Associations of the CYP7A1 Gene Polymorphisms Located in the Promoter and Enhancer Regions with the Risk of Acute Coronary Syndrome, Plasma Cholesterol, and the Incidence of Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Analyses
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Sample
3.2. Association between CYP7A1 Polymorphisms and ACS
3.3. Linkage Disequilibrium Analysis
3.4. Association between CYP7A1 Polymorphisms and Plasma Lipid Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achar, S.A.; Kundu, S.; Norcross, W.A. Diagnosis of acute coronary syndrome. Am. Fam. Physician 2005, 72, 119–126. [Google Scholar]
- Cabezas, M.C.; Burggraaf, B.; Klop, B. Dyslipidemias in clinical parctice. Clin. Chim. Acta 2018, 487, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, R.C.; Gaubatz, J.W.; Sun, W.; Dodge, R.C.; Crosby, J.R.; Jiang, J.; Couper, D.; Virani, S.S.; Kathiresan, S.; Boerwinkle, E.; et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: The atherosclerosis risk in communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L. Bile acids: Regulation of synthesis. J. Lipid Res. 2009, 50, 1955–1966. [Google Scholar] [CrossRef]
- Wang, D.; Hartmann, K.; Seweryn, M.; Sadee, W. Interactions Between Regulatory Variants in CYP7A1 (Cholesterol 7α-Hydroxylase) Promoter and Enhancer Regions Regulate CYP7A1 Expression. Circ. Genom. Precis. Med. 2018, 11, e002082. [Google Scholar] [CrossRef]
- Pullinger, C.R.; Eng, C.; Salen, G.; Shefer, S.; Batta, A.K.; Erickson, S.K.; Verhagen, A.; Rivera, C.R.; Mulvihill, S.J.; Malloy, M.J.; et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J. Clin. Investig. 2002, 110, 109–117. [Google Scholar] [CrossRef]
- Nishimoto, M.; Noshiro, M.; Okuda, K. Structure of the gene encoding human liver cholesterol 7α-hydroxylase. Biochim. Biophys. Acta 1993, 1172, 147–150. [Google Scholar] [CrossRef]
- Cohen, J.C.; Cali, J.J.; Jelinek, D.F.; Mehrabian, M.; Sparkes, R.S.; Lusis, A.J.; Russell, D.W.; Hobbs, H.H. Cloning of the human cholesterol 7α-hydroxylase gene (CYP7) and localization to chromosome 8q11–q12. Genomics 1992, 14, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Iwanicki, T.; Balcerzyk, A.; Niemiec, P.; Nowak, T.; Ochalska-Tyka, A.; Krauze, J.; Kosiorz-Gorczynska, S.; Grzeszczak, W.; Zak, I. CYP7A1 gene polymorphism located in the 5′ upstream region modifies the risk of coronary artery disease. Dis. Markers 2015, 2015, 185969. [Google Scholar] [CrossRef]
- Abdullah, M.M.H.; Vazquez-Vidal, I.; Baer, D.J.; House, J.D.; Jones, P.J.H.; Desmarchelier, C. Common genetic variations involved in the inter-individual variability of circulating cholesterol concentrations in response to diets: A narrative review of recent evidence. Nutrients 2021, 13, 695. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Zhang, Q.; Chen, P.; Li, S.-Y.; Zhang, N.-N.; Chen, X.-D.; Wang, G.-C.; Wang, H.-B.; Zhuang, M.