Diabetic Neuropathic Pain: Directions for Exploring Treatments
Abstract
:1. Introduction
2. Mechanisms Underlying Diabetic Neuropathic Pain
2.1. Hyperglycaemia
2.1.1. Polyol Pathway Hyperactivity
2.1.2. Advanced Glycation End Products (AGEs) Accumulation and Myelination Loss
2.1.3. Inflammation
2.1.4. Mitochondrial Oxidant Stress
2.1.5. Growth Factor Deficiency
2.1.6. Vascular Lesions
3. Treatments against DNP
3.1. FDA-Approved Medicine
3.2. Natural Isolates
3.3. Vitamins
3.4. Specific Enzyme/Receptor Targets
3.4.1. MMP-9/2
3.4.2. EphrinB–EphB Receptor Signals
3.4.3. Multi-Chemokine Receptor Antagonist: RAP-103
3.5. Gut Microbiota
3.6. Non-Pharmacological Approaches
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feldman, E.L.; Nave, K.A.; Jensen, T.S.; Bennett, D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 2017, 93, 1296–1313. [Google Scholar] [CrossRef] [PubMed]
- Calcutt, N.A. Diabetic neuropathy and neuropathic pain: A (con)fusion of pathogenic mechanisms? Pain 2020, 161 (Suppl. S1), S65–S86. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.S.; Karlsson, P.; Gylfadottir, S.S.; Andersen, S.T.; Bennett, D.L.; Tankisi, H.; Finnerup, N.B.; Terkelsen, A.J.; Khan, K.; Themistocleous, A.C.; et al. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain 2021, 144, 1632–1645. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Oates, P.J. Aldose reductase, still a compelling target for diabetic neuropathy. Curr. Drug Targets 2008, 9, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kishore, L.; Kaur, N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res. 2014, 80, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Lukic, I.K.; Humpert, P.M.; Nawroth, P.P.; Bierhaus, A. The RAGE pathway: Activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann. N. Y. Acad. Sci. 2008, 1126, 76–80. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Ang, L.; Holmes, C.; Gallagher, K.; Feldman, E.L. Inflammation as a Therapeutic Target for Diabetic Neuropathies. Curr. Diab. Rep. 2016, 16, 29. [Google Scholar] [CrossRef]
- Mora, C.; Navarro, J.F. Inflammation and diabetic nephropathy. Curr. Diabetes Rep. 2006, 6, 463–468. [Google Scholar] [CrossRef]
- Gosselin, R.D.; Suter, M.R.; Ji, R.R.; Decosterd, I. Glial cells and chronic pain. Neuroscientist 2010, 16, 519–531. [Google Scholar] [CrossRef]
- Zenker, J.; Ziegler, D.; Chrast, R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci. 2013, 36, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther. 2008, 120, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, G.; Vinik, A. Nerve growth factor and diabetic neuropathy. Exp. Diabesity Res. 2003, 4, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.R.; Fernyhough, P.; Diemel, L.T. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes 1997, 46 (Suppl. S2), S43–S49. [Google Scholar] [CrossRef] [PubMed]
- Obrosova, I.G.; Li, F.; Abatan, O.I.; Forsell, M.A.; Komjáti, K.; Pacher, P.; Szabó, C.; Stevens, M.J. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 2004, 53, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; Sloan, G.; Stevens, L.; Selvarajah, D.; Cruccu, G.; Gandhi, R.A.; Kempler, P.; Fuller, J.H.; Chaturvedi, N.; Tesfaye, S.; et al. Female sex is a risk factor for painful diabetic peripheral neuropathy: The EURODIAB prospective diabetes complications study. Diabetologia 2023, 67, 190–198. [Google Scholar] [CrossRef]
- Singleton, J.R.; Smith, A.G. The diabetic neuropathies: Practical and rational therapy. Semin. Neurol. 2012, 32, 196–203. [Google Scholar] [CrossRef]
- Qureshi, Z.; Ali, M.N.; Khalid, M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J. Diabetes Res. 2022, 2022, 9989272. [Google Scholar] [CrossRef]
- Alshehri, F.S. Tapentadol: A Review of Experimental Pharmacology Studies, Clinical Trials, and Recent Findings. Drug Des. Dev. Ther. 2023, 17, 851–861. [Google Scholar] [CrossRef]
