Neurotrauma—From Injury to Repair: Clinical Perspectives, Cellular Mechanisms and Promoting Regeneration of the Injured Brain and Spinal Cord
Abstract
:1. Introduction
2. Traumatic Brain Injury
2.1. Importance
2.2. Classification
2.3. Pathophysiology
2.4. Clinical Management
3. Spinal Cord Injury
3.1. Importance
3.2. Classification
3.3. Pathophysiology
3.4. Clinical Management
4. Molecular and Cellular Responses to Neurotrauma
- Acute phase (I) (0–3 days post-injury);
- Subacute phase (II) (3–14 days post-injury);
- Chronic/consolidation phase (III) (14 days onwards post-injury).
4.1. The Acute Phase
4.1.1. Haemorrhage
4.1.2. Inflammatory Cascade
4.1.3. Compromise of the Blood–CNS Barrier
4.1.4. Excitotoxicity
4.1.5. Oedema
4.2. Sub-Acute Phase
4.2.1. Astrocyte Activation
4.2.2. Initiation of the Glial Scar
4.2.3. Demyelination
4.2.4. Mitochondrial Dysfunction
4.2.5. Oxidative Stress
4.3. Consolidation Phase
4.3.1. Apoptosis
4.3.2. Consolidation of Glial Scar
4.3.3. Aborted Axonal Regeneration
5. Models and Organisms Used for the Study of Neurotrauma and Regeneration
5.1. In Vitro Models
Experimental Models
- Static pressure: a high-pressure chamber to replicate the conditions of raised ICP [124].
- Whilst these methods offer some advantages, observations of cell isolates or co-culture constructs in vitro may be markedly different from those observed in vivo. As well as the general differences in behaviour of cells in vitro as compared with in vivo, this is also attributable to the roles of a broad range of cell types and contributions from a diverse array of system-level adverse conditions (e.g., raised local tissue pressure, regional ischaemia, cortical spreading depolarisation and migrating inflammatory/progenitor cells). As such, whilst in vitro investigation has a significant role in the understanding of neuroregeneration, there is an inherent risk of artefactual observations, the possibility of which must always be considered.
5.2. In Vivo Models
5.2.1. Species
5.2.2. Experimental SCI Models
- Whilst a variety of models is valuable for the study of differing responses to SCI subtypes, this can impede the relevance of findings made through the use of any one discrete model. For example, whilst cord hemisection (Figure 8) closely mirrors the Brown-Séquard syndrome described in humans (Figure 3), this phenomenon after traumatic injury is rare and usually only observed occasionally after stab injury.
5.2.3. Experimental TBI Models
6. Approaches to Promoting Neuroprotection and Neuroregeneration
- Insufficient and unsustained provision of neurotrophic factors after injury;
- Neuronal/glial apoptosis;
- Formation and consolidation of a glial scar;
- Release of local inhibitory factors from migrating and resident immune and glial cells;
- Collapse of growth cones of regenerating axons;
- Rarity of establishing functional reconnections with targets distal to the injury.