-Q.; Lu, M. CYP7A1 polymorphism influences the LDL cholesterol-lowering response to atorvastatin. J. Clin. Pharm. Ther. 2012, 37, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Abed, E.; Jarrar, Y.; Alhawari, H.; Abdullah, S.; Zihlif, M. The association of cytochrome 7A1 and ATP-binding cassette G8 genotypes with type 2 diabetes among Jordanian patients. Drug Metab. Pers. Ther. 2021, 37, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, F.; Lauridsen, B.K.; Frikke-Schmidt, R.; Kofoed, K.F.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Genetic variants in CYP7A1 and risk of myocardial infarction and symptomatic gallstone disease. Eur. Heart J. 2018, 39, 2106–2116. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ji, X.; Jiang, L.; Zhu, Y.; Xu, Y.; Jiang, Q.; Bao, J.; Ye, J.; Sheng, H.; Yu, H. Utility of genetic variants to predict prognosis in coronary artery disease patients receiving statin treatment. Int. J. Clin. Exp. Pathol. 2017, 10, 8795–8803. [Google Scholar]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477, Erratum in Eur. Heart J. 2020, 4, 4242. [Google Scholar] [CrossRef]
- Winther, S.; Schmidt, S.E.; Rasmussen, L.D.; Orozco, L.E.J.; Steffensen, F.H.; Bøtker, H.E.; Knuuti, J.; Bøttcher, M. Validation of the European Society of Cardiology pre-test probability model for obstructive coronary artery disease. Eur. Heart J. 2021, 42, 1401–1411. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Pérez-Hernández, N.; Angeles-Martínez, J.; López-Bautista, F.; Villarreal-Molina, T.; Rodríguez-Pérez, J.M.; Fragoso, J.M.; Posadas-Romero, C.; Vargas-Alarcón, G. Interleukin 35 polymorphisms are associated with decreased risk of premature coronary artery disease, metabolic parameters, and IL-35 Levels: The Genetics of Atherosclerotic Disease (GEA) Study. Mediat. Inflamm. 2017, 2017, 6012795. [Google Scholar] [CrossRef] [PubMed]
- DeLong, D.M.; DeLong, E.R.; Wood, P.D.; Lippel, K.; Rifkind, B.M. A comparison of methods for the estimation of plasma low- and very low-density lipoprotein cholesterol. The Lipid Research Clinics Prevalence Study. JAMA 1986, 256, 2372–2377. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Nurnberger, J.I., Jr. A rapid non-enzymatic method for the preparation HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]
- Schaid, D.J. Disease-marker association. In Biostatistical Genetics and Genetic Epidemiology; Elston, R.C., Olson, J.M., Palmer, L., Eds.; Wiley: Chichester, UK, 2002; pp. 216–217. [Google Scholar]
- Clayton, D. Population association. In Handbook of Statistical Genetics; Balding, D.J., Bishop, M., Cannings, C., Eds.; Wiley: Chichester, UK, 2001; pp. 519–540. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef]
- Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [CrossRef]
- Available online: http://www.cardiogramplusc4d.org/data-downloads/ (accessed on 6 February 2024).
- Lim, M.Y.C.; Tee, J.R.; Yau, W.P.; Ho, H.K. A meta-analysis of the pooled impact of CYP7A1 single nucleotide polymorphisms on serum lipid responses to statins. Front. Genet. 2023, 14, 1199549. [Google Scholar] [CrossRef]
- Klarin, D.; Damrauer, S.M.; Cho, K.; Sun, Y.V.; Teslovich, T.M.; Honerlaw, J.; Gagnon, D.R.; Duvall, S.L.; Li, J.; Peloso, G.M.; et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 2018, 50, 1514–1523. [Google Scholar] [CrossRef]