- Moore, R.A.; Straube, S.; Wiffen, P.J.; Derry, S.; McQuay, H.J. Pregabalin for acute and chronic pain in adults. Cochrane Database Syst. Rev. 2009, 3, CD007076. [Google Scholar] [CrossRef]
- Knadler, M.P.; Lobo, E.; Chappell, J.; Bergstrom, R. Duloxetine: Clinical pharmacokinetics and drug interactions. Clin. Pharmacokinet. 2011, 50, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Privitera, R.; Donatien, P.; Fadavi, H.; Tesfaye, S.; Bravis, V.; Misra, V.P. Reversing painful and non-painful diabetic neuropathy with the capsaicin 8% patch: Clinical evidence for pain relief and restoration of function via nerve fiber regeneration. Front. Neurol. 2022, 13, 998904. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Tesfaye, S.; Sloan, G.; Sloan, G.; Petrie, J.; Petrie, J.; White, D.; White, D.; Bradburn, M.; Bradburn, M.; et al. Comparison of amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline, and duloxetine supplemented with pregabalin for the treatment of diabetic peripheral neuropathic pain (OPTION-DM): A multicentre, double-blind, randomised crossover trial. Lancet 2022, 400, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Bouhassira, D.; Tesfaye, S.; Sarkar, A.; Soisalon-Soininen, S.; Stemper, B.; Baron, R. Efficacy and safety of eliapixant in diabetic neuropathic pain and prediction of placebo responders with an exploratory novel algorithm: Results from the randomized controlled phase 2a PUCCINI study. Pain 2023. [Google Scholar] [CrossRef] [PubMed]
- Faheem, M.; Khan, A.U.; Shah, F.A.; Li, S. Investigation of Natural Compounds for Therapeutic Potential in Streptozotocin-induced Diabetic Neuroinflammation and Neuropathic Pain. Front. Pharmacol. 2022, 13, 1019033. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Song, X.J. Vitamins in neuropathy: Pathophysiological and therapeutic roles. Curr. Opin. Neurol. 2023, 36, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Karaganis, S.; Song, X.J. B vitamins as a treatment for diabetic pain and neuropathy. J. Clin. Pharm. Ther. 2021, 46, 1199–1212. [Google Scholar] [CrossRef]
- Mäder, R.; Deutsch, H.; Siebert, G.K.; Gerbershagen, H.U.; Grühn, E.; Behl, M.; Kübler, W. Vitamin status of inpatients with chronic cephalgia and dysfunction pain syndrome and effects of a vitamin supplementation. Int. J. Vitam. Nutr. Res. 1988, 58, 436–441. [Google Scholar]
- Stracke, H.; Lindemann, A.; Federlin, K. A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp. Clin. Endocrinol. Diabetes 1996, 104, 311–316. [Google Scholar] [CrossRef]
- Yxfeldt, A.; Wallberg-Jonsson, S.; Hultdin, J.; Rantapää-Dahlqvist, S. Homocysteine in patients with rheumatoid arthritis in relation to inflammation and B-vitamin treatment. Acta Rheumatol. Scand. 2003, 32, 205–210. [Google Scholar] [CrossRef]
- Wang, Z.B.; Gan, Q.; Rupert, R.L.; Zeng, Y.M.; Song, X.J. Thiamine, pyridoxine, cyanocobalamin and their combination inhibit thermal, but not mechanical hyperalgesia in rats with primary sensory neuron injury. Pain 2005, 114, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Song, X.S.; Huang, Z.J.; Song, X.J. Thiamine suppresses thermal hyperalgesia, inhibits hyperexcitability, and lessens alterations of sodium currents in injured, dorsal root ganglion neurons in rats. Anesthesiology 2009, 110, 387–400. [Google Scholar] [CrossRef] [PubMed]
- He, D.D.; Gao, Y.; Wang, S.; Xie, Z.; Song, X.J. Systematic Administration of B Vitamins Alleviates Diabetic Pain and Inhibits Associated Expression of P2 × 3 and TRPV1 in Dorsal Root Ganglion Neurons and Proinflammatory Cytokines in Spinal Cord in Rats. Pain Res. Manag. 2020, 2020, 3740162. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Rani, N.; Gangwar, A.; Singh, R.; Kaur, R.; Upadhyaya, K. Diabetic Neuropathy: A Repercussion of Vitamin D Deficiency. Curr. Diabetes Rev. 2023, 19, 80–91. [Google Scholar] [CrossRef] [PubMed]
- El-Sawaf, E.S.; Saleh, S.; Abdallah, D.M.; Ahmed, K.A.; El-Abhar, H.S. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sci. 2021, 279, 119697. [Google Scholar] [CrossRef] [PubMed]
