The Impact of Cytokines on Health-Related Quality of Life in Adolescents with Allergic Rhinitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Instruments
2.3. Cytokine Analyses
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciprandi, G.; Marseglia, G.L.; Castagnoli, R.; Valsecchi, C.; Tagliacarne, C.; Caimmi, S.; Licari, A. From IgE to clinical trials of allergic rhinitis. Expert. Rev. Clin. Immunol. 2015, 11, 1321–1333. [Google Scholar] [CrossRef] [PubMed]
- Brożek, J.L.; Bousquet, J.; Agache, I.; Agarwal, A.; Bachert, C.; Bosnic-Anticevich, S.; Brignardello-Petersen, R.; Canonica, G.W.; Casale, T.; Chavannes, N.H. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J. Allergy Clin. Immunol. 2017, 140, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.; Van Weel, C. Allergic rhinitis and its impact on asthma (ARIA) 2008. Allergy 2008, 63, 8–160. [Google Scholar] [CrossRef] [PubMed]
- Pols, D.H.; Wartna, J.B.; Moed, H.; van Alphen, E.; Bohnen, A.M.; Bindels, P.J. Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: A systematic review. Scand. J. Prim. Health Care 2016, 34, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Blaiss, M.S.; Hammerby, E.; Robinson, S.; Kennedy-Martin, T.; Buchs, S. The burden of allergic rhinitis and allergic rhinoconjunctivitis on adolescents: A literature review. Ann. Allergy Asthma Immunol. 2018, 121, 43–52.e3. [Google Scholar] [CrossRef]
- Liva, G.A.; Karatzanis, A.D.; Prokopakis, E.P. Review of rhinitis: Classification, types, pathophysiology. J. Clin. Med. 2021, 10, 3183. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, L.M.; Togias, A. Allergic rhinitis. N. Engl. J. Med. 2015, 372, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Dierick, B.J.; van der Molen, T.; Flokstra-de Blok, B.M.; Muraro, A.; Postma, M.J.; Kocks, J.W.; van Boven, J.F. Burden and socioeconomics of asthma, allergic rhinitis, atopic dermatitis and food allergy. Expert. Rev. Pharmacoeconomics Outcomes Res. 2020, 20, 437–453. [Google Scholar] [CrossRef]
- Bresciani, M.; Paradis, L.; Des Roches, A.; Vernhet, H.; Vachier, I.; Godard, P.; Bousquet, J.; Chanez, P. Rhinosinusitis in severe asthma. J. Allergy Clin. Immunol. 2001, 107, 73–80. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gupta, K.; Dwivedi, P.D. Pathophysiology of IL-33 and IL-17 in allergic disorders. Cytokine Growth Factor. Rev. 2017, 38, 22–36. [Google Scholar] [CrossRef]
- Chowdhury, N.I.; Chandra, R.K.; Li, P.; Ely, K.; Turner, J.H. Investigating the correlation between mucus cytokine levels, inflammatory cell counts, and baseline quality-of-life measures in chronic rhinosinusitis. In Proceedings of the International Forum of Allergy & Rhinology, Atlanta, GA, USA, 6 October 2019; pp. 538–544. [Google Scholar]
- Segundo, G.R.; Gomes, F.A.; Fernandes, K.P.; Alves, R.; Silva, D.A.; Taketomi, E.A. Local cytokines and clinical symptoms in children with allergic rhinitis after different treatments. Biol. Targets Ther. 2009, 3, 469–474. [Google Scholar] [CrossRef]
- Greiner, A.N.; Hellings, P.W.; Rotiroti, G.; Scadding, G.K. Allergic rhinitis. Lancet 2011, 378, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Kong, I.G.; Rhee, C.-S.; Lee, J.W.; Yim, H.; Kim, M.J.; Choi, Y.; Han, D.H.; Group, A.R.C.S. Association between Perceived Stress and Rhinitis-Related Quality of Life: A Multicenter, Cross-Sectional Study. J. Clin. Med. 2021, 10, 3680. [Google Scholar] [CrossRef]
- Sikorska-Szaflik, H.; Sozańska, B. Quality of life in allergic rhinitis-children’s and their parents’ perspective in polish urban and rural population. Health Qual. Life Outcomes 2020, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Muliol, J.; Maurer, M.; Bousquet, J. Sleep and allergic rhinitis. J. Investig. Allergol. Clin. Immunol. 2008, 18, 415–419. [Google Scholar] [PubMed]