- Ripatti, P.; Rämö, J.T.; Mars, N.J.; Fu, Y.; Lin, J.; Söderlund, S.; Benner, C.; Surakka, I.; Kiiskinen, T.; Havulinna, A.S.; et al. Polygenic hyperlipidemias and coronary artery disease risk. Circ. Genom. Precis. Med. 2020, 13, e002725. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Rom, O.; Surakka, I.; Graham, S.E.; Zhou, W.; Roychowdhury, T.; Fritsche, L.G.; Taliun, S.A.G.; Sidore, C.; Liu, Y.; et al. Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease. Nat. Commun. 2020, 11, 6417. [Google Scholar] [CrossRef]
- Surakka, I.; ENGAGE Consortium; Horikoshi, M.; Mägi, R.; Sarin, A.-P.; Mahajan, A.; Lagou, V.; Marullo, L.; Ferreira, T.; Miraglio, B.; et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 2015, 47, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Sonne, D.P.; Knop, F.K. Bile acid sequestrants: Glucose-lowering mechanisms and efficacy in type 2 diabetes. Curr. Diabetes Rep. 2014, 14, 482. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Kong, X.; Owsley, E.; Ellis, E.; Strom, S.; Chiang, J.Y. Insulin regulation of cholesterol 7alpha-hydrolase expression in human hepatocytes: Roles of forkhead box O1 and sterol regulatory element-binding protein 1c. J. Biol. Chem. 2006, 281, 28745–28754. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, G.S.; Styer, A.M.; Wood, G.C.; Roesch, S.L.; Petrick, A.T.; Gabrielsen, J.; Strodel, W.E.; Still, C.D.; Argyropoulos, G. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 2013, 36, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | dbSNP a,b | Chromosome | Chromosome Position | Change Base (pb) | Location in Gene |
---|---|---|---|---|---|
CYP7A1 | rs2081687 | 8q11-12 | 58476006 | T > C | Enhancer region/CYP7A1 promoter |
CYP7A1 | rs9297994 | 8q11-12 | 58479765 | G > A | Enhancer region/CYP7A1 promoter |
CYP7A1 | rs10107182 | 8q11-12 | 58480178 | C > T | Enhancer region/CYP7A1 promoter |
CYP7A1 | rs10504255 | 8q11-12 | 58485902 | G > A | Enhancer region/CYP7A1 promoter |
CYP7A1 | rs1457043 | 8q11-12 | 58497880 | C > T | Promoter region |
CYP7A1 | rs8192870 | 8q11-12 | 58499507 | T > G | Promoter region |
CYP7A1 | rs3808607 | 8q11-12 | 58500365 | G > T | Promoter region |
Characteristics | ACS Patients (n = 1317) | Healthy Controls (n = 1046) | p | |
---|---|---|---|---|
Age (years) | 59.2 ± 10.8 | 51.2 ± 8.9 | <0.001 | |
Gender n (%) | Male | 1063 (80.7) | 425 (40.6) | <0.001 |
Female | 254 (19.2) | 621 (59.3) | ||
Hypertension, n (%) | Yes | 740 (56) | 199 (19) | <0.001 |
Type 2 diabetes mellitus, n (%) | Yes | 835 (63) | 109 (10) | <0.001 |
Dyslipidemia, n (%) | Yes | 949 (72) | 655 (63) | <0.001 |
Smoking, n (%) | Yes | 635 (48) | 232 (22) | <0.001 |
BMI (kg/m2) | 27 [25–30] | 28 [25–31] | 0.061 | |
Blood pressure (mmHg) | Systolic | 130 [115–150] | 112 [103–122] | <0.001 |
Diastolic | 80 [70–90] | 70 [65–76] | <0.001 | |
Glucose (mg/dL) | 136 [109–201] | 90 [84–97] | <0.001 | |
Total cholesterol (mg/dL) | 158 [126–190] | 189 [167–211] | <0.001 | |