- Escolano-Lozano, F.; Gries, E.; Schlereth, T.; Dimova, V.; Baka, P.; Vlckova, E.; König, S.; Birklein, F. Local and Systemic Expression Pattern of MMP-2 and MMP-9 in Complex Regional Pain Syndrome. J. Pain 2021, 22, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Bansal, S.; Kuhad, A.; Kumar, A.; Chopra, K. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food Funct. 2020, 11, 4548–4560. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Xu, Z.Z.; Wang, X.; Park, J.Y.; Zhuang, Z.Y.; Tan, P.H.; Gao, Y.J.; Roy, K.; Corfas, G.; Lo, E.H.; et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat. Med. 2008, 14, 331–336. [Google Scholar] [CrossRef]
- Liu, W.T.; Han, Y.; Liu, Y.P.; Song, A.A.; Barnes, B.; Song, X.J. Spinal matrix metalloproteinase-9 contributes to physical dependence on morphine in mice. J. Neurosci. 2010, 30, 7613–7623. [Google Scholar] [CrossRef]
- Deng, X.; Ma, P.; Wu, M.; Liao, H.; Song, X.J. Role of Matrix Metalloproteinases in Myelin Abnormalities and Mechanical Allodynia in Rodents with Diabetic Neuropathy. Aging Dis. 2021, 12, 1808–1820. [Google Scholar] [CrossRef]
- Lu, J.; Yang, L.; Xu, Y.; Ai, L.; Chen, J.; Xiong, F.; Hu, L.; Chen, H.; Liu, J.; Yan, X.; et al. The Modulatory Effect of Motor Cortex Astrocytes on Diabetic Neuropathic Pain. J. Neurosci. 2021, 41, 5287–5302. [Google Scholar] [CrossRef] [PubMed]
- Song, X.J.; Cao, J.L.; Li, H.C.; Zheng, J.H.; Song, X.S.; Xiong, L.Z. Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. Eur. J. Pain 2008, 12, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Song, X.J.; Zheng, J.H.; Cao, J.L.; Liu, W.T.; Song, X.S.; Huang, Z.J. EphrinB-EphB receptor signaling contributes to neuropathic pain by regulating neural excitability and spinal synaptic plasticity in rats. Pain 2008, 139, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, W.T.; Liu, Y.P.; Dong, H.L.; Henkemeyer, M.; Xiong, L.Z.; Song, X.J. Blocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents. Cancer Res. 2011, 71, 4392–4402. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.P.; Song, W.B.; Song, X.J. EphrinB-EphB receptor signaling contributes to bone cancer pain via Toll-like receptor and proinflammatory cytokines in rat spinal cord. Pain 2013, 154, 2823–2835. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Wu, M.; Xu, N.; Ma, P.; Song, X.J. Activation of ephrinB-EphB receptor signalling in rat spinal cord contributes to maintenance of diabetic neuropathic pain. Eur. J. Pain 2017, 21, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Ruff, M.R.; Inan, S.; Shi, X.Q.; Meissler, J.J.; Adler, M.W.; Eisenstein, T.K.; Zhang, J. Potentiation of morphine antinociception and inhibition of diabetic neuropathic pain by the multi-chemokine receptor antagonist peptide RAP-103. Life Sci. 2022, 306, 120788. [Google Scholar] [CrossRef]
- White, F.A.; Feldman, P.; Miller, R.J. Chemokine signaling and the management of neuropathic pain. Mol. Interv. 2009, 9, 188–195. [Google Scholar] [CrossRef]
- Padi, S.S.V.; Shi, X.Q.; Zhao, Y.Q.; Ruff, M.R.; Baichoo, N.; Pert, C.B.; Zhang, J. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain 2012, 153, 95–106. [Google Scholar] [CrossRef]
- Munawar, N.; Bitar, M.S.; Masocha, W. Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 14334. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Lim, G.; You, Z.; Ding, W.; Huang, P.; Ran, C.; Doheny, J.; Caravan, P.; Tate, S.; Hu, K.; et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci. 2017, 20, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Wang, Y.; Zhang, P.; Yuan, Y.; Zhang, Y.; Chen, G. Gut microbiota regulates neuropathic pain: Potential mechanisms and therapeutic strategy. J. Headache Pain 2020, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Delprete, C.; Rimondini Giorgini, R.; Lucarini, E.; Bastiaanssen, T.F.S.; Scicchitano, D.; Interino, N.; Formaggio, F.; Uhlig, F.; Ghelardini, C.; Hyland, N.; et al. Disruption of the microbiota-gut-brain axis is a defining characteristic of the α-Gal A (-/0) mouse model of Fabry disease. Gut Microbes 2023, 15, 2256045. [Google Scholar] [CrossRef]
