High-Throughput Bacteriophage Testing with Potency Determination: Validation of an Automated Pipetting and Phage Drop-Off Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Manual Drop-Off Method
2.2. The Automated Drop-Off Method
2.2.1. Robot, Tips, and General Setup
2.2.2. Agar Plates
2.2.3. Bacteriophages
2.2.4. Strains
2.2.5. Step-by-Step Description of Robot Processes during a Run
2.3. Validation of Concordance between Manual and Automated Methods
2.4. Plates Reading, Data Analysis and Statistics
3. Results
3.1. Comparison of the Automated to Manual Pipetting and Drop-Off Methods Using Phage 536_P1
3.2. Evaluation of the Performance of the Automated Method on a Large Series of Tests
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Directorate for the Quality of Medicines & HealthCare. Public Consultation on New General Chapter on Phage Therapy Active Substances and Medicinal Products for Human and Veterinary Use in Pharmeuropa 35.2. 2023. Available online: https://www.edqm.eu/en/home/-/asset_publisher/wQkauHDDLDSk/content/public-consultation-on-new-general-chapter-on-phage-therapy-active-substances-and-medicinal-products-for-human-and-veterinary-use-in-pharmeuropa-35.2 (accessed on 12 November 2023).
- Adaptive Phage Therapeutics. Adaptive Phage Therapeutics Announces FDA Clearance of IND Application for APT’s Phage Bank for the Treatment of Prosthetic Joint Infections. 2021. Available online: https://aphage.com/adaptive-phage-therapeutics-announces-fda-clearance-of-ind-application-for-phagebank-for-the-treatment-of-prosthetic-joint-infections/ (accessed on 12 November 2023).
- Pirnay, J.P.; De Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M.; Adamia, R. The phage therapy paradigm: Pret-a-porter or sur-mesure? Pharm. Res. 2011, 28, 934–937. [Google Scholar] [CrossRef]
- Lin, R.C.; Sacher, J.C.; Ceyssens, P.J.; Zheng, J.; Khalid, A.; Iredell, J.R.; Network, T.A.P.B. Phage Biobank: Present Challenges and Future Perspectives. Curr. Opin. Biotechnol. 2021, 68, 221–230. [Google Scholar] [CrossRef]
- Yerushalmy, O.; Khalifa, L.; Gold, N.; Rakov, C.; Alkalay-Oren, S.; Adler, K.; Hazan, R. The Israeli Phage Bank (IPB). Antibiotics 2020, 9, 269. [Google Scholar] [CrossRef]
- Microbial Interactions Lab University of Southampton. KlebPhaCol: An Open Collection of Phages Targeting Klebsiella spp. 2023. Available online: https://www.klebphacol.org/ (accessed on 12 November 2023).
- Willy, C.; Bugert, J.J.; Classen, A.Y.; Deng, L.; Düchting, A.; Gross, J.; Broecker, F. Phage Therapy in Germany-Update 2023. Viruses 2023, 15, 588. [Google Scholar] [CrossRef]
- Zima, T. Accreditation of Medical Laboratories—System, Process, Benefits for Labs. J. Med. Biochem. 2017, 36, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Glonti, T.; Pirnay, J.P. In Vitro Techniques and Measurements of Phage Characteristics That Are Important for Phage Therapy Success. Viruses 2022, 14, 1490. [Google Scholar] [CrossRef]
- EUCAST (European Committee on Antibiotic Susceptibility Testing), Disk Diffusion Method for Antimicrobial Susceptibility Testing (Version 11.0, January 2023). 2023. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology (accessed on 10 December 2023).
- Gaborieau, B.; Vaysset, H.; Tesson, F.; Charachon, I.; Dib, N.; Bernier, J.; Bernheim, A. Predicting phage-bacteria interactions at the strain level from genomes. bioRxiv 2023. [Google Scholar] [CrossRef]
- Dufour, N.; Debarbieux, L.; Fromentin, M.; Ricard, J.D. Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia with Bacteriophages. Crit. Care Med. 2015, 43, e190–e198. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.F.; Petrie, A. Method agreement analysis: A review of correct methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Bessemans, L.; Jully, V.; de Raikem, C.; Albanese, M.; Moniotte, N.; Silversmet, P.; Lemoine, D. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler. J. Lab. Autom. 2016, 21, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Tegally, H.; San, J.E.; Giandhari, J.; de Oliveira, T. Unlocking the efficiency of genomics laboratories with robotic liquid-handling. BMC Genom. 2020, 21, 729. [Google Scholar] [CrossRef] [PubMed]
- Popovic, Z.B.; Thomas, J.D. Assessing observer variability: A user’s guide. Cardiovasc. Diagn. Ther. 2017, 7, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Marshall, K.C. Planktonic Versus Sessile Life of Prokaryotes. In The Prokaryotes: Ecophysiology and Biochemistry; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; Volume 2, pp. 3–15. [Google Scholar]
- Lourenco, M.; De Sordi, L.; Debarbieux, L. The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity. Viruses 2018, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Rajnovic, D.; Munoz-Berbel, X.; Mas, J. Fast phage detection and quantification: An optical density-based approach. PLoS ONE 2019, 14, e0216292. [Google Scholar] [CrossRef]
