MAPT Mutations V337M and N297K Alter Organelle Trafficking in Frontotemporal Dementia Patient-Specific Motor Neurons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Differentiation of Human Neuronal Progenitor Cells (NPCs) to Spinal Motor Neurons (sMNs)
2.2. Microfluidic Chambers (MFCs)
2.3. Immunofluorescence Stainings
2.4. Live Cell Imaging and Organelle Tracking Analysis
2.5. Tracking Analysis
2.6. Static Analysis of Cell Organelles
- run(“Slice Keeper”, “first=1 last=1 increment=1”);
- run(“Grays”);
- run(“Subtract Background…”, “rolling=3”);
- setAutoThreshold(“IsoData dark”);
- //run(“Threshold…”);
- run(“Convert to Mask”);
- run(“Set Measurements…”, “area fit shape feret’s redirect=None decimal=5”);
- run(“Analyze Particles…”, “size=4-Infinity pixel circularity=0.00–1.00 show=Ellipses display summarize”);
- and Marco2 for lysosomes:
- run(“Slice Keeper”, “first=1 last=1 increment=1”);
- run(“Grays”);
- run(“Enhance Contrast…”, “saturated=0.1 normalize”);
- run(“Subtract Background…”, “rolling=5”);
- setAutoThreshold(“Yen dark”);
- run(“Convert to Mask”);
- run(“Set Measurements…”, “area fit shape feret’s redirect=None decimal=5”);
- run(“Analyze Particles…”, “size=3-Infinity pixel circularity=0.40–1.00 show=Ellipses display summarize”);
- resetMinAndMax();
- title=getTitle();
- run(“Slice Keeper”, “first=1 last=1 increment=1”);
- run(“Subtract Background…”, “rolling=10”);
- setAutoThreshold(“Default dark”);
- //run(“Threshold…”);
- run(“Convert to Mask”);
- run(“Create Selection”);
2.7. DNA Isolation and PCR
2.8. Statistics
3. Results
3.1. N297K but Not V337M Mutations in MAPT Led to a Pathological Increase in 4R TAU in FTDP-17 Patient-Specific Motor Neurons
3.2. Mitochondria and Lysosomal Trafficking Are Affected by V337K and N297K Mutations in MAPT of FTDP-17 Patient-Specific Neurons
3.3. The V337M MAPT Mutant Displays Severe Organelle Trafficking Defects in Axons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seltman, R.E.; Matthews, B.R. Frontotemporal Lobar Degeneration. CNS Drugs 2012, 26, 841–870. [Google Scholar] [CrossRef]
- Snowden, J.; Neary, D.; Mann, D. Frontotemporal Lobar Degeneration: Clinical and Pathological Relationships. Acta Neuropathol. 2007, 114, 31–38. [Google Scholar] [CrossRef]
- Leroy, M.; Bertoux, M.; Skrobala, E.; Mode, E.; Adnet-Bonte, C.; Le Ber, I.; Bombois, S.; Cassagnaud, P.; Chen, Y.; Deramecourt, V.; et al. Characteristics and Progression of Patients with Frontotemporal Dementia in a Regional Memory Clinic Network. Alzheimer’s Res. Ther. 2021, 13, 19. [Google Scholar] [CrossRef]
- Pengo, M.; Alberici, A.; Libri, I.; Benussi, A.; Gadola, Y.; Ashton, N.J.; Zetterberg, H.; Blennow, K.; Borroni, B. Sex Influences Clinical Phenotype in Frontotemporal Dementia. Neurol. Sci. 2022, 43, 5281–5287. [Google Scholar] [CrossRef]
- Curtis, A.F.; Masellis, M.; Hsiung, G.Y.R.; Moineddin, R.; Zhang, K.; Au, B.; Millett, G.; MacKenzie, I.; Rogaeva, E.; Tierney, M.C. Sex Differences in the Prevalence of Genetic Mutations in FTD and ALS. Neurology 2017, 89, 1633–1642. [Google Scholar] [CrossRef]
- Benussi, A.; Padovani, A.; Borroni, B. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia. Front. Aging Neurosci. 2015, 7, 171. [Google Scholar] [CrossRef]
- Bahia, V.S.; Takada, L.T.; Deramecourt, V. Neuropatologia Da Degeneração Lobar Frontotemporal: Uma Revisão. Dement. Neuropsychol. 2013, 7, 19–26. [Google Scholar] [CrossRef]
- Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple Isoforms of Human Microtubule-Associated Protein Tau: Sequences and Localization in Neurofibrillary Tangles of Alzheimer’s Disease. Neuron 1989, 3, 519–526. [Google Scholar] [CrossRef]
- Seelaar, H.; Rohrer, J.D.; Pijnenburg, Y.A.L.; Fox, N.C.; Van Swieten, J.C. Clinical, Genetic and Pathological Heterogeneity of Frontotemporal Dementia: A Review. J. Neurol. Neurosurg. Psychiatry 2011, 82, 476–486. [Google Scholar] [CrossRef]
- Ghetti, B.; Oblak, A.L.; Boeve, B.F.; Johnson, K.A.; Dickerson, B.C.; Goedert, M. Invited Review: Frontotemporal Dementia Caused by Microtubule-Associated Protein Tau Gene (MAPT) Mutations: A Chameleon for Neuropathology and Neuroimaging. Neuropathol. Appl. Neurobiol. 2015, 41, 24–46. [Google Scholar] [CrossRef]
- Lee, G.; Neve, R.L.; Kosik, K.S. The Microtubule Binding Domain of Tau Protein. Neuron 1989, 2, 1615–1624. [Google Scholar] [CrossRef]
- Lee, V.M.-Y.; Brunden, K.R.; Hutton, M.; Trojanowski, J. Developing Therapeutic Approaches To. Perspect. Biol. Alzheimer’s Dis. 2011, 1, a006437. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, K.M.; Yang, L.; Dong, Q.; Yu, J.T. Tauopathies: New Perspectives and Challenges. Mol. Neurodegener. 2022, 17, 28. [Google Scholar] [CrossRef]
- Sexton, C.; Snyder, H.; Beher, D.; Boxer, A.L.; Brannelly, P.; Brion, J.P.; Buée, L.; Cacace, A.M.; Chételat, G.; Citron, M.; et al. Current Directions in Tau Research: Highlights from Tau 2020. Alzheimer’s Dement. 2022, 18, 988–1007. [Google Scholar] [CrossRef]
- Hutton, M.; Lendon, C.L.; Rizzu, P.; Baker, M.; Froelich, S.; Houlden, H.; Pickering-Brown, S.; Chakraverty, S.; Isaacs, A.; Grover, A.; et al. Association of Missense and 5′-Splice-Site Mutations in Tau with the Inherited Dementia FTDP-17. Nature 1998, 393, 702–705. [Google Scholar] [CrossRef]
- Horie, K.; Barthélemy, N.R.; Spina, S.; VandeVrede, L.; He, Y.; Paterson, R.W.; Wright, B.A.; Day, G.S.; Davis, A.A.; Karch, C.M.; et al. CSF Tau Microtubule-Binding Region Identifies Pathological Changes in Primary Tauopathies. Nat. Med. 2022, 28, 2547–2554. [Google Scholar] [CrossRef]
- Gustke, N.; Trinczek, B.; Biernat, J.; Mandelkow, E.M.; Mandelkow, E. Domains of τ Protein and Interactions with Microtubules. Biochemistry 1994, 33, 9511–9522. [Google Scholar] [CrossRef]
- Ahmed, Z.; Cooper, J.; Murray, T.K.; Garn, K.; McNaughton, E.; Clarke, H.; Parhizkar, S.; Ward, M.A.; Cavallini, A.; Jackson, S.; et al. A Novel in Vivo Model of Tau Propagation with Rapid and Progressive Neurofibrillary Tangle Pathology: The Pattern of Spread Is Determined by Connectivity, Not Proximity. Acta Neuropathol. 2014, 127, 667–683. [Google Scholar] [CrossRef]
- Goode, B.L.; Feinstein, S.C. Identification of a Novel Microtubule Binding and Assembly Domain in the Developmentally Regulated Inter-Repeat Region of Tau. J. Cell Biol. 1994, 124, 769–781. [Google Scholar] [CrossRef]
- Rossi, G.; Tagliavini, F. Frontotemporal Lobar Degeneration: Old Knowledge and New Insight into the Pathogenetic Mechanisms of Tau Mutations. Front. Aging Neurosci. 2015, 7, 192. [Google Scholar] [CrossRef]
- Trinczek, B.; Biernat, J.; Baumann, K.; Mandelkow, E.; Mandelkow, E.M. Domains of Tau Protein, Differential Phosphorylation, and Dynamic Instability of Microtubules. Mol. Biol. Cell 1995, 6, 1887–1902. [Google Scholar] [CrossRef] [PubMed]