HDL-C (mg/dL) | 37 [31–44] | 45 [36–55] | <0.001 | |
LDL-C (mg/dL) | 96 [70–126] | 116 [95–134] | <0.001 | |
Triglycerides (mg/dL) | 141 [106–190] | 145 [107–202] | 0.171 |
Polymorphic Site (rsID-Number) | Inheritance Model | Genotypes | ACS Patients n = 1317 n(%) | Controls n = 1046 n(%) | OR (95% CI) | pC |
---|---|---|---|---|---|---|
rs2081687 | Co-dominant | CC | 898 (0.682) | 758 (0.725) | ||
CT | 367 (0.279) | 269 (0.257) | ||||
TT | 52 (0.040) | 18 (0.017) | 1.36 (1.04–1.78) | 0.022 | ||
Dominant | CC | 898 (0.682) | 758 (0.725) | |||
CT + TT | 419 (0.318) | 287 (0.275) | 1.41 (1.09–1.82) | 0.009 | ||
Recessive | CC + CT | 1265 (0.960) | 1027 (0.983) | |||
TT | 52 (0.040) | 18 (0.017) | 1.86 (0.86–4.05) | 0.109 | ||
Over-dominant | CC + TT | 950 (0.721) | 776 (0.743) | |||
CT | 367 (0.279) | 269 (0.257) | 1.33 (1.02–1.73) | 0.036 | ||
Additive | - | - | - | 1.38 (1.10–1.74) | 0.006 | |
rs9297994 | Co-dominant | AA | 900 (0.683) | 766 (0.733) | ||
AG | 366 (0.278) | 264 (0.253) | ||||
GG | 51 (0.039) | 15 (0.014) | 1.49 (1.14–1.94) | 0.006 | ||
Dominant | AA | 900 (0.683) | 766 (0.733) | |||
AG + GG | 417 (0.317) | 279 (0.267) | 1.52 (1.17–1.97) | 0.002 | ||
Recessive | AA + AG | 1266 (0.961) | 1030 (0.986) | |||
GG | 51 (0.039) | 15 (0.014) | 1.71 (0.76–3.82) | 0.191 | ||
Over-dominant | AA + GG | 951 (0.722) | 781 (0.747) | |||
AG | 366 (0.278) | 264 (0.253) | 1.45 (1.11–1.90) | 0.006 | ||
Additive | - | - | - | 1.46 (1.15–1.84) | 0.001 | |
rs10107182 | Co-dominant | TT | 940 (0.714) | 758 (0.733) | ||
TC | 336 (0.255) | 261 (0.252) | ||||
CC | 41 (0.031) | 15 (0.014) | 2.37 (1.18–4.77) | 0.034 | ||
Dominant | TT | 940 (0.714) | 758 (0.733) | |||
TC + CC | 377 (0.286) | 276 (0.267) | 1.19 (0.96–1.48) | 0.119 | ||
Recessive | TT + TC | 1276 (0.997) | 1019 (0.987) | |||
CC | 41 (0.031) | 15 (0.014) | 2.30 (1.14–4.61) | 0.016 | ||
Over-dominant | TT + CC | 981 (0.745) | 773 (0.748) | |||
TC | 336 (0.255) | 261 (0.252) | 1.09 (0.87–1.37) | 0.429 | ||
Additive | - | - | - | 1.23 (1.01–1.50) | 0.038 | |
rs10504255 | Co-dominant | AA | 920 (0.699) | 772 (0.740) | ||
AG | 353 (0.268) | 254 (0.244) | ||||
GG | 44 (0.033) | 17 (0.016) | 1.36 (1.05–1.76) | 0.018 | ||
Dominant | AA | 920 (0.699) | 772 (0.741) | |||
AG + GG | 397 (0.301) | 271 (0.259) | 1.40 (1.09–1.80) | 0.007 | ||
Recessive | AA + AG | 1273 (0.967) | 1026 (0.984) | |||
GG | 44 (0.033) | 17 (0.016) | 1.78 (0.87–3.65) | 0.109 | ||
Over-dominant | AA + GG | 964 (0.732) | 789 (0.757) | |||
AG | 353 (0.268) | 254 (0.244) | 1.33 (1.03–1.71) | 0.029 | ||
Additive | - | - | - | 1.37 (1.10–1.70) | 0.005 | |
rs81922870 | Co-dominant | GG | 878 (0.667) | 736 (0.705) | ||
GT | 382 (0.290) | 288 (0.276) | ||||
TT | 57 (0.043) | 20 (0.019) | 2.34 (1.16–4.72) | 0.013 | ||
Dominant | GG | 878 (0.667) | 736 (0.705) | |||
GT + TT | 439 (0.333) | 308 (0.295) | 1.38 (1.07–1.78) | 0.013 | ||
Recessive | GG + GT | 1260 (0.957) | 1024 (0.981) | |||
TT | 57 (0.043) | 20 (0.019) | 2.16 (1.07–4.33) | 0.029 | ||