- Bachert, C. Persistent rhinitis–allergic or nonallergic? Allergy 2004, 59, 11–15. [Google Scholar] [CrossRef]
- Ledford, D. Symposium Cont. Inadequate Diagnosis of Nonallergic Rhinitis: Assessing the Damage. Allergy Asthma Proc. 2003, 24, 155. [Google Scholar]
- Himmerich, H.; Fulda, S.; Linseisen, J.; Seiler, H.; Wolfram, G.; Himmerich, S.; Gedrich, K.; Kloiber, S.; Lucae, S.; Ising, M. Depression, comorbidities and the TNF-α system. Eur. Psychiatry 2008, 23, 421–429. [Google Scholar] [CrossRef]
- Mou, Y.-K.; Wang, H.-R.; Zhang, W.-B.; Zhang, Y.; Ren, C.; Song, X.-C. Allergic rhinitis and depression: Profile and proposal. Front. Psychiatry 2022, 12, 820497. [Google Scholar] [CrossRef]
- van Reenen, M.; Janssen, B. EQ-5D-5L user guide: Basic information on how to use the EQ-5D-5L instrument. Rotterdam EuroQol Res. Found. 2015, 9. [Google Scholar]
- Cvetanović, G.Z. The Impact of Acute and Chronic Complications on the Quality of Life of People with Diabetes. Ph.D. Thesis, Faculty of Medicine, University of Niš, Niš, Serbia, 2016; p. 72. [Google Scholar]
- Kim, S.-H.; Ahn, J.; Ock, M.; Shin, S.; Park, J.; Luo, N.; Jo, M.-W. The EQ-5D-5L valuation study in Korea. Qual. Life Res. 2016, 25, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Rožmanić, V.; Banac, S. Severity of allergic rhinits and health related quality of life in children. In Proceedings of the XXV EAACI Congress, Vienna, Austria, 10–14 June 2006. [Google Scholar]
- Infante, E.M. Quality of Life Measures in Asthma and Allergic Diseases: 553 Correlation between Severity of Allergic Rhinitis and Impairment of Quality of Life in Allergic Adolescents. World Allergy Organ. J. 2012, 5, S192. [Google Scholar] [CrossRef]
- Martinez, A.; Torres, J.; Molina, A.B.; Muños, C.; Diaz, M.; Corzo, J.L.; Echeverria, L.; Sanchez, J.; Ruiz, M. Evaluation of a pre-co-seasonal and a perennial schedule of a single multiallergen depigmented-polymerized subcutaneous immunotherapy in paediatric patients. Allergol. Immunopathol. 2021, 49, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Domínguez, A.; Jauregui, I.; Del Cuvillo, A.; Montoro, J.; Dávila, I.; Sastre, J.; Bartra, J.; Ferrer, M.; Alobid, I.; Mullol, J. Allergy rhinitis: Similarities and differences between children and adults. Rhinology 2017, 55, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, A.; Lindberg, N.; Marttunen, M.; Sintonen, H.; Roine, R. CAPMH health-related quality of life among adolescent psychiatric outpatients: A 12-month follow-up study among 12–14-year-old Finnish boys and girls. Child. Adolesc. Psychiatry Ment. Health 2019, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Tyurin, Y.A.; Lissovskaya, S.A.; Fassahov, R.S.; Mustafin, I.G.; Shamsutdinov, A.F.; Shilova, M.A.; Rizvanov, A.A. Cytokine profile of patients with allergic rhinitis caused by pollen, mite, and microbial allergen sensitization. J. Immunol. Res. 2017, 2017, 3054217. [Google Scholar] [CrossRef]
- Perić, A.; Vojvodić, D.; Miljanović, O. Influence of allergy on cytokine level in nasal discharge of patients with nasal polyps. Acta Medica Median. 2010, 49, 40–44. [Google Scholar]
- Perić, A.; Vojvodić, D.; Radulović, V. Cytokine profiles in nasal fluid in patients with nasal polyps: A flow cytometric study. J. Med. Biochem. 2010, 29, 28–33. [Google Scholar] [CrossRef]
- Bachert, C.; van Kempen, M.; Van Cauwenberge, P. Regulation of proinflammatory cytokines in seasonal allergic rhinitis. Int. Arch. Allergy Immunol. 1999, 118, 375–379. [Google Scholar] [CrossRef]
- Mølgaard, E.; Thomsen, S.; Lund, T.; Pedersen, L.; Nolte, H.; Backer, V. Differences between allergic and nonallergic rhinitis in a large sample of adolescents and adults. Allergy 2007, 62, 1033–1037. [Google Scholar] [CrossRef]
- Mortada, M.M.; Kurowski, M. Challenges in Local Allergic Rhinitis Diagnosis, Management, and Research: Current Concepts and Future Perspectives. Medicina 2023, 59, 929. [Google Scholar] [CrossRef] [PubMed]