7. Discussion
Biological | Neurotrophic factors Pathway inhibitors Cell death inhibitors Receptor inhibitors Channel inhibitors Inflammation Mitochondria Oxidative stress Glial scar Gene therapies Autophagy Endocrine Other | NGF [172], BDNF [173], PEDF [135] and IGF-1 delivery via nanofibrous dural substitutes [197] Caspases [174], Rho-A [175], mTOR [176], chk2 [177], Rab [198] and transglutaminases [199] Caspases [174], Bcl-2 [200], imipramine [201], cyclosporin A [202] and statins [203] NgR [107], glutamate [163] and endothelin [204] AQP-4 [83], Ca2+ channel inhibitors [164] and mPTP [165] Immunomodulation [166], gangliosides [49,167], HDAC inhibitors [205] and bexarotene [206] Mitochondria-endoplasmic reticulum contact sites [207] Antioxidants [168], ROS scavenger materials [170,171,208,209] and Uqcr11 overexpression [210] Chondroitinase ABC [169,170], decorin [106,171] and 4-methylumbelliferone [211] Neuronal differentiation [43,212] HSPs [213] Progesterone [214], erianin [215] Hydrogen sulphide [216], tetramethylpyrazine [217], zinc [218], probucol [219], phenserine tartrate [220] and hyperbaric oxygen [221] |
Cell therapies | Stem cells Neural cells Immune cells Advanced cell therapies | ESCs [222], iPSCs [43,223], NSCs/NPCs [224,225], MSCs [180,181], OPCs [226], DPSCs [216] and ADSCs [227] Olfactory ensheathing cells [228] and Schwann cells [229] Microglia [230] Directly reprogrammed NPCs (drNPCs) [231,232,233] |
Gene therapies | Nucleic acid-based therapies Delivery methods Other | siRNA to AQP-4 [234], nNOS [235], iNOS [236], IL-6 [237], claudin-5 [238], RhoA [239,240], PLK-4 [241], PTEN [242,243], Sema3A [244], CTGF [245], combinatorial [246] and in combination with MSCs [242] Nanoparticle-coated siRNA [247,248,249], polymer nanocarriers [239], exosome delivery [243,245] extracellular vesicles [250], intrathecal delivery [240], photomechanical wave [251] and intranasal delivery [242] Chemogenetic stimulation [252] |
Biomaterials | Porous polymers Natural polymers Nanoscaffolds Nerve guidance Other | Hydrogels [180,181,253,254], PLGA [255] and PLA [256] Collagen [181,257], CS [258], silk [259,260], decellularised ECM [227], modified gelatine [261] R-GSIK [262], electrospun nanofiber nets [263] and gene scaffolds [264] Gold nanoparticle nerve guidance conduits [265] and collagen conduits [266] Graphene oxide [267], IGF-1 delivery via nanofibrous dural substitutes [197] and ROS scavenger materials [170,171] |
Physical | Stimulation Neuromodulation Supportive | Electrical [268,269], magnetic [270,271], ultrasound [272,273], light (photobiomodulation) [274,275] and combinatorial [276] Spinal stimulators [277] in combination with task training [278] Exoskeletons [279,280] and neuroprosthesis [281] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef]
- Jazayeri, S.B.; Beygi, S.; Shokraneh, F.; Hagen, E.M.; Rahimi-Movaghar, V. Incidence of Traumatic Spinal Cord Injury Worldwide: A Systematic Review. Eur. Spine J. 2015, 24, 905–918. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; David Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.; et al. Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research. Lancet Neurol. 2017, 16, 987–1048. [Google Scholar] [CrossRef]