Over-dominant | GG + TT | 935 (0.710) | 756 (0.724) | |||
GT | 382 (0.290) | 288 (0.276) | 1.26 (0.97–1.63) | 0.083 | ||
Additive | - | - | - | 1.38 (1.11–1.72) | 0.004 |
Polymorphic Site (rsID-Number) | ACS Patients n = 1314 | Healthy Controls n = 1020 | p |
---|---|---|---|
rs2081687 T/C—rs9297994 G/A—rs10107182 C/T—rs10504255 G/A | Hf (%) | Hf (%) | |
C A T A | 0.775 | 0.848 | <0.001 |
T G C G | 0.141 | 0.132 | 0.385 |
T A T A | 0.027 | 0.011 | <0.001 |
rs1457043 C/T—rs8192870 T/G—rs3808607 G/T | Hf (%) | Hf (%) | p |
T G T | 0.729 | 0.747 | 0.163 |
C T G | 0.168 | 0.156 | 0.290 |
C G G | 0.071 | 0.089 | 0.023 |
T T T | 0.020 | 0.001 | <0.001 |
Gene/Parameters of Population | Genotypes | |||
---|---|---|---|---|
CYP7A1 | rs2081687 T/C | |||
CC (n = 898) | CT (n = 367) | TT (n = 52) | p * | |
Parameters | ||||
BMI (kg/m2) | 27.3 [25.5–30] | 26.9 [24–29] | 27.3 [25–29] | 0.551 |
Blood pressure (mmHg) | ||||
Systolic | 130 [115–150] | 129 [113–142] | 132 [123–150] | 0.037 |
Diastolic | 80 [70–90] | 80 [70–90] | 81.5 [76.5–90] | 0.041 |
Glucose (mg/dL) | 137 [109–201] | 131 [108–185] | 160 [106–240] | 0.038 |
T2DM (n = %) | 537 (59.7) | 206 (56.0) | 37 (70.0) | 0.037 |
Total cholesterol (mg/dL) | 156 [126–188] | 161 [124–196] | 159.5 [129–197] | 0.353 |
HDL-C (mg/dL) | 37 [31–55] | 37.6 [32–44] | 35.6 [29–40] | 0.041 |
LDL-C (mg/dL) | 96 [70–125] | 100 [71.6–130] | 97.8 [71–125] | 0.771 |
Triglycerides (mg/dL) | 140 [106–189] | 143 [107–193] | 141 [128–219] | 0.087 |
CYP7A1 | rs9297944 G/A | |||
AA (n = 900) | AG (n = 366) | GG (n = 51) | p * | |
Parameters | ||||
BMI (kg/m2) | 27.3 [25–30] | 27 [24.4–29] | 27.3 [25–30] | 0.548 |
Blood pressure (mmHg) | ||||
Systolic | 130 [116–150] | 129 [112–146] | 130 [123–148] | 0.024 |
Diastolic | 80 [70–90] | 80 [70–90] | 82 [78–90] | 0.042 |
Glucose (mg/dL) | 139 [109–205] | 130 [107–183] | 157 [107–227] | 0.010 |
T2DM (n = %) | 546 (60.0) | 198 (54.0) | 36 (70.5) | 0.046 |
Total cholesterol (mg/dL) | 156 [125–188] | 160 [127–196] | 158 [129–192] | 0.511 |
HDL-C (mg/dL) | 36.7 [31–44] | 37.8 [32–45] | 35.3 [30–39] | 0.039 |
LDL-C (mg/dL) | 96 [69–125] | 98 [74–130] | 97 [76–124] | 0.570 |
Triglycerides (mg/dL) | 142 [106–191] | 139 [107–189] | 135 [109–188] | 0.775 |
CYP7A1 | rs10107182 C/T | |||
TT (n = 940) | TC (n = 336) | CC (n = 41) | p * | |
Parameters | ||||
BMI (kg/m2) | 27.3 [25–30] | 27 [24.5–30] | 27 [25–28] | 0.545 |
Blood pressure (mmHg) | ||||
Systolic | 130 [116–150] | 129 [112–144] | 128 [120–147] | 0.044 |
Diastolic | 80 [70–90] | 80 [70–90] | 83 [80–90] | 0.042 |
Glucose (mg/dL) | 137 [109–203] | 130 [107–185] | 160 [127–235] | 0.022 |
T2DM (n = %) | 553 (58.8) | 180 (53.5) | 31 (75.6) | 0.010 |
Total cholesterol (mg/dL) | 156 [126–188] | 158 [124–195] | 163 [137–192] | 0.831 |
HDL-C (mg/dL) | 36.8 [31–44] | 37.5 [32–44] | 36 [31–39] | 0.679 |
LDL-C (mg/dL) | 96 [70–124] | 99 [71–130] | 103 [81–129] | 0.175 |
Triglycerides (mg/dL) | 141 [106–191] | 138 [107–186] | 136 [122–213] | 0.086 |
CYP7A1 | rs10504255 G/A | |||
AA (n = 920) | AG (n = 353) | GG (n = 44) | p * | |
Parameters | ||||