- Rondón, C.; Fernández, J.; López, S.; Campo, P.; Doña, I.; Torres, M.J.; Mayorga, C.; Blanca, M. Nasal inflammatory mediators and specific IgE production after nasal challenge with grass pollen in local allergic rhinitis. J. Allergy Clin. Immunol. 2009, 124, 1005–1011.e1. [Google Scholar] [CrossRef] [PubMed]
- Spector, S.L. Overview of comorbid associations of allergic rhinitis. J. Allergy Clin. Immunol. 1997, 99, S773–S780. [Google Scholar] [CrossRef] [PubMed]
- della SIAIP, C.R. Rinocongiuntivite allergica. Riv. Immunol. Allergol. Pediatr. 2012, 5, 1–26. [Google Scholar]
- Hillerich, V.; Valbert, F.; Neusser, S.; Pfaar, O.; Klimek, L.; Sperl, A.; Werfel, T.; Hamelmann, E.; Riederer, C.; Wobbe-Ribinski, S. Quality of life and healthcare costs of patients with allergic respiratory diseases: A cross-sectional study. Eur. J. Health Econ. 2023, 1–22. [Google Scholar] [CrossRef]
- Al-Digheari, A.; Mahboub, B.; Tarraf, H.; Yucel, T.; Annesi-Maesano, I.; Doble, A.; Lahlou, A.; Tariq, L.; Aziz, F.; El Hasnaoui, A. The clinical burden of allergic rhinitis in five Middle Eastern countries: Results of the SNAPSHOT program. Allergy Asthma Clin. Immunol. 2018, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H.; Roh, D.; Lee, D.-H.; Kim, S.W.; Kim, S.W.; Cho, J.H.; Kim, B.-G.; Kim, B.-Y. Allergic rhinitis and rhinosinusitis synergistically compromise the mental health and health-related quality of life of Korean adults: A nationwide population-based survey. PLoS ONE 2018, 13, e0191115. [Google Scholar] [CrossRef] [PubMed]
- Sritipsukho, P.; Satdhabudha, A.; Nanthapisal, S. Effect of allergic rhinitis and asthma on the quality of life in young Thai adolescents. Asian Pac. J. Allergy Immunol. 2015, 33, 222–226. [Google Scholar] [CrossRef]
- Meltzer, E.O. Quality of life in adults and children with allergic rhinitis. J. Allergy Clin. Immunol. 2001, 108, S45–S53. [Google Scholar] [CrossRef]
- Baraniuk, J.; Meltzer, E.; Spector, S. Impact of allergic rhinitis and related airway disorders. J. Respir. Dis. 1996, 17, S11–S23. [Google Scholar]
- Valls-Mateus, M.; Marino-Sanchez, F.; Ruiz-Echevarría, K.; Cardenas-Escalante, P.; Jiménez-Feijoo, R.; Blasco-Lozano, J.; Giner-Muñoz, M.T.; Haag, O.; Alobid, I.; Plaza Martin, A.M. Nasal obstructive disorders impair health-related quality of life in adolescents with persistent allergic rhinitis: A real-life study. Pediatr. Allergy Immunol. 2017, 28, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, S. The th1/th2 paradigm. Immunol. Today 1997, 18, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Scavuzzo, M.; Rocchi, V.; Fattori, B.; Ambrogi, F.; Carpi, A.; Ruffoli, R.; Manganelli, S.; Giannessi, F. Cytokine secretion in nasal mucus of normal subjects and patients with allergic rhinitis. Biomed. Pharmacother. 2003, 57, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yu, L.; Zhang, J.; Li, X.; Zhou, J.; Zeng, P.; Zhang, X. Expression and clinical significance of VCAM-1, IL-6, and IL-17A in patients with allergic rhinitis. Ann. Palliat. Med. 2021, 10, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, K.; Xia, C.; Chen, J.; Yu, C.; Gao, T.; Yan, J.; Zhang, H.; Ren, X. Multiple-cytokine profiling: A novel method for early prediction of the efficacy of sublingual immunotherapy in allergic rhinitis patients. J. Inflamm. Res. 2022, 15, 603–612. [Google Scholar] [CrossRef]
- Baraniuk, J.N. Pathogenesis of allergic rhinitis. J. Allergy Clin. Immunol. 1997, 99, S763–S772. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Nishiyama, C. IL-10 in mast cell-mediated immune responses: Anti-inflammatory and proinflammatory roles. Int. J. Mol. Sci. 2021, 22, 4972. [Google Scholar] [CrossRef]
- Ciprandi, G.; Silvestri, M.; Pistorio, A.; Tosca, M.A.; Cirillo, I. Clustering analysis in outpatients with allergic rhinitis in clinical practice. Allergy 2019, 74, 607–610. [Google Scholar] [CrossRef]
- Benson, M.; Strannegård, I.-L.; Strannegård, Ö.; Wennergren, G. Topical steroid treatment of allergic rhinitis decreases nasal fluid TH2 cytokines, eosinophils, eosinophil cationic protein, and IgE but has no significant effect on IFN-γ, IL-1β, TNF-α, or neutrophils. J. Allergy Clin. Immunol. 2000, 106, 307–312. [Google Scholar] [CrossRef]
- Benson, M.; Strannegård, I.-L.; Wennergren, G.; Strannegård, Ö. Increase of the soluble IL-4 receptor (IL-4sR) and positive correlation between IL-4sR and IgE in nasal fluids from school children with allergic rhinitis. In Allergy and Asthma Proceedings; OceanSide Publications: Providence, RI, USA, 2000; p. 89. [Google Scholar]
- Rapp, J.; Kosa, L.; Halasz, A.; Kereki, E.; Börzsönyi, L. Levels of interleukin-4, interleukin-5, tryptase and eosinophil cationic protein of nasal lavage fluid in pollen allergic rhinitis. Orvosi Hetil. 2000, 141, 1919–1922. [Google Scholar]
- Benson, M.; Strannegård, I.l.; Wennergren, G.; Strannegård, Ö. Low levels of interferon-γ in nasal fluid accompany raised levels of T-helper 2 cytokines in children with ongoing allergic rhinitis. Pediatr. Allergy Immunol. 2000, 11, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Gosset, P.; Malaquin, F.; Delneste, Y.; Wallaert, B.; Capron, A.; Joseph, M.; Tonnel, A.-B. Interleukin-6 and interleukin-1α production is associated with antigen-induced late nasal response. J. Allergy Clin. Immunol. 1993, 92, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Noah, T.L.; Henderson, F.W.; Henry, M.M.; Peden, D.B.; Devlin, R.B. Nasal lavage cytokines in normal, allergic, and asthmatic school-age children. Am. J. Respir. Crit. Care Med. 1995, 152, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Abramson, S.L.; Gallin, J. IL-4 inhibits superoxide production by human mononuclear phagocytes. J. Immunol. 1990, 144, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Erkan, K.; Bozkurt, M.K.; Artaç, H.; Özdemir, H.; Ünlü, A.; Korucu, E.N.; Elsürer, Ç. The role of regulatory T cells in allergic rhinitis and their correlation with IL-10, IL-17 and neopterin levels in serum and nasal lavage fluid. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Naydenova, K.; Mihova, A.; Kukov, A.; Velikova, T. Il-10 and Il-35 As Inflammation Regulators in Patients With Allergic Rhinitis and Mild Atopic Asthma. Am. Int. J. Biol. Life Sci. 2022, 4, 1–12. [Google Scholar]
- Ciprandi, G.; Fenoglio, D.; De Amici, M.; Quaglini, S.; Negrini, S.; Filaci, G. Serum IL-17 levels in patients with allergic rhinitis. J. Allergy Clin. Immunol. 2008, 122, 650–651.e2. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; De Amici, M.; Murdaca, G.; Fenoglio, D.; Ricciardolo, F.; Marseglia, G.; Tosca, M. Serum interleukin-17 levels are related to clinical severity in allergic rhinitis. Allergy 2009, 64, 1375–1378. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Zhang, F.; Yang, Q.; Zhang, G. Peripheral Th17/Treg cell-mediated immunity imbalance in allergic rhinitis patients. Braz. J. Otorhinolaryngol. 2014, 80, 152–155. [Google Scholar] [CrossRef]
- Li, P.; Cao, L.; Han, X. Angiotensin-converting enzyme (ACE) I/D polymorphism is a risk factor of allergic rhinitis. Cell. Mol. Biol. 2017, 63, 48–50. [Google Scholar] [CrossRef]
- Carson, P.; Lyons, M. Severe Rhinitis Medicamentosa Successfully Treated with Rhinolight® Endonasal UV Phototherapy. 2019. Available online: https://www.lenus.ie/bitstream/handle/10147/624161/art8.html?sequence=1 (accessed on 16 September 2023).
- Ba, L.; Du, J.; Liu, Y.; Shang, T.; Yang, F.; Bian, P. The expression and significance of interleukin-17 and the infiltrating eosinophils in nasal polyps and nasal mucous of allergic rhinitis. Lin. Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi = J. Clin. Otorhinolaryngol. Head. Neck Surg. 2010, 24, 53–56. [Google Scholar]