- Bennion Callister, J.; Pickering-Brown, S.M. Pathogenesis/Genetics of Frontotemporal Dementia and How It Relates to ALS. Exp. Neurol. 2014, 262, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Buée, L.; Bussière, T.; Buée-Scherrer, V.; Delacourte, A.; Hof, P.R. Tau Protein Isoforms, Phosphorylation and Role in Neurodegenerative Disorders. Brain Res. Rev. 2000, 33, 95–130. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Tan, M.S.; Yu, J.T.; Tan, L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol. Neurobiol. 2016, 53, 6091–6105. [Google Scholar] [CrossRef] [PubMed]
- Spina, S.; Schonhaut, D.R.; Boeve, B.F.; Seeley, W.W.; Ossenkoppele, R.; O’Neil, J.P.; Lazaris, A.; Rosen, H.J.; Boxer, A.L.; Perry, D.C.; et al. Frontotemporal Dementia with the V337M MAPT Mutation. Neurology 2017, 88, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.D.; Di Clerico, J.; Li, B.; Corbo, C.P.; Alaniz, M.E.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of Tau at Thr212, Thr231, and Ser262 Combined Causes Neurodegeneration. J. Biol. Chem. 2010, 285, 30851–30860. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.D.C.; Mederlyova, A.; Novak, M.; Grundke-Iqbal, I.; Iqbal, K. Promotion of Hyperphosphorylation by Frontotemporal Dementia Tau Mutations. J. Biol. Chem. 2004, 279, 34873–34881. [Google Scholar] [CrossRef]
- Chang, E.; Kim, S.; Yin, H.; Nagaraja, H.N.; Kuret, J. Pathogenic Missense MAPT Mutations Differentially Modulate Tau Aggregation Propensity at Nucleation and Extension Steps. J. Neurochem. 2008, 107, 1113–1123. [Google Scholar] [CrossRef]
- Barghorn, S.; Zheng-Fischhofer, Q.; Ackmann, M.; Biernat, J.; Von Bergen, M.; Mandelkow, E.M.; Mandelkow, E. Structure, Microtubule Interactions, and Paired Helical Filament Aggregation by Tau Mutants of Frontotemporal Dementias. Biochemistry 2000, 39, 11714–11721. [Google Scholar] [CrossRef]
- D’Souza, I.; Poorkaj, P.; Hong, M.; Nochlin, D.; Lee, V.M.Y.; Bird, T.D.; Schellenberg, G.D. Missense and Silent Tau Gene Mutations Cause Frontotemporal Dementia with Parkinsonism-Chromosome 17 Type, by Affecting Multiple Alternative RNA Splicing Regulatory Elements. Proc. Natl. Acad. Sci. USA 1999, 96, 5598–5603. [Google Scholar] [CrossRef]
- D’Souza, I.; Schellenberg, G.D. Tau Exon 10 Expression Involves a Bipartite Intron 10 Regulatory Sequence and Weak 5′ and 3′ Splice Sites. J. Biol. Chem. 2002, 277, 26587–26599. [Google Scholar] [CrossRef]
- Hasegawa, M.; Smith, M.J.; Iijima, M.; Tabira, T.; Goedert, M. FTDP-17 Mutations N279K and S305N in Tau Produce Increased Splicing of Exon 10. FEBS Lett. 1999, 443, 93–96. [Google Scholar] [CrossRef]
- Ehrlich, M.; Hallmann, A.; Reinhardt, P.; Araúzo-Bravo, M.J.; Korr, S.; Röpke, A.; Psathaki, O.E.; Ehling, P.; Meuth, S.G.; Oblak, A.L.; et al. Distinct Neurodegenerative Changes in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia Linked to Mutant TAU Protein. Stem Cell Rep. 2015, 5, 83–96. [Google Scholar] [CrossRef]
- Guo, W.; Stoklund Dittlau, K.; Van Den Bosch, L. Axonal Transport Defects and Neurodegeneration: Molecular Mechanisms and Therapeutic Implications. Semin. Cell Dev. Biol. 2020, 99, 133–150. [Google Scholar] [CrossRef]
- Samimi, N.; Asada, A.; Ando, K. Tau Abnormalities and Autophagic Defects in Neurodegenerative Disorders; A Feed-Forward Cycle. Galen Med. J. 2020, 9, 1681. [Google Scholar] [CrossRef]
- Wren, M.C.; Zhao, J.; Liu, C.C.; Murray, M.E.; Atagi, Y.; Davis, M.D.; Fu, Y.; Okano, H.J.; Ogaki, K.; Strongosky, A.J.; et al. Frontotemporal Dementia-Associated N279K Tau Mutant Disrupts Subcellular Vesicle Trafficking and Induces Cellular Stress in IPSC-Derived Neural Stem Cells. Mol. Neurodegener. 2015, 10, 46. [Google Scholar] [CrossRef]