BMI (kg/m2) | 27.3 [25–30] | 27 [24.6–30] | 27 [25–28] | 0.682 |
Blood pressure (mmHg) | ||||
Systolic | 130 [115–150] | 130 [113–146] | 130 [124–148] | 0.027 |
Diastolic | 80 [70–90] | 80 [70–90] | 83 [79–90] | 0.019 |
Glucose (mg/dL) | 138 [109–203] | 130 [107–186] | 148 [107–226] | 0.033 |
T2DM (n = %) | 547 (59.4) | 188 (53.2) | 29 (65.9) | 0.140 |
Total cholesterol (mg/dL) | 156 [126–188] | 158 [123–194] | 166 [143–198] | 0.030 |
HDL-C (mg/dL) | 36.7 [31–44] | 37.5 [32–44] | 35.6 [29–39] | 0.439 |
LDL-C (mg/dL) | 96 [70–125] | 96 [69–129] | 106 [80–127] | 0.035 |
Triglycerides (mg/dL) | 142 [107–191] | 138 [106–187] | 135 [112–201] | 0.373 |
CYP7A1 | rs81922870 T/G | |||
GG (n = 878) | GT (n = 382) | TT (n = 57) | p * | |
Parameters | ||||
BMI (kg/m2) | 27 [25–30] | 27 [25–30] | 26.7 [24.5–28] | 0.210 |
Blood pressure (mmHg) | ||||
Systolic | 130 [116–150] | 129.5 [112–146] | 128 [120–140] | 0.033 |
Diastolic | 80 [70–90] | 80 [70–90] | 80 [74–90] | 0.015 |
Glucose (mg/dL) | 137 [109–200] | 133 [108–199.5] | 134 [105–229] | 0.554 |
T2DM (n = %) | 518 (58.9) | 215 (56.2) | 35 (61.4) | 0.314 |
Total cholesterol (mg/dL) | 155 [124–188] | 159 [129–192] | 166 [137–206] | 0.032 |
HDL-C (mg/dL) | 36.8 [31–44] | 37.5 [32.5–45] | 36 [29–41] | 0.035 |
LDL-C (mg/dL) | 95.5 [67–126] | 97 [76.5–124] | 104 [76–144] | 0.040 |
Triglycerides (mg/dL) | 141 [106–190] | 138 [107–192] | 136 [112–197] | 0.752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Alarcón, G.; Pérez-Méndez, Ó.; Posadas-Sánchez, R.; González-Pacheco, H.; Luna-Luna, M.; Escobedo, G.; Fragoso, J.M. Associations of the CYP7A1 Gene Polymorphisms Located in the Promoter and Enhancer Regions with the Risk of Acute Coronary Syndrome, Plasma Cholesterol, and the Incidence of Diabetes. Biomedicines 2024, 12, 617. https://doi.org/10.3390/biomedicines12030617
Vargas-Alarcón G, Pérez-Méndez Ó, Posadas-Sánchez R, González-Pacheco H, Luna-Luna M, Escobedo G, Fragoso JM. Associations of the CYP7A1 Gene Polymorphisms Located in the Promoter and Enhancer Regions with the Risk of Acute Coronary Syndrome, Plasma Cholesterol, and the Incidence of Diabetes. Biomedicines. 2024; 12(3):617. https://doi.org/10.3390/biomedicines12030617
Chicago/Turabian StyleVargas-Alarcón, Gilberto, Óscar Pérez-Méndez, Rosalinda Posadas-Sánchez, Héctor González-Pacheco, María Luna-Luna, Galileo Escobedo, and José Manuel Fragoso. 2024. "Associations of the CYP7A1 Gene Polymorphisms Located in the Promoter and Enhancer Regions with the Risk of Acute Coronary Syndrome, Plasma Cholesterol, and the Incidence of Diabetes" Biomedicines 12, no. 3: 617. https://doi.org/10.3390/biomedicines12030617
APA StyleVargas-Alarcón, G., Pérez-Méndez, Ó., Posadas-Sánchez, R., González-Pacheco, H., Luna-Luna, M., Escobedo, G., & Fragoso, J. M. (2024). Associations of the CYP7A1 Gene Polymorphisms Located in the Promoter and Enhancer Regions with the Risk of Acute Coronary Syndrome, Plasma Cholesterol, and the Incidence of Diabetes. Biomedicines, 12(3), 617. https://doi.org/10.3390/biomedicines12030617