | 20 (8.62%) | 0.08 | 0.0309 |
R1—right anterior superior | 7 (6.66%) | 20 (8.62%) | −0.01 | 0.5573 |
R2—right anterior inferior | 5 (4.76%) | 21 (9.05%) | −0.04 | 0.1892 |
R3—right lateral superior | 2 (1.90%) | 18 (7.75%) | −0.05 | 0.0411 |
R4—right lateral inferior | 5 (4.76%) | 19 (8.19%) | −0.03 | 0.2748 |
R5—right posterior superior | 20 (19.05%) | 18 (7.75%) | 0.11 | 0.0043 |
R6—right posterior superior | 22 (20.95%) | 20 (8.62%) | 0.12 | 0.0030 |
Parameters | Vertical Infection—Infection Occuring in the First Day (x = 3) | Infection between 1 and 14 Days of Life (x = 9) | Infection between 14 and 28 Days of Life (x = 7) | Infection between 1 and 6 Months (x = 8) | Infection between 7 Months and 1 Year (x = 15) |
---|---|---|---|---|---|
Days of hospitalization | 6; [5.25; 7.5] | 11.25; [5.50; 16] | 15; [8.50; 18] | 3.5; [2.50; 4.50] | 5; [3.25; 6] |
Hemoglobin (g/dL) | 17.93; [16.90; 18.92] | 15.59; [15; 16.65] | 12.10; [10.85; 13.90] | 11; [10.30; 11.60] | 11.52; [11.12; 12.20] |
Leukocytes (×109/L) | 12,760; [11,590; 18,580] | 15,250; [11,150; 21,285] | 12,100; [9980; 16,425] | 8375; [7205; 9890] | 7380; [6075; 12,187.50] |
Lymphocytes (×109/L) | 4300; [3287.50; 4907.50] | 5205; [4095; 6550] | 6360; [4690; 8297.50] | 3435; [2935; 4995] | 4320; [2110; 5917.50] |
Neutrophiles (×109/L) | 7780; [6670; 12,347.50] | 6260; [4950; 13,785] | 2280; [1870; 6355] | 2795; [1860; 3900] | 4250; [1400; 5350] |
Monocytes (×109/L) | 1540; [835; 1907.50] | 1270; [700; 3015] | 1200; [925; 2430] | 1235; [990; 1695] | 1160; [682.50; 1637.50] |
Thrombocytes (×109/L) | 246,000; [198,750; 251,250] | 255,500; [223,500; 345,500] | 320,000; [218,750; 391,250] | 379,000; [331,500; 491,500] | 300,000; [259,750; 358,500] |
Procalcitonin (ng/mL) | 0.32; [0.15; 0.82] | 0.28; [0.16; 0.79] | 0.16; [0.10; 5.70] | 0.15; [0.10; 0.22] | 0.18; [0.10; 0.26] |
CRP (mg/L) | 7.40; [2.22; 26.12] | 8.59; [4.37; 18.66] | 9.63; [5.13; 12.71] | 6.02; [2.40; 23.73] | 2.90; [2.28; 6.91] |
Ferritin (µg/L) | 216; [123; 524.25] | 424.65; [216; 627] | 1150; [424; 1222.50] | 118.96; [71.44; 230.27] | 121.32; [69.89; 188.61] |
LDH (U/L) | 668; [434; 718.25] | 543.50; [425; 648] | 540; [457.25; 651.50] | 295; [217.50; 372.50] | 295; [244; 322.25] |
AST (U/L) | 73; [55.75; 82.75] | 56.50; [47.50; 72.50] | 71; [52; 112] | 59.30; [31.65; 69] | 54.20; [33.27; 62.87] |
ALT(U/L) | 24; [15; 30.75] | 20; [13; 28.50] | 30; [25.50; 33] | 25.85; [18.55; 45.35] | 23.90; [15.95; 28.37] |
IL-6 (pg/mL) | 4.50; [2.21; 8.11] | 6.07; [3.82; 12.26] | 14.50; [7.26; 16.95] | 10.55; [2.23; 19.43] | 8.39; [1.69; 16.32] |