- Guo, R.; Chen, L.H.; Xing, C.; Liu, T. Pain regulation by gut microbiota: Molecular mechanisms and therapeutic potential. Br. J. Anaesth. 2019, 123, 637–654. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Mo, R.; Liao, H.; Qiu, C.; Wu, G.; Yang, C.; Zhang, Y.; Zhao, Y.; Song, X.J. Gut microbiota depletion by antibiotics ameliorates somatic neuropathic pain induced by nerve injury, chemotherapy, and diabetes in mice. J. Neuroinflamm. 2022, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Liampas, A.; Rekatsina, M.; Vadalouca, A.; Paladini, A.; Varrassi, G.; Zis, P. Non-Pharmacological Management of Painful Peripheral Neuropathies: A Systematic Review. Adv. Ther. 2020, 37, 4096–4106. [Google Scholar] [CrossRef]
- Sato, K.L.; King, E.W.; Johanek, L.M.; Sluka, K.A. Spinal cord stimulation reduces hypersensitivity through activation of opioid receptors in a frequency-dependent manner. Eur. J. Pain 2013, 17, 551–561. [Google Scholar] [CrossRef]
- Sdrulla, D.; Guan, Y.; Raja, S.N. Spinal cord stimulation: Clinical efficacy and potential mechanisms. Pain Pract. 2018, 18, 1048–1067. [Google Scholar] [CrossRef]
- Slangen, R.; Schaper, N.C.; Faber, C.G.; Joosten, E.A.; Dirksen, C.D.; van Dongen, R.T.; Kessels, A.G.; van Kleef, M. Spinal cord stimulation and pain relief in painful diabetic peripheral neuropathy: A prospective two-center randomized controlled trial. Diabetes Care 2014, 37, 3016–3024. [Google Scholar] [CrossRef]
- de Vos, C.C.; Meier, K.; Zaalberg, P.B.; Nijhuis, H.J.; Duyvendak, W.; Vesper, J.; Enggaard, T.P.; Lenders, M.W. Spinal cord stimulation in patients with painful diabetic neuropathy: A multicentre randomized clinical trial. Pain 2014, 155, 2426–2431. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, H.Y.; Rubini, P.; Illes, P. Acupuncture-Induced Analgesia: A Neurobiological Basis in Purinergic Signaling. Neuroscientist 2016, 22, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Garrow, A.P.; Xing, M.; Vere, J.; Verrall, B.; Wang, L.; Jude, E.B. Role of acupuncture in the management of diabetic painful neuropathy (DPN): A pilot Rct. Acupunct. Med. 2014, 32, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.Y.; Wang, H.Z.; Hu, Q.Q.; Ma, Y.Q.; Kang, Y.R.; Ma, L.Q.; Li, X.; Chen, L.H.; Shao, X.M.; Liu, B.Y.; et al. Electroacupuncture may alleviate diabetic neuropathic pain by inhibiting the microglia P2 × 4R and neuroinflammation. Purinergic Signal. 2023. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhu, H.Q.; Gou, B.; Zheng, Y.L. Mechanisms of exercise for diabetic neuropathic pain. Front. Aging Neurosci. 2022, 14, 975453. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Q.; Qin, J.; Li, H.Y.; Yan, X.L.; Zhao, Y.; Zhang, L.J. Role of exercise activity in alleviating neuropathic pain in diabetes via inhibition of the pro-inflammatory signal pathway. Biol. Res. Nurs. 2019, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Nadi, M.; Bambaeichi, E.; Marandi, S.M. Comparison of the effect of twotherapeutic exercises on the inflammatory andphysiological conditions and complications of diabetic neuropathy in female patients. Diabetes Metab. Syndr. Obes. 2019, 12, 1493–1501. [Google Scholar] [CrossRef]
- Yoo, M.; D’Silva, L.J.; Martin, K.; Sharma, N.K.; Pasnoor, M.; LeMaster, J.W.; Kluding, P.M. Pilot study of exercise therapy on painful diabetic peripheral neuropathy. Pain Med. 2015, 16, 1482–1489. [Google Scholar] [CrossRef]
- Jensen, T.M.; Eriksen SB, M.; Larsen, J.S.; Aadahl, M.; Rasmussen, S.S.; Olesen, L.B.; Rehling, T.; Molsted, S. Exercise training is associated with reduced pains from the musculoskeletal system in patients with type 2 diabetes. Diabet. Res. Clin. Pract. 2019, 154, 124–129. [Google Scholar] [CrossRef]