- Huang, X.; Yang, Q.; Chen, Y.; Peng, L.; Zhang, G.; Yuan, L. Expressions of IL-17, IL-21 and IL-23 in the serum of allergic rhinitis patients. J. Med. Biochem. 2011, 30, 323–327. [Google Scholar] [CrossRef]
- Miossec, P.; Korn, T.; Kuchroo, V.K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 2009, 361, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Gosset, P.; Tillie-Leblond, I.; Malaquin, F.; Durieu, J.; Wallaert, B.; TONNEL, A.B. Interleukin-8 secretion in patients with allergic rhinitis after an allergen challenge: Interleukin-8 is not the main chemotactic factor present in nasal lavages. Clin. Exp. Allergy 1997, 27, 379–388. [Google Scholar] [CrossRef] [PubMed]
- KleinJan, A.; Dijkstra, M.D.; Boksa, S.S.; Severijnen, L.-A.W.; Mulder, P.G.; Fokkens, W.J. Increase in IL-8, IL-10, IL-13, and RANTES mRNA levels (in situ hybridization) in the nasal mucosa after nasal allergen provocation. J. Allergy Clin. Immunol. 1999, 103, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Wagenmann, M.; Schumacher, L.; Bachert, C. The time course of the bilateral release of cytokines and mediators after unilateral nasal allergen challenge. Allergy 2005, 60, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.C.; Grant, J.A.; Hilsmeier, K.A.; Fukuda, Y.; Alam, R. Proinflammatory cytokines in nasal secretions of allergic subjects after antigen challenge. Am. J. Respir. Crit. Care Med. 1994, 149, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Weido, A.J.; Cook, C.K.; Sim, T.C.; Reece, L.M.; Alam, R. Intranasal fluticasone propionate inhibits recovery of chemokines and other cytokines in nasal secretions in allergen-induced rhinitis. Ann. Allergy Asthma Immunol. 1996, 77, 407–415. [Google Scholar] [CrossRef]
- Li, Y.; Ouyang, Y.; Jiao, J.; Xu, Z.; Zhang, L. Exposure to environmental black carbon exacerbates nasal epithelial inflammation via the reactive oxygen species (ROS)–nucleotide-binding, oligomerization domain–like receptor family, pyrin domain containing 3 (NLRP3)–caspase-1–interleukin 1β (IL-1β) pathway. In International Forum of Allergy & Rhinology; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 773–783. [Google Scholar]
- Zhou, H.; Zhang, W.; Qin, D.; Liu, P.; Fan, W.; Lv, H.; Tan, L.; Gao, Z.; Xu, Y. Activation of NLRP3 inflammasome contributes to the inflammatory response to allergic rhinitis via macrophage pyroptosis. Int. Immunopharmacol. 2022, 110, 109012. [Google Scholar] [CrossRef]
- Wang, H.-R.; Wei, S.-Z.; Song, X.-Y.; Wang, Y.; Zhang, W.-B.; Ren, C.; Mou, Y.-K.; Song, X.-C. IL-1β and Allergy: Focusing on Its Role in Allergic Rhinitis. Mediat. Inflamm. 2023, 2023, 1265449. [Google Scholar] [CrossRef]
- Rudack, C.; Bachert, C. Glucocorticosteroids rapidly inhibit allergen-induced expression of E-selectin in vitro in a mucosal model of allergic rhinitis. Allergy 2000, 55, 363–368. [Google Scholar] [CrossRef]
- Ivory, K.; Wilson, A.M.; Sankaran, P.; Westwood, M.; McCarville, J.; Brockwell, C.; Clark, A.; Dainty, J.R.; Zuidmeer-Jongejan, L.; Nicoletti, C. Oral delivery of a probiotic induced changes at the nasal mucosa of seasonal allergic rhinitis subjects after local allergen challenge: A randomised clinical trial. PLoS ONE 2013, 8, e78650. [Google Scholar] [CrossRef]
- Fantuzzi, G.; Dinarello, C.A. Interleukin-18 and interleukin-1 β: Two cytokine substrates for ICE (caspase-1). J. Clin. Immunol. 1999, 19, 1–11. [Google Scholar] [CrossRef]
- Verhaeghe, B.; Gevaert, P.; Holtappels, G.; Lukat, K.; Lange, B.; Van Cauwenberge, P.; Bachert, C. Up-regulation of IL-18 in allergic rhinitis. Allergy 2002, 57, 825–830. [Google Scholar] [CrossRef]