- Allen, B.C.; Cummer, E.; Sarma, A.K. Traumatic Brain Injury in Select Low- and Middle-Income Countries: A Narrative Review of the Literature. J. Neurotrauma 2023, 40, 602–619. [Google Scholar] [CrossRef]
- Li, L.M.; Dilley, M.D.; Carson, A.; Twelftree, J.; Hutchinson, P.J.; Belli, A.; Betteridge, S.; Cooper, P.N.; Griffin, C.M.; Jenkins, P.O.; et al. Management of Traumatic Brain Injury (TBI): A Clinical Neuroscience-Led Pathway for the NHS. Clin. Med. 2021, 21, e198–e205. [Google Scholar] [CrossRef]
- Madsen, T.; Erlangsen, A.; Orlovska, S.; Mofaddy, R.; Nordentoft, M.; Benros, M.E. Association Between Traumatic Brain Injury and Risk of Suicide. JAMA 2018, 320, 580. [Google Scholar] [CrossRef] [PubMed]
- Sercy, E.; Orlando, A.; Carrick, M.; Lieser, M.; Madayag, R.; Vasquez, D.; Tanner, A.; Rubin, B.; Bar-Or, D. Long-Term Mortality and Causes of Death among Patients with Mild Traumatic Brain Injury: A 5-Year Multicenter Study. Brain Inj. 2020, 34, 556–566. [Google Scholar] [CrossRef]
- Temkin, N.R.; Corrigan, J.D.; Dikmen, S.S.; MacHamer, J. Social Functioning after Traumatic Brain Injury. J. Head Trauma Rehabil. 2009, 24, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.J.; Cassidy, J.D.; Cancelliere, C.; Côté, P.; Hincapié, C.A.; Kristman, V.L.; Holm, L.W.; Borg, J.; Nygren-De Boussard, C.; Hartvigsen, J. Systematic Review of the Prognosis after Mild Traumatic Brain Injury in Adults: Cognitive, Psychiatric, and Mortality Outcomes: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Arch. Phys. Med. Rehabil. 2014, 95, S152–S173. [Google Scholar] [CrossRef] [PubMed]
- Bullock, M.R.; Chesnut, R.; Ghajar, J.; Gordon, D.; Hartl, R.; Newell, D.W.; Servadei, F.; Walters, B.C.; Wilberger, J. Surgical Management of Traumatic Brain Injury. Neurosurgery 2006, 58, 16–24. [Google Scholar]
- Teasdale, G.; Jennett, B. Assessment of Coma and Impaired Consciousness. A Practical Scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Mena, J.H.; Sanchez, A.I.; Rubiano, A.M.; Peitzman, A.B.; Sperry, J.L.; Gutierrez, M.I.; Puyana, J.C. Effect of the Modified Glasgow Coma Scale Score Criteria for Mild Traumatic Brain Injury on Mortality Prediction: Comparing Classic and Modified Glasgow Coma Scale Score Model Scores of 13. J. Trauma 2011, 71, 1185–1193. [Google Scholar] [CrossRef]
- Qualifying Statements. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J. Rehabil. Res. Dev. 2009, 46, CP1–CP68. [Google Scholar] [CrossRef]
- Marshall, L.F.; Marshall, S.B.; Klauber, M.R.; Van Berkum Clark, M.; Eisenberg, H.; Jane, J.A.; Luerssen, T.G.; Marmarou, A.; Foulkes, M.A. The Diagnosis of Head Injury Requires a Classification Based on Computed Axial Tomography. J. Neurotrauma 1992, 9 (Suppl. S1), S287–S292. [Google Scholar] [PubMed]
- Maas, A.I.R.; Hukkelhoven, C.W.P.M.; Marshall, L.F.; Steyerberg, E.W. Prediction of Outcome in Traumatic Brain Injury with Computed Tomographic Characteristics: A Comparison between the Computed Tomographic Classification and Combinations of Computed Tomographic Predictors. Neurosurgery 2005, 57, 1173–1181. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, M.; Kumar, M.; Ahluwalia, P.; Rahimi, S.; Vender, J.R.; Raju, R.P.; Hess, D.C.; Baban, B.; Vale, F.L.; Dhandapani, K.M.; et al. Rescuing Mitochondria in Traumatic Brain Injury and Intracerebral Hemorrhages—A Potential Therapeutic Approach. Neurochem. Int. 2021, 150, 105192. [Google Scholar] [CrossRef]
- Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A. Oxidative Stress: Major Threat in Traumatic Brain Injury. CNS Neurol. Disord. Drug Targets 2018, 17, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Vespa, P.; Bergsneider, M.; Hattori, N.; Wu, H.M.; Huang, S.C.; Martin, N.A.; Glenn, T.C.; McArthur, D.L.; Hovda, D.A. Metabolic Crisis without Brain Ischemia Is Common after Traumatic Brain Injury: A Combined Microdialysis and Positron Emission Tomography Study. J. Cereb. Blood Flow Metab. 2005, 25, 763–774. [Google Scholar] [CrossRef]
- Simon, D.W.; McGeachy, M.J.; Baylr, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. The Far-Reaching Scope of Neuroinflammation after Traumatic Brain Injury. Nat. Rev. Neurol. 2017, 13, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, R.; Suki, D.; Gopinath, S.P.; Goodman, J.C.; Robertson, C. Role of Extracellular Glutamate Measured by Cerebral Microdialysis in Severe Traumatic Brain Injury: Clinical Article. J. Neurosurg. 2010, 113, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Stevens, A.R.; Ng, I.H.X.; Helmy, A.; Hutchinson, P.J.A.; Menon, D.K.; Ercole, A. Glucose Dynamics of Cortical Spreading Depolarization in Acute Brain Injury: A Systematic Review. J. Neurotrauma 2019, 36, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Hinzman, J.M.; Wilson, J.A.; Mazzeo, A.T.; Bullock, M.R.; Hartings, J.A. Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients. J. Neurotrauma 2016, 33, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Mokri, B. The Monro-Kellie Hypothesis: Applications in CSF Volume Depletion. Neurology 2001, 56, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP Mediates Rapid Microglial Response to Local Brain Injury in Vivo. Nat. Neurosci. 2005, 8, 752–758. [Google Scholar] [CrossRef]
- Carney, N.; Totten, A.M.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Rubiano, A.M.; Tasker, R.C.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Stevens, A.R.; Soon, W.C.; Chowdhury, Y.A.; Toman, E.; Yim, S.; Veenith, T.; Chelvarajah, R.; Belli, A.; Davies, D. External Lumbar Drainage for Refractory Intracranial Hypertension in Traumatic Brain Injury: A Systematic Review. Cureus 2022, 14, 30033. [Google Scholar] [CrossRef]
- Chau, C.Y.C.; Craven, C.L.; Rubiano, A.M.; Adams, H.; Tülü, S.; Czosnyka, M.; Servadei, F.; Ercole, A.; Hutchinson, P.J.; Kolias, A.G. The Evolution of the Role of External Ventricular Drainage in Traumatic Brain Injury. J. Clin. Med. 2019, 8, 1422. [Google Scholar] [CrossRef]
- Chau, C.Y.C.; Mediratta, S.; McKie, M.A.; Gregson, B.; Tulu, S.; Ercole, A.; Solla, D.J.F.; Paiva, W.S.; Hutchinson, P.J.; Kolias, A.G. Optimal Timing of External Ventricular Drainage after Severe Traumatic Brain Injury: A Systematic Review. J. Clin. Med. 2020, 9, 1996. [Google Scholar] [CrossRef] [PubMed]
- Van Veen, E.; Nieboer, D.; Kompanje, E.J.O.; Citerio, G.; Stocchetti, N.; Gommers, D.; Menon, D.K.; Ercole, A.; Maas, A.I.R.; Lingsma, H.F.; et al. Comparative Effectiveness of Mannitol Versus Hypertonic Saline in Patients with Traumatic Brain Injury: A CENTER-TBI Study. J. Neurotrauma 2023, 40, 1352–1365. [Google Scholar] [CrossRef]