D-dimer (mg/L) | 1.67; [0.57; 2.19] | 1.23; [1.13; 2] | 1.89; [1.68; 2.39] | 0.77; [0.68; 1.64] | 0.89; [0.53; 1.62] |
O2 saturation (%) | 97; [97; 97.75] | 97; [96.50; 98] | 96; [95.25; 96.75] | 99; [98; 99] | 98; [98; 99] |
LUSS | 12; [9; 12.75] | 12; [8.50; 13.50] | 14; [10.75; 15.75] | 3.50; [3; 5] | 5; [2.25; 7] |
Signs and Symptoms | Vertical Infection—Infection Occuring in the First Day (x = 3) | Infection between 1 and 14 Days of Life (x = 9) | Infection between 14 and 28 Days of Life (x = 7) | Infection between 1 and 6 Months (x = 8) | Infection between 7 Months and 1 Year (x = 15) |
---|---|---|---|---|---|
Psychomotor agitation | 2 (66.66%) | 5 (55.55%) | 5 (71.43%) | 0 | 4 (26.66%) |
Asthenic syndrome | 0 | 4 (44.44%) | 1 (14.29%) | 3 (37.50%) | 6 (40%) |
Fever | 2 (66.66%) | 1 (11.11%) | 4 (57.14%) | 7 (87.50%) | 12 (80%) |
Cough | 0 | 1 (11.11%) | 3 (42.86%) | 3 (37.50%) | 10 (66.66%) |
Rhinorrhea | 1 (33.33%) | 2 (22.22%) | 6 (85.71%) | 2 (25%) | 7 (46.67%) |
Acute dehydration syndrome | 1 (33.33%) | 4 (44.44%) | 2 (28.57%) | 7 (87.50%) | 12 (80%) |
Diarrhea | 1 (33.33%) | 0 | 3 (42.86%) | 3 (37.50%) | 2 (13.33%) |
Vomiting | 0 | 2 (22.22%) | 0 | 2 (25%) | 2 (13.33%) |
Lack of appetite | 1 (33.33%) | 5 (55.55%) | 4 (57.14%) | 4 (50%) | 9 (60%) |
Dyspnea | 0 | 1 (11.11%) | 2 (28.57%) | 1 (12.50%) | 0 |
Candidiasis | 3 (100%) | 4 (44.44%) | 2 (28.57%) | 2 (25%) | 1 (6.66%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoicescu, E.R.; Iacob, R.; Iacob, E.R.; Ghenciu, L.A.; Oancea, C.; Manolescu, D.L. Tiny Lungs, Big Differences: Navigating the Varied COVID-19 Landscape in Neonates vs. Infants via Biomarkers and Lung Ultrasound. Biomedicines 2024, 12, 425. https://doi.org/10.3390/biomedicines12020425
Stoicescu ER, Iacob R, Iacob ER, Ghenciu LA, Oancea C, Manolescu DL. Tiny Lungs, Big Differences: Navigating the Varied COVID-19 Landscape in Neonates vs. Infants via Biomarkers and Lung Ultrasound. Biomedicines. 2024; 12(2):425. https://doi.org/10.3390/biomedicines12020425
Chicago/Turabian StyleStoicescu, Emil Robert, Roxana Iacob, Emil Radu Iacob, Laura Andreea Ghenciu, Cristian Oancea, and Diana Luminita Manolescu. 2024. "Tiny Lungs, Big Differences: Navigating the Varied COVID-19 Landscape in Neonates vs. Infants via Biomarkers and Lung Ultrasound" Biomedicines 12, no. 2: 425. https://doi.org/10.3390/biomedicines12020425
APA StyleStoicescu, E. R., Iacob, R., Iacob, E. R., Ghenciu, L. A., Oancea, C., & Manolescu, D. L. (2024). Tiny Lungs, Big Differences: Navigating the Varied COVID-19 Landscape in Neonates vs. Infants via Biomarkers and Lung Ultrasound. Biomedicines, 12(2), 425. https://doi.org/10.3390/biomedicines12020425