- Lopatina, A.; Tal, N.; Sorek, R. Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. Annu. Rev. Virol. 2020, 7, 371–384. [Google Scholar] [CrossRef]
- Abedon, S.T. Lysis from without. Bacteriophage 2011, 1, 46–49. [Google Scholar] [CrossRef]
- Daubie, V.; Chalhoub, H.; Blasdel, B.; Dahma, H.; Merabishvili, M.; Glonti, T. Determination of phage susceptibility as a clinical diagnostic tool: A routine perspective. Front. Cell Infect. Microbiol. 2022, 12, 1000721. [Google Scholar] [CrossRef]
- Gibson, S.B.; Green, S.I.; Liu, C.G.; Salazar, K.C.; Clark, J.R.; Terwilliger, A.L. Constructing and Characterizing Bacteriophage Libraries for Phage Therapy of Human Infections. Front. Microbiol. 2019, 10, 2537. [Google Scholar] [CrossRef]
- Green, S.I.; Kaelber, J.T.; Ma, L.; Trautner, B.W.; Ramig, R.F.; Maresso, A.W. Bacteriophages from ExPEC Reservoirs Kill Pandemic Multidrug-Resistant Strains of Clonal Group ST131 in Animal Models of Bacteremia. Sci. Rep. 2017, 7, 46151. [Google Scholar] [CrossRef]
- Viazis, S.; Akhtar, M.; Feirtag, J.; Brabban, A.D.; Diez-Gonzalez, F. Isolation and characterization of lytic bacteriophages against enterohaemorrhagic Escherichia coli. J. Appl. Microbiol. 2011, 110, 1323–1331. [Google Scholar] [CrossRef]
- Khan Mirzaei, M.; Nilsson, A.S. Isolation of phages for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [PubMed]
- Antonios, K.; Croxatto, A.; Culbreath, K. Current State of Laboratory Automation in Clinical Microbiology Laboratory. Clin. Chem. 2021, 68, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Donmez, S.I.; Needs, S.H.; Osborn, H.M.; Reis, N.M.; Edwards, A.D. Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques. Lab Chip 2022, 22, 2820–2831. [Google Scholar] [CrossRef] [PubMed]
- Perlemoine, P.; Marcoux, P.R.; Picard, E.; Hadji, E.; Zelsmann, M.; Mugnier, G. Phage susceptibility testing and infectious titer determination through wide-field lensless monitoring of phage plaque growth. PLoS ONE 2021, 16, e0248917. [Google Scholar] [CrossRef] [PubMed]
- Shamash, M.; Maurice, C.F. OnePetri: Accelerating Common Bacteriophage Petri Dish Assays with Computer Vision. Phage 2021, 2, 224–231. [Google Scholar] [CrossRef]
Dilutions | Manual Method (Reference One) | Automated Method (Evaluated One) | ||||||
---|---|---|---|---|---|---|---|---|
A (ND) | B (10−1) | C (10−2) | D (10−3) | A (ND) | B (10−1) | C (10−2) | D (10−3) | |
Rep. #1 | 1.00 × 109 | 1.00 × 108 | 7.33 × 106 | 1.53 × 106 | 1.07 × 109 | 1.33 × 108 | 1.33 × 107 | 1.13 × 106 |
Rep. #2 | 7.33 × 108 | 1.20 × 108 | 1.40 × 107 | 1.73 × 106 | 8.67 × 108 | 1.20 × 108 | 1.07 × 107 | 1.13 × 106 |
Rep. #3 | 1.53 × 109 | 1.07 × 108 | 1.07 × 107 | 2.07 × 106 | 1.40 × 109 | 1.47 × 108 | 1.27 × 107 | 1.00 × 106 |
Rep. #4 | 8.67 × 108 | 1.47 × 108 | 1.00 × 107 | 1.27 × 106 | 1.00 × 109 | 1.20 × 108 | 1.33 × 107 | 8.67 × 105 |
Mean of Rep. | 1.03 × 109 | 1.18 × 108 | 1.05 × 107 | 1.65 × 106 | 1.08 × 109 | 1.30 × 108 | 1.25 × 107 | 1.03 × 106 |
SD | 3.51 × 108 | 2.06 × 107 | 2.74 × 106 | 3.37 × 105 | 2.27 × 108 | 1.28 × 107 | 1.26 × 106 | 1.28 × 105 |
CV (%) | 33.93 | 17.44 | 26.11 | 20.44 | 20.94 | 9.82 | 10.10 | 12.35 |
Mean CV (%) | 24.48 (±7.25) | 13.30 (±5.21) |
Number of PFUs Per Spot (Mean of the 3 Replicates) | Number of Independent Triplicates Analyzed | Mean CV (%) |
---|---|---|
]0–5] | 6 | 37.1% |
]5–10] | 26 | 29.3% |
]10–15] | 37 | 25.5% |
]15–20] | 40 | 14.1% |
]20–25] | 19 | 14.1% |
]25–30] | 12 | 9.6% |
]30–50] | 7 | 7.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dufour, N.; Delattre, R.; Debarbieux, L. High-Throughput Bacteriophage Testing with Potency Determination: Validation of an Automated Pipetting and Phage Drop-Off Method. Biomedicines 2024, 12, 466. https://doi.org/10.3390/biomedicines12020466
Dufour N, Delattre R, Debarbieux L. High-Throughput Bacteriophage Testing with Potency Determination: Validation of an Automated Pipetting and Phage Drop-Off Method. Biomedicines. 2024; 12(2):466. https://doi.org/10.3390/biomedicines12020466
Chicago/Turabian StyleDufour, Nicolas, Raphaëlle Delattre, and Laurent Debarbieux. 2024. "High-Throughput Bacteriophage Testing with Potency Determination: Validation of an Automated Pipetting and Phage Drop-Off Method" Biomedicines 12, no. 2: 466. https://doi.org/10.3390/biomedicines12020466
APA StyleDufour, N., Delattre, R., & Debarbieux, L. (2024). High-Throughput Bacteriophage Testing with Potency Determination: Validation of an Automated Pipetting and Phage Drop-Off Method. Biomedicines, 12(2), 466. https://doi.org/10.3390/biomedicines12020466