- Asaka, D.; Yoshikawa, M.; Nakayama, T.; Yoshimura, T.; Moriyama, H.; Otori, N. Elevated levels of interleukin-33 in the nasal secretions of patients with allergic rhinitis. Int. Arch. Allergy Immunol. 2012, 158, 47–50. [Google Scholar] [CrossRef]
- Cayrol, C. IL-33, an alarmin of the IL-1 family involved in allergic and non allergic inflammation: Focus on the mechanisms of regulation of its activity. Cells 2021, 11, 107. [Google Scholar] [CrossRef]
- Baumann, R.; Rabaszowski, M.; Stenin, I.; Tilgner, L.; Gaertner-Akerboom, M.; Scheckenbach, K.; Wiltfang, J.; Chaker, A.; Schipper, J.; Wagenmann, M. Nasal levels of soluble IL-33R ST 2 and IL-16 in allergic rhinitis: Inverse correlation trends with disease severity. Clin. Exp. Allergy 2013, 43, 1134–1143. [Google Scholar] [CrossRef]
- Matterne, U.; Schmitt, J.; Diepgen, T.L.; Apfelbacher, C. Children and adolescents’ health-related quality of life in relation to eczema, asthma and hay fever: Results from a population-based cross-sectional study. Qual. Life Res. 2011, 20, 1295–1305. [Google Scholar] [CrossRef]
- Bensnes, S.S. You sneeze, you lose: The impact of pollen exposure on cognitive performance during high-stakes high school exams. J. Health Econ. 2016, 49, 1–13. [Google Scholar] [CrossRef]
- Amizadeh, M.; Safizadeh, H.; Bazargan, N.; Farrokhdoost, Z. Survey on the prevalence of allergic rhinitis and its effect on the quality of high school students’ life. Iran. J. Otorhinolaryngol. 2013, 25, 79. [Google Scholar]
- Rosario, C.; Murrieta-Aguttes, M.; Rosario, N. Allergic rhinits: Impact on quality of life of adolescents. Eur. Ann. Allergy Clin. Immunol. 2021, 53, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Kiotseridis, H.; Cilio, C.M.; Bjermer, L.; Aurivillius, M.; Jacobsson, H.; Dahl, Å.; Tunsäter, A. Quality of life in children and adolescents with respiratory allergy, assessed with a generic and disease-specific instrument. Clin. Respir. J. 2013, 7, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Marklund, B.; Ahlstedt, S.; Nordström, G. Health-related quality of life among adolescents with allergy-like conditions–with emphasis on food hypersensitivity. Health Qual. Life Outcomes 2004, 2, 65. [Google Scholar] [CrossRef] [PubMed]
- Christodoulopoulos, P.; Cameron, L.; Durham, S.; Hamid, Q. Molecular pathology of allergic disease: II: Upper airway disease. J. Allergy Clin. Immunol. 2000, 105, 211–223. [Google Scholar] [CrossRef]
- Ciprandi, G.; Klersy, C.; Cirillo, I.; Marseglia, G. Quality of life in allergic rhinitis: Relationship with clinical, immunological, and functional aspects. Clin. Exp. Allergy 2007, 37, 1528–1535. [Google Scholar] [CrossRef]
- Sheha, D.; El-Korashi, L.; AbdAllah, A.M.; El Begermy, M.M.; Elzoghby, D.M.; Elmahdi, A. Lipid profile and IL-17A in allergic rhinitis: Correlation with disease severity and quality of life. J. Asthma Allergy 2021, 14, 109–117. [Google Scholar] [CrossRef]
Variables | Allergic Rhinitis (n = 55) | Nonallergic Rhinitis (n = 34) | Control Group (n = 44) | Total (n = 133) | p † | ||||
---|---|---|---|---|---|---|---|---|---|
n/ Mean | %/ SD | n/ Mean | %/ SD | n/ Mean | %/ SD | n/ Mean | %/ SD | ||
Gender | |||||||||
Boys | 23 | 41.8 | 14 | 50.0 | 21 | 47.7 | 61 | 45.9 | 0.720 |
Girls | 32 | 58.2 | 17 | 50.0 | 23 | 52.3 | 72 | 54.1 | |
Age * | 14.47 ± 1.69 | 14.26 ± 1.72 | 14.40 ± 1.66 | 14.39 ± 1.68 | 0.853 | ||||
Age groups | |||||||||
12 to 14 years | 32 | 58.2 | 19 | 55.9 | 23 | 52.3 | 74 | 55.6 | 0.841 |
15 to 17 years | 23 | 41.8 | 15 | 44.1 | 21 | 47.7 | 59 | 44.4 | |
Severity of CM (T4SS) | |||||||||
No CM | 0 | 0 | 0 | 0 | 44 | 100.0 | 44 | 100.0 | <0.001 |
Mild CM | 9 | 16.4 | 14 | 41.2 | 0 | 0 | 23 | 17.3 | |
Modern CM | 22 | 40.0 | 12 | 35.3 | 0 | 0.0 | 34 | 25.6 | |
Severe CM | 24 | 43.6 | 8 | 23.5 | 0 | 0.0 | 32 | 24.1 | |
Comorbidities (Yes) | 46 | 83.6 | 24 | 70.6 | 0 | 0.0 | 70 | 52.6 | <0.001 |
Sinusitis (Yes) | 42 | 76.4 | 21 | 61.8 | 0 | 0.0 | 63 | 47.4 | <0.001 |