- Collier, J.J.; Oláhová, M.; McWilliams, T.G.; Taylor, R.W. Mitochondrial Signalling and Homeostasis: From Cell Biology to Neurological Disease. Trends Neurosci. 2023, 46, 137–152. [Google Scholar] [CrossRef]
- Petkovic, M.; O’Brien, C.E.; Jan, Y.N. Interorganelle Communication, Aging, and Neurodegeneration. Genes Dev. 2021, 35, 449–469. [Google Scholar] [CrossRef]
- Lie, P.P.Y.; Nixon, R.A. Lysosome Trafficking and Signaling in Health and Neurodegenerative Diseases. Neurobiol. Dis. 2019, 122, 94–105. [Google Scholar] [CrossRef]
- Nelson, M.P.; Tse, T.E.; O’Quinn, D.B.; Percival, S.M.; Jaimes, E.A.; Warnock, D.G.; Shacka, J.J. Autophagy-Lysosome Pathway Associated Neuropathology and Axonal Degeneration in the Brains of Alpha-Galactosidase A-Deficient Mice. Acta Neuropathol. Commun. 2014, 2, 20. [Google Scholar] [CrossRef]
- Duchen, M.R. Mitochondria and Calcium: From Cell Signalling to Cell Death. J. Physiol. 2000, 529, 57–68. [Google Scholar] [CrossRef]
- Chang, D.T.W.; Honick, A.S.; Reynolds, I.J. Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons. J. Neurosci. 2006, 26, 7035–7045. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Owens, G.C.; Crossin, K.L.; Edelman, D.B. Serotonin Stimulates Mitochondrial Transport in Hippocampal Neurons. Mol. Cell. Neurosci. 2007, 36, 472–483. [Google Scholar] [CrossRef]
- Hollenbeck, P.J.; Saxton, W.M. The Axonal Transport of Mitochondria. J. Cell Sci. 2005, 118, 5411–5419. [Google Scholar] [CrossRef]
- Lovas, J.R.; Wang, X. The Meaning of Mitochondrial Movement to a Neuron’s Life. Biochim. Biophys. Acta -Mol. Cell Res. 2013, 1833, 184–194. [Google Scholar] [CrossRef]
- Wang, X.; Winter, D.; Ashrafi, G.; Schlehe, J.; Wong, Y.L.; Selkoe, D.; Rice, S.; Steen, J.; Lavoie, M.J.; Schwarz, T.L. PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility. Cell 2011, 147, 893–906. [Google Scholar] [CrossRef]
- Luzio, J.P.; Pryor, P.R.; Bright, N.A. Lysosomes: Fusion and Function. Nat. Rev. Mol. Cell Biol. 2007, 8, 622–632. [Google Scholar] [CrossRef]
- Ferguson, S.M. Axonal Transport and Maturation of Lysosomes. Curr. Opin. Neurobiol. 2018, 51, 45–51. [Google Scholar] [CrossRef]
- Audano, M.; Schneider, A.; Mitro, N. Mitochondria, Lysosomes, and Dysfunction: Their Meaning in Neurodegeneration. J. Neurochem. 2018, 147, 291–309. [Google Scholar] [CrossRef]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 11, 204. [Google Scholar] [CrossRef]
- Martín-guerrero, S.M.; Markovinovic, A.; Mórotz, G.M.; Salam, S.; Noble, W.; Miller, C.C.J. Targeting ER-Mitochondria Signaling as a Therapeutic Target for Frontotemporal Dementia and Related Amyotrophic Lateral Sclerosis. Front. Cell Dev. Biol. 2022, 10, 915931. [Google Scholar] [CrossRef]
- Scholz, T.; Mandelkow, E. Transport and Diffusion of Tau Protein in Neurons. Cell. Mol. Life Sci. 2014, 71, 3139–3150. [Google Scholar] [CrossRef]
- Naumann, M.; Pal, A.; Goswami, A.; Lojewski, X.; Japtok, J.; Vehlow, A.; Naujock, M.; Günther, R.; Jin, M.; Stanslowsky, N.; et al. Impaired DNA Damage Response Signaling by FUS-NLS Mutations Leads to Neurodegeneration and FUS Aggregate Formation. Nat. Commun. 2018, 9, 335. [Google Scholar] [CrossRef]
- Pal, A.; Glaß, H.; Naumann, M.; Kreiter, N.; Japtok, J.; Sczech, R.; Hermann, A. High Content Organelle Trafficking Enables Disease State Profiling as Powerful Tool for Disease Modelling. Sci. Data 2018, 5, 180241. [Google Scholar] [CrossRef]