- Svedung Wettervik, T.; Howells, T.; Hillered, L.; Nilsson, P.; Engquist, H.; Lewén, A.; Enblad, P.; Rostami, E. Mild Hyperventilation in Traumatic Brain Injury-Relation to Cerebral Energy Metabolism, Pressure Autoregulation, and Clinical Outcome. World Neurosurg. 2020, 133, e567–e575. [Google Scholar] [CrossRef] [PubMed]
- Bernard, F.; Barsan, W.; Diaz-Arrastia, R.; Merck, L.H.; Yeatts, S.; Shutter, L.A. Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): A Multicentre, Randomised, Blinded-Endpoint, Comparative Effectiveness Study of Brain Tissue Oxygen and Intracranial Pressure Monitoring versus Intracranial Pressure Alone. BMJ Open 2022, 12, e060188. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Shutter, L.A.; Moore, C.; Temkin, N.R.; Puccio, A.M.; Madden, C.J.; Andaluz, N.; Chesnut, R.M.; Bullock, M.R.; Grant, G.A.; et al. Brain Tissue Oxygen Monitoring and Management in Severe Traumatic Brain Injury (BOOST-II): A Phase II Randomized Trial. Crit. Care Med. 2017, 45, 1907. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, K.; Young, A.; Hutchinson, P. Advanced Monitoring in Traumatic Brain Injury: Microdialysis. Curr. Opin. Crit. Care 2017, 23, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, R.; Aguilera, S.; Buki, A.; Bulger, E.; Citerio, G.; Cooper, D.; Arrastia, R.; Diringer, M.; Figaji, A.; Gao, G.; et al. A Management Algorithm for Adult Patients with Both Brain Oxygen and Intracranial Pressure Monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2020, 46, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Medow, J.E.; Iskandar, B.J.; Wang, F.; Shokoueinejad, M.; Koueik, J.; Webster, J.G. Invasive and Noninvasive Means of Measuring Intracranial Pressure: A Review. Physiol. Meas. 2017, 38, 143–182. [Google Scholar] [CrossRef]
- Stevens, A.R.; Su, Z.; Toman, E.; Belli, A.; Davies, D. Optical Pupillometry in Traumatic Brain Injury: Neurological Pupil Index and Its Relationship with Intracranial Pressure through Significant Event Analysis. Brain Inj. 2019, 33, 1032–1038. [Google Scholar] [CrossRef]
- Davies, D.J.; Su, Z.; Clancy, M.T.; Lucas, S.J.E.; Dehghani, H.; Logan, A.; Belli, A. Near-Infrared Spectroscopy in the Monitoring of Adult Traumatic Brain Injury: A Review. J. Neurotrauma 2015, 32, 933–941. [Google Scholar] [CrossRef]
- Hachem, L.; Ahuja, C.; Fehlings, M. Assessment and Management of Acute Spinal Cord Injury: From Point of Injury to Rehabilitation. J. Spinal Cord Med. 2017, 40, 665–675. [Google Scholar] [CrossRef]
- Van Den Berg, M.E.L.; Castellote, J.M.; Mahillo-Fernandez, I.; De Pedro-Cuesta, J. Incidence of Spinal Cord Injury Worldwide: A Systematic Review. Neuroepidemiology 2010, 34, 184–192. [Google Scholar] [CrossRef]
- Spinal Injuries Association. Spinal Cord Injury Paralyses Someone Every Four Hours, New Estimates Reveal. Available online: https://www.spinal.co.uk/news/spinal-cord-injury-paralyses-someone-everyfour-%0Ahours-new-estimates-reveal/ (accessed on 7 December 2023).
- McDaid, D.; Park, A.-L.; Gall, A.; Purcell, M.; Bacon, M. Understanding and Modelling the Economic Impact of Spinal Cord Injuries in the United Kingdom. Spinal Cord 2019, 57, 778–788. [Google Scholar] [CrossRef]
- Clifford, T.; Finkel, Z.; Rodriguez, B.; Joseph, A.; Cai, L.; Sypecka, J.; Janowska, J.; Clifford, T.; Finkel, Z.; Rodriguez, B.; et al. Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023, 12, 853. [Google Scholar] [CrossRef]