Secretory otitis (Yes) | 5 | 9.1 | 1 | 2.9 | 0 | 0.0 | 6 | 4.5 | 0.084 |
OSA (Yes) | 3 | 5.5 | 1 | 2.9 | 0 | 0.0 | 4 | 3.0 | 0.287 |
Polyps (Yes) | 0 | 0.0 | 2 | 5.9 | 0 | 0.0 | 2 | 1.5 | 0.052 |
Asthma (Yes) | 8 | 14.5 | 0 | 0.0 | 0 | 0.0 | 8 | 6.0 | 0.002 |
AD (Yes) | 18 | 32.7 | 7 | 20.6 | 0 | 0.0 | 25 | 18.8 | <0.001 |
Conjunctivitis (Yes) | 25 | 45.5 | 6 | 17.6 | 0 | 0.0 | 31 | 23.3 | <0.001 |
Allergens the adolescents were sensitized to | |||||||||
Mites (Yes) | 34 | 61.8 | 0 | 0.0 | 0 | 0.0 | 34 | 61.8 | <0.001 |
Birch tree pollen (Yes) | 21 | 38.2 | 0 | 0.0 | 0 | 0.0 | 21 | 38.2 | |
Hazelnut pollen (Yes) | 22 | 40.0 | 0 | 0.0 | 0 | 0.0 | 22 | 40.0 | |
Grass pollen (Yes) | 29 | 52.7 | 0 | 0.0 | 0 | 0.0 | 29 | 52.7 | |
Cat’s tail grass pollen (Yes) | 30 | 54.5 | 0 | 0.0 | 0 | 0.0 | 30 | 54.5 | |
Rye pollen (Yes) | 21 | 38.2 | 0 | 0.0 | 0 | 0.0 | 21 | 38.2 | |
Ambrosia (Yes) | 13 | 23.6 | 0 | 0.0 | 0 | 0.0 | 13 | 23.6 | |
Wild wormwood (Yes) | 5 | 9.1 | 0 | 0.0 | 0 | 0.0 | 5 | 9.1 | |
Mold fungus Aspergillus fumigatus (Yes) | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | |
Alternaria mold fungus (Yes) | 2 | 3.6 | 0 | 0.0 | 0 | 0.0 | 2 | 3.6 | |
Brown cockroach (Yes) | 5 | 9.1 | 0 | 0.0 | 0 | 0.0 | 5 | 9.1 | |
Cat hair (Yes) | 3 | 5.5 | 0 | 0.0 | 0 | 0.0 | 3 | 5.5 | |
Dog hair (Yes) | 6 | 10.9 | 0 | 0.0 | 0 | 0.0 | 6 | 10.9 | |
Type of AR | |||||||||
SAR | 35 | 63.6 | 0 | 0.0 | 0 | 0.0 | 35 | 63.6 | <0.001 |
PAR | 20 | 36.4 | 0 | 0.0 | 0 | 0.0 | 21 | 36.4 | |
Mono versus polysensitized subjects | |||||||||
Mono-sensitized | 21 | 38.2 | 0 | 0.0 | 0 | 0.0 | 21 | 38.2 | <0.001 |
Poly-sensitized | 34 | 61.8 | 0 | 0.0 | 0 | 0.0 | 34 | 61.8 |
Domains of Quality of Life Measured by the EQ-5D-3L and AdolRQLQ Questionnaires | Allergic Rhinitis (n = 55) | Nonallergic Rhinitis (n = 34) | Control Group (n = 44) | p * | |||
---|---|---|---|---|---|---|---|
n/ Mean | %/ SD | n/ Mean | %/ SD | n/ Mean | %/ SD | ||
EQ-5D-3L | |||||||
Mobility | |||||||
No problems | 42 | 76.4 | 31 | 91.2 | 44 | 100.0 | |
Moderate problems | 13 | 23.6 | 3 | 8.8 | 0 | 0 | 0.001 |
Severe problems | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | |
Self-care | |||||||
No problems | 55 | 100.0 | 34 | 100.0 | 44 | 100.0 | |
Moderate problems | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1.000 |
Severe problems | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | |
Usual activities | |||||||
No problems | 21 | 38.2 | 21 | 61.8 | 41 | 93.2 | |
Moderate problems | 29 | 52.7 | 9 | 26.5 | 3 | 6.8 | <0.001 |
Severe problems | 5 | 9.1 | 4 | 11.8 | 0 | 0.0 | |
Pain/discomfort | |||||||
No problems | 21 | 38.2 | 19 | 55.9 | 39 | 88.6 | |
Moderate problems | 29 | 52.7 | 15 | 44.1 | 5 | 11.4 | <0.001 |
Severe problems | 5 | 9.1 | 0 | 0.0 | 0 | 0.0 | |
Anxiety/depression | |||||||
No problems | 21 | 38.2 | 16 | 47.1 | 36 | 81.8 | |
Moderate problems | 27 | 49.1 | 13 | 38.2 | 8 | 18.2 | <0.001 |
Severe problems | 7 | 12.7 | 5 | 14.7 | 0 | 0.0 | |
AdolRQLQ | |||||||
Practical problems | 3.05 ± 1.15 *** | 2.38 ± 1.45 #* | 1.03 ± 0.14 | <0.001 | |||
Symptoms unrelated to AR | 2.65 ± 1.19 *** | 2.23 ± 1.17 *** | 1.01 ± 0.09 | <0.001 | |||
Nasal symptoms | 3.72 ± 1.41 *** | 2.88 ± 1.46 *** | 1.03 ± 0.16 | <0.001 | |||
Ocular symptoms | 2.38 ± 1.42 *** | 1.59 ± 0.94 ##* | 1.00 ± 0.00 | <0.001 | |||
Activity limitation | 2.24 ± 1.46 *** | 1.45 ± 0.21 | 1.00 ± 0.00 | <0.001 | |||
Emotional/mental problems | 2.34 ± 1.22 *** | 1.78 ± 0.99 #*** | 1.04 ± 0.21 | <0.001 |
Inflammatory Cytokines (pg/mL) | Severity of Clinical Manifestations | p | ||
---|---|---|---|---|
Mild CM (n = 9) | Modern CM (n = 22) | Severe CM (n = 24) | ||
Mean ± SD | Mean ± SD | Mean ± SD | ||
IL-1β | 40.90 ± 43.41 * | 63.36 ± 94.99 | 72.77 ± 117.84 | 0.012 |
IFN-α2 | 5.58 ± 2.75 | 5.25 ± 0.85 | 5.22 ± 0.70 | 0.247 |