- Orozco, D.; Tahirovic, S.; Rentzsch, K.; Schwenk, B.M.; Haass, C.; Edbauer, D. Loss of Fused in Sarcoma (FUS) Promotes Pathological Tau Splicing. EMBO Rep. 2012, 13, 759–764. [Google Scholar] [CrossRef]
- Sposito, T.; Preza, E.; Mahoney, C.J.; Setó-salvia, N.; Ryan, N.S.; Morris, H.R.; Arber, C.; Devine, M.J.; Houlden, H.; Warner, T.T.; et al. Developmental Regulation of Tau Splicing Is Disrupted in Stem Cell-Derived Neurons from Frontotemporal Dementia Patients with the 10 + 16 Splice-Site Mutation in MAPT. Hum. Mol. Genet. 2015, 24, 5260–5269. [Google Scholar] [CrossRef]
- Iovino, M.; Agathou, S.; Gonza, A.; Velasco-herrera, M.D.C.; Borroni, B.; Alberici, A.; Lynch, T.; Dowd, S.O.; Geti, I.; Gaffney, D.; et al. Early Maturation and Distinct Tau Pathology in Induced Pluripotent Stem Cell-Derived Neurons from Patients with MAPT Mutations. Brain 2015, 138, 3345–3359. [Google Scholar] [CrossRef]
- Korn, L.; Speicher, A.M.; Schroeter, C.B.; Gola, L.; Kaehne, T.; Naumann, M.; Engler, A.; Disse, P.; Fern, J.; Wiendl, H.; et al. Redox Biology MAPT Genotype-Dependent Mitochondrial Aberration and ROS Production Trigger Dysfunction and Death in Cortical Neurons of Patients with Hereditary FTLD. Redox Biol. 2023, 59, 102597. [Google Scholar] [CrossRef]
- Parton, R.G.; Simons, K.D.C. Axonal and Dendritic Endocytic Pathways in Cultured Neurons. J. Cell Biol. 1992, 119, 123–137. [Google Scholar] [CrossRef]
- Milosevic, A.M.; Rodriguez-Lorenzo, L.; Balog, S.; Monnier, C.A.; Petri-Fink, A.; Rothen-Rutishauser, B. Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods. Angew. Chem.-Int. Ed. 2017, 56, 13382–13386. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Echeverri, A.M.; Susnik, E.; Vanhecke, D.; Taladriz-Blanco, P.; Balog, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Pitfalls in Methods to Study Colocalization of Nanoparticles in Mouse Macrophage Lysosomes. J. Nanobiotechnol. 2022, 20, 464. [Google Scholar] [CrossRef]
- Buckman, J.F.; Hernández, H.; Kress, G.J.; Votyakova, T.V.; Pal, S.; Reynolds, I.J. MitoTracker Labeling in Primary Neuronal and Astrocytic Cultures: Influence of Mitochondrial Membrane Potential and Oxidants. J. Neurosci. Methods 2001, 104, 165–176. [Google Scholar] [CrossRef]
- Chao, X.; Qi, Y.; Zhang, Y. Highly Photostable Fluorescent Tracker with PH-Insensitivity for Long-Term Imaging of Lysosomal Dynamics in Live Cells. ACS Sensors 2021, 6, 786–796. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartmann, C.; Anskat, M.; Ehrlich, M.; Sterneckert, J.; Pal, A.; Hermann, A. MAPT Mutations V337M and N297K Alter Organelle Trafficking in Frontotemporal Dementia Patient-Specific Motor Neurons. Biomedicines 2024, 12, 641. https://doi.org/10.3390/biomedicines12030641
Hartmann C, Anskat M, Ehrlich M, Sterneckert J, Pal A, Hermann A. MAPT Mutations V337M and N297K Alter Organelle Trafficking in Frontotemporal Dementia Patient-Specific Motor Neurons. Biomedicines. 2024; 12(3):641. https://doi.org/10.3390/biomedicines12030641
Chicago/Turabian StyleHartmann, Christiane, Marie Anskat, Marc Ehrlich, Jared Sterneckert, Arun Pal, and Andreas Hermann. 2024. "MAPT Mutations V337M and N297K Alter Organelle Trafficking in Frontotemporal Dementia Patient-Specific Motor Neurons" Biomedicines 12, no. 3: 641. https://doi.org/10.3390/biomedicines12030641
APA StyleHartmann, C., Anskat, M., Ehrlich, M., Sterneckert, J., Pal, A., & Hermann, A. (2024). MAPT Mutations V337M and N297K Alter Organelle Trafficking in Frontotemporal Dementia Patient-Specific Motor Neurons. Biomedicines, 12(3), 641. https://doi.org/10.3390/biomedicines12030641