- Rupp, R.; Biering-Sørensen, F.; Burns, S.P.; Graves, D.E.; Guest, J.; Jones, L.; Read, M.S.; Rodriguez, G.M.; Schuld, C.; Tansey, K.E.; et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised. Top. Spinal Cord Inj. Rehabil. 2021, 27, 1–22. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef]
- Van Middendorp, J.J.; Hosman, A.J.; Donders, A.R.T.; Pouw, M.H.; Ditunno, J.F.; Curt, A.; Geurts, A.C.; Van De Meent, H. A Clinical Prediction Rule for Ambulation Outcomes after Traumatic Spinal Cord Injury: A Longitudinal Cohort Study. Lancet 2011, 377, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- McKinley, W.; Santos, K.; Meade, M.; Brooke, K. Incidence and Outcomes of Spinal Cord Injury Clinical Syndromes. J. Spinal Cord Med. 2007, 30, 215. [Google Scholar] [CrossRef]
- Diaz, E.; Morales, H. Spinal Cord Anatomy and Clinical Syndromes. Semin. Ultrasound. CT MR 2016, 37, 360–371. [Google Scholar] [CrossRef]
- Wang, T.Y.; Park, C.; Zhang, H.; Rahimpour, S.; Murphy, K.R.; Goodwin, C.R.; Karikari, I.O.; Than, K.D.; Shaffrey, C.I.; Foster, N.; et al. Management of Acute Traumatic Spinal Cord Injury: A Review of the Literature. Front. Surg. 2021, 8, 698736. [Google Scholar] [CrossRef]
- Park, E.; Velumian, A.A.; Fehlings, M.G. The Role of Excitotoxicity in Secondary Mechanisms of Spinal Cord Injury: A Review with an Emphasis on the Implications for White Matter Degeneration. J. Neurotrauma 2004, 21, 754–774. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Yuan, S.; Shi, L.; Li, J.; Ning, G.; Kong, X.; Feng, S. Programmed Cell Death in Spinal Cord Injury Pathogenesis and Therapy. Cell Prolif. 2021, 54, e12992. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Zhu, H.; Li, J.; Wang, X.; Misra, H.; Li, Y. Oxidative Stress in Spinal Cord Injury and Antioxidant-Based Intervention. Spinal Cord 2012, 50, 264–274. [Google Scholar] [CrossRef]
- Cheng, L.; Cai, B.; Lu, D.; Zeng, H. The Role of Mitochondrial Energy Metabolism in Neuroprotection and Axonal Regeneration after Spinal Cord Injury. Mitochondrion 2023, 69, 57–63. [Google Scholar] [CrossRef]
- Jin, L.Y.; Li, J.; Wang, K.F.; Xia, W.W.; Zhu, Z.Q.; Wang, C.R.; Li, X.F.; Liu, H.Y. Blood–Spinal Cord Barrier in Spinal Cord Injury: A Review. J. Neurotrauma 2021, 38, 1203–1224. [Google Scholar] [CrossRef]
- Chen, J.; Shen, Y.; Shao, X.; Wu, W. An Emerging Role of Inflammasomes in Spinal Cord Injury and Spinal Cord Tumor. Front. Immunol. 2023, 14, 1119591. [Google Scholar] [CrossRef]
- Beattie, M.S.; Farooqui, A.A.; Bresnahan, J.C. Review of Current Evidence for Apoptosis after Spinal Cord Injury. J. Neurotrauma 2000, 17, 915–925. [Google Scholar] [CrossRef]
- Zheng, B.; Tuszynski, M.H. Regulation of Axonal Regeneration after Mammalian Spinal Cord Injury. Nat. Rev. Mol. Cell Biol. 2023, 24, 396–413. [Google Scholar] [CrossRef] [PubMed]
- Fitch, M.T.; Silver, J. CNS Injury, Glial Scars, and Inflammation: Inhibitory Extracellular Matrices and Regeneration Failure. Exp. Neurol. 2008, 209, 294–301. [Google Scholar] [CrossRef] [PubMed]
- American College of Surgeons. Advanced Trauma Life Support|ACS. Available online: https://www.facs.org/quality-programs/trauma/education/advanced-trauma-life-support/?page=1 (accessed on 8 December 2023).