- Heidari, M.; Zolaktaf, V.; Ghasemi, G.; Nejadian, S.L. Integrated exercise glycemic peripheral sensation control in diabetic neuropathy: A single-blind randomized controlled trial. Int. J. Prev. Med. 2021, 12, 169. [Google Scholar] [CrossRef]
- Olver, T.D.; McDonald, M.W.; Grisé, K.N.; Dey, A.; Allen, M.D.; Medeiros, P.J.; Lacefield, J.C.; Jackson, D.N.; Rice, C.L.; Melling, C.W.J.; et al. Exercise training enhances insulin-stimulated nerve arterial vasodilation in rats with insulin-treated experimental diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R941–R950. [Google Scholar] [CrossRef]
- Nascimento, P.S.; Lovatel, G.A.; Ilha, J.; Xavier, L.L.; Schaan, B.D.; Achaval, M. Exercise alleviates hypoalgesia and increases the level of calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats. Clinics 2012, 67, 1087–1091. [Google Scholar] [CrossRef]
- Bhandari, R.; Sharma, A.; Kuhad, A. Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP). Front. Endocrinol. 2022, 12, 790747. [Google Scholar] [CrossRef]
- Eissa, R.G.; Eissa, N.G.; Eissa, R.A.; Diab, N.H.; Abdelshafi, N.A.; Shaheen, M.A.; Elsabahy, M.; Hammad, S.K. Oral proniosomal amitriptyline liraglutide for management of diabetic neuropathy: Exceptional control over hyperglycemia neuropathic pain. Int. J. Pharm. 2023, 647, 123549. [Google Scholar] [CrossRef]
Treatments/Targets | Signalling Pathway/Molecules Involved | Side Effects | Reference |
---|---|---|---|
Tapentadol * | Activation of μ-opioid receptor and inhibition of noradrenaline re-uptake | Nausea, sleepiness, constipation, headache | [19] |
Pregabalin * | Binding of α2δ-1 (voltage-gated Ca2+ channels); decrease in Ca2+ influx | Drowsiness, swelling hands and feet, sleepiness, headache | [20] |
Duloxetine * | Increase in conc. of serotonin and norepinephrine in synaptic cleft; dampening of pain signal transmissions | Drowsiness, nausea, constipation, increased sweating. | [21] |
Capsaicin * | De-sensitisation of TRPV1; tolerance of capsaicin | Nausea, dry mouth, difficulty breathing | [22] |
Natural Isolates (e.g., berbamine, bergapten, carveol) | Lowered expression of GSH, NF-κB, cytokines (TNF-α and COX-2) | Nausea (Rare) | [25] |
Vitamin B | Inhibition of increased expression of P2X3 and TRPV1 | N/A | [27,28,29,30,31,32,33] |
Vitamin D | Wnt-10α signalling + NRF-1. Reduction of TNF-α and IL-18, Caspase-3 activity | N/A | [34,35] |
MMP-9/2 (Enzymes) | TNF-α, IL-1β. Cleavage of ECM around neuronal cells | N/A | [36,37,38,39,40,41] |
EphrinB–EphB (Receptors) | EphrinB–EphB signalling. Astrocytes, IL-1β and TNF-α. | N/A | [42,43,44,45,46] |
RAP-103 (Receptors) | RAP-103-CCR2/CCR5 signalling. IL-1β and TNF-α | N/A | [47,48,49,50] |
Gut Microbiota | lipopolysaccharides (LPS), macrophages, IL-1β | N/A | [51,52,53,54,55,56] |
Spinal cord stimulation (SCS) | Activation of opioid receptors, reduced sensitivity of hyperexcited neurons | Infections at stimulation sites (rare) | [57,58,59,60,61] |
Acupuncture | Purinergic signalling | Bleeding and bruises at insertion sites | [62,63,64] |
Exercise | IL-1β, TNF-α, IL-6, IL-10; NO synthesis | N/A | [65,66,67,68,69,70,71,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Song, X.-J. Diabetic Neuropathic Pain: Directions for Exploring Treatments. Biomedicines 2024, 12, 589. https://doi.org/10.3390/biomedicines12030589
Chen Y, Song X-J. Diabetic Neuropathic Pain: Directions for Exploring Treatments. Biomedicines. 2024; 12(3):589. https://doi.org/10.3390/biomedicines12030589
Chicago/Turabian StyleChen, Yuchen, and Xue-Jun Song. 2024. "Diabetic Neuropathic Pain: Directions for Exploring Treatments" Biomedicines 12, no. 3: 589. https://doi.org/10.3390/biomedicines12030589
APA StyleChen, Y., & Song, X. -J. (2024). Diabetic Neuropathic Pain: Directions for Exploring Treatments. Biomedicines, 12(3), 589. https://doi.org/10.3390/biomedicines12030589