IFN-γ | 15.10 ± 33.65 | 8.73 ± 14.20 | 5.89 ± 7.63 | 0.969 |
TNF-α | 8.92 ± 20.35 | 5.25 ± 9.86 | 2.84 ± 2.50 | 0.903 |
MCP-1 | 27.68 ± 23.63 | 15.89 ± 13.40 | 18.63 ± 15.07 | 0.492 |
IL-6 | 14.68 ± 23.09 * | 29.14 ± 9.40 | 48.99 ± 92.91 | 0.028 |
IL-8 | 1028.47 ± 407.36 | 1858.98 ± 1989.97 | 2103.39 ± 1971.34 | 0.317 |
IL-10 | 4.93 ± 7.89 | 2.71 ± 1.92 | 3.76 ± 6.51 | 0.288 |
IL-12p70 | 3.03 ± 3.09 | 1.93 ± 0.74 | 1.80 ± 0.53 | 0.323 |
IL-17A | 0.80 ± 1.60 * | 2.16 ± 0.70 | 4.50 ± 0.50 | 0.021 |
IL-18 | 42.61 ± 0.17 * | 124.97 ± 141.47 | 142.46 ± 170.93 | 0.018 |
IL-23 | 13.59 ± 17.98 | 8.01 ± 6.09 | 8.69 ± 5.45 | 0.678 |
IL-33 | 23.25 ± 54.45 | 16.30 ± 22.45 | 9.68 ± 7.82 | 0.584 |
Inflammatory Cytokines | Total EQ-5D-3L Score | EQ-VAS | Total AdolRQLQ Score |
---|---|---|---|
r (p) | r (p) | r (p) | |
Il-1β | −0.116 (0.401) | −0.088 (0.525) | −0.008 (0.951) |
IFN-α2 | −0.207 (0.130) | −0.239 (0.079) | 0.047 (0.734) |
IFN-γ | 0.056 (0.685) | 0.111 (0.418) | −0.136 (0.323) |
TNF-α | 0.045 (0.742) | 0.175 (0.200) | −0.127 (0.354) |
MCP-1 | 0.005 (0.973) | −0.001 (0.994) | −0.045 (0.745) |
IL-6 | −0.114 (0.409) | −0.115 (0.405) | 0.012 (0.932) |
IL-8 | −0.148 (0.281) | −0.093 (0.498) | −0.028 (0.837) |
IL-10 | 0.083 (0.548) | 0.155 (0.260) | −0.223 (0.102) |
IL-12p70 | 0.240 (0.077) | 0.228 (0.094) | 0.299 (0.027) |
IL-17A | −0.293 (0.030) | −0.247 (0.070) | 0.150 (0.275) |
IL-18 | −0.184 (0.178) | −0.255 (0.060) | 0.041 (0.767) |
IL-23 | −0.156 (0.256) | −0.137 (0.317) | 0.002 (0.987) |
IL-33 | −0.151 (0.272) | −0.143 (0.298) | 0.050 (0.717) |
Variables | B | S.E. | β | p |
---|---|---|---|---|
EQ-5D-3L model | ||||
IL-1β | 0.301 | 0.112 | 0.400 | 0.008 |
IL-6 | 0.067 | 0.023 | 0.201 | 0.043 |
IL-8 | 0.112 | 0.000 | 0.047 | 0.807 |
IL-12p70 | 0.116 | 0.036 | 0.605 | 0.092 |
IL-17A | −0.267 | 0.066 | −0.130 | 0.621 |
IL-18 | 0.281 | 0.000 | 0.117 | 0.335 |
Clinical manifestations | −0.160 | 0.040 | 0.136 | 0.037 |
Constant | 1.014 | 0.118 | <0.001 | |
AdolRQLQ model | ||||
IL-1β | 0.421 | 0.026 | 0.389 | 0.009 |
IL-6 | 0.308 | 0.069 | 0.097 | 0.732 |
IL-8 | 0.000 | 0.000 | −0.210 | 0.257 |
IL-12p70 | −0.382 | 0.131 | −0.522 | 0.246 |
IL-17A | 0.528 | 0.241 | 0.431 | 0.433 |
IL-18 | −0.001 | 0.001 | −0.164 | 0.162 |
Clinical manifestations | 0.877 | 0.148 | 0.230 | <0.001 |
Constant | 0.749 | 0.431 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krsmanović, L.; Arsović, N.; Bokonjić, D.; Nešić, V.; Dudvarski, Z.; Pavlović, D.; Dubravac Tanasković, M.; Ristić, S.; Elez-Burnjaković, N.; Balaban, R.; et al. The Impact of Cytokines on Health-Related Quality of Life in Adolescents with Allergic Rhinitis. Biomedicines 2024, 12, 428. https://doi.org/10.3390/biomedicines12020428
Krsmanović L, Arsović N, Bokonjić D, Nešić V, Dudvarski Z, Pavlović D, Dubravac Tanasković M, Ristić S, Elez-Burnjaković N, Balaban R, et al. The Impact of Cytokines on Health-Related Quality of Life in Adolescents with Allergic Rhinitis. Biomedicines. 2024; 12(2):428. https://doi.org/10.3390/biomedicines12020428
Chicago/Turabian StyleKrsmanović, Ljiljana, Nenad Arsović, Dejan Bokonjić, Vladimir Nešić, Zoran Dudvarski, Dragana Pavlović, Milena Dubravac Tanasković, Siniša Ristić, Nikolina Elez-Burnjaković, Radmila Balaban, and et al. 2024. "The Impact of Cytokines on Health-Related Quality of Life in Adolescents with Allergic Rhinitis" Biomedicines 12, no. 2: 428. https://doi.org/10.3390/biomedicines12020428
APA StyleKrsmanović, L., Arsović, N., Bokonjić, D., Nešić, V., Dudvarski, Z., Pavlović, D., Dubravac Tanasković, M., Ristić, S., Elez-Burnjaković, N., Balaban, R., Ćurčić, B., Ivanović, R., Vuković, N., Vuković, M., Milić, M., & Joksimović, B. (2024). The Impact of Cytokines on Health-Related Quality of Life in Adolescents with Allergic Rhinitis. Biomedicines, 12(2), 428. https://doi.org/10.3390/biomedicines12020428