- National Institute for Health and Care Excellence (NICE) Guideline Development Group Overview. Spinal Injury: Assessment and Initial Management; NICE: London, UK, 2016. [Google Scholar]
- Theodore, N.; Hadley, M.N.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Hurlbert, R.J.; Rozzelle, C.J.; Ryken, T.C.; Walters, B.C. Prehospital Cervical Spinal Immobilization after Trauma. Neurosurgery 2013, 72 (Suppl. S2), 22–34. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.L.; Tay, J.; Hsu, S.H.; Chen, W.T.; Fang, Y.-D.; Liew, C.Q.; Chou, E.H.; Wolfshohl, J.; D’Etienne, J.; Wang, C.H.; et al. Early versus Late Surgical Decompression for Traumatic Spinal Cord Injury on Neurological Recovery: A Systematic Review and Meta-Analysis. J. Neurotrauma 2021, 38, 2927–2936. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Vaccaro, A.; Wilson, J.R.; Singh, A.; Cadotte, D.W.; Harrop, J.S.; Aarabi, B.; Shaffrey, C.; Dvorak, M.; Fisher, C.; et al. Early versus Delayed Decompression for Traumatic Cervical Spinal Cord Injury: Results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS ONE 2012, 7, e32037. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Peul, W.; Thomé, C. Surgical Decompression in Acute Spinal Cord Injury: Earlier Is Better. Lancet. Neurol. 2021, 20, 84–86. [Google Scholar] [CrossRef]
- Bagnall, A.M.; Jones, L.; Duffy, S.; Riemsma, R.P. Spinal Fixation Surgery for Acute Traumatic Spinal Cord Injury. Cochrane Database Syst. Rev. 2008, CD004725. [Google Scholar] [CrossRef]
- Squair, J.W.; Bélanger, L.M.; Tsang, A.; Ritchie, L.; Mac-Thiong, J.M.; Parent, S.; Christie, S.; Bailey, C.; Dhall, S.; Street, J.; et al. Spinal Cord Perfusion Pressure Predicts Neurologic Recovery in Acute Spinal Cord Injury. Neurology 2017, 89, 1660–1667. [Google Scholar] [CrossRef]
- Saadeh, Y.S.; Smith, B.W.; Joseph, J.R.; Jaffer, S.Y.; Buckingham, M.J.; Oppenlander, M.E.; Szerlip, N.J.; Park, P. The Impact of Blood Pressure Management after Spinal Cord Injury: A Systematic Review of the Literature. Neurosurg. Focus 2017, 43, E20. [Google Scholar] [CrossRef]
- Anjum, A.; Yazid, M.D.; Daud, M.F.; Idris, J.; Hwei Ng, A.M.; Naicker, A.S.; Rashidah Ismail, O.H.; Kumar, R.K.A.; Lokanathan, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xu, W.; Ren, Y.; Wang, Z.; He, X.; Huang, R.; Ma, B.; Zhao, J.; Zhu, R.; Cheng, L. Spinal Cord Injury: Molecular Mechanisms and Therapeutic Interventions. Signal Transduct. Target. Ther. 2023, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Assoian, R.K.; Sporn, M.B. Type Beta Transforming Growth Factor in Human Platelets: Release during Platelet Degranulation and Action on Vascular Smooth Muscle Cells. J. Cell Biol. 1986, 102, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, T.; Morganti-Kossmann, M.C. The Role of Markers of Inflammation in Traumatic Brain Injury. Front. Neurol. 2013, 4, 41121. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.X.; Beck, K.D.; Anderson, A.J. Quantitative Assessment of Immune Cells in the Injured Spinal Cord Tissue by Flow Cytometry: A Novel Use for a Cell Purification Method. J. Vis. Exp. 2011, 50, e2698. [Google Scholar] [CrossRef]
- Tang, Y.; Le, W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 1181–1194. [Google Scholar] [CrossRef] [PubMed]
- Jurga, A.M.; Paleczna, M.; Kuter, K.Z. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front. Cell. Neurosci. 2020, 14, 544457. [Google Scholar] [CrossRef]
- Zhou, T.; Huang, Z.; Sun, X.; Zhu, X.; Zhou, L.; Li, M.; Cheng, B.; Liu, X.; He, C. Microglia Polarization with M1/M2 Phenotype Changes in Rd1 Mouse Model of Retinal Degeneration. Front. Neuroanat. 2017, 11, 77. [Google Scholar] [CrossRef]
- Haidar, M.A.; Ibeh, S.; Shakkour, Z.; Reslan, M.A.; Nwaiwu, J.; Moqidem, Y.A.; Sader, G.; Nickles, R.G.; Babale, I.; Jaffa, A.A.; et al. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr. Neuropharmacol. 2022, 20, 2050–2065. [Google Scholar] [CrossRef]
- Wang, X.; Cao, K.; Sun, X.; Chen, Y.; Duan, Z.; Sun, L.; Guo, L.; Bai, P.; Sun, D.; Fan, J.; et al. Macrophages in Spinal Cord Injury: Phenotypic and Functional Change from Exposure to Myelin Debris. Glia 2015, 63, 635–651. [Google Scholar] [CrossRef]
- Sun, G.; Yang, S.; Cao, G.; Wang, Q.; Hao, J.; Wen, Q.; Li, Z.; So, K.F.; Liu, Z.; Zhou, S.; et al. Γδ T Cells Provide the Early Source of IFN-γ to Aggravate Lesions in Spinal Cord Injury. J. Exp. Med. 2018, 215, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Willenbring, R.C.; Johnson, A.J. Finding a Balance between Protection and Pathology: The Dual Role of Perforin in Human Disease. Int. J. Mol. Sci. 2017, 18, 1608. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.G.; Shi, L.L.; Chen, Y.J.; Xie, X.M.; Zhang, N.; Zhu, A.Y.; Jiang, Z.S.; Feng, Y.F.; Zhang, C.; Xi, J.; et al. Differential Effects of Myelin Basic Protein-Activated Th1 and Th2 Cells on the Local Immune Microenvironment of Injured Spinal Cord. Exp. Neurol. 2016, 277, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Van Landeghem, F.K.H.; Weiss, T.; Oehmichen, M.; Von Deimling, A. Decreased Expression of Glutamate Transporters in Astrocytes after Human Traumatic Brain Injury. J. Neurotrauma 2006, 23, 1518–1528. [Google Scholar] [CrossRef]
- Halsey, A.M.; Conner, A.C.; Bill, R.M.; Logan, A.; Ahmed, Z. Aquaporins and Their Regulation after Spinal Cord Injury. Cells 2018, 7, 174. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, P.; Salman, M.M.; Halsey, A.M.; Clarke-Bland, C.; MacDonald, J.A.; Ishida, H.; Vogel, H.J.; Almutiri, S.; Logan, A.; Kreida, S.; et al. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell 2020, 181, 784.e19–799.e19. [Google Scholar] [CrossRef]
- Papadopoulos, M.C.; Verkman, A.S. Aquaporin-4 and Brain Edema. Pediatr. Nephrol. 2007, 22, 778–784. [Google Scholar] [CrossRef]
- Passchier, E.M.J.; Kerst, S.; Brouwers, E.; Hamilton, E.M.C.; Bisseling, Q.; Bugiani, M.; Waisfisz, Q.; Kitchen, P.; Unger, L.; Breur, M.; et al. Aquaporin-4 and GPRC5B: Old and New Players in Controlling Brain Oedema. Brain 2023, 146, 3444–3454. [Google Scholar] [CrossRef]
- Van Niekerk, E.A.; Tuszynski, M.H.; Lu, P.; Dulin, J.N. Molecular and Cellular Mechanisms of Axonal Regeneration after Spinal Cord Injury. Mol. Cell. Proteom. 2016, 15, 394. [Google Scholar] [CrossRef]
- Gordon, T. The Role of Neurotrophic Factors in Nerve Regeneration. Neurosurg. Focus 2009, 26, E3. [Google Scholar] [CrossRef]
- Silver, J.; Miller, J.H. Regeneration beyond the Glial Scar. Nat. Rev. Neurosci. 2004, 5, 146–156. [Google Scholar] [CrossRef]
- Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic Analysis of Reactive Astrogliosis. J. Neurosci. 2012, 32, 6391–6410. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017, 46, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, T.; Hagman, S.; Ristola, M.; Sukki, L.; Veijula, K.; Kreutzer, J.; Kallio, P.; Narkilahti, S. Co-Stimulation with IL-1β and TNF-α Induces an Inflammatory Reactive Astrocyte Phenotype with Neurosupportive Characteristics in a Human Pluripotent Stem Cell Model System. Sci. Rep. 2019, 9, 16944. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.E.; Imura, T.; Song, B.; Qi, J.; Ao, Y.; Nguyen, T.K.; Korsak, R.A.; Takeda, K.; Akira, S.; Sofroniew, M.V. STAT3 Is a Critical Regulator of Astrogliosis and Scar Formation after Spinal Cord Injury. J. Neurosci. 2008, 28, 7231–7243. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.; Burda, J.E.; Ren, Y.; Ao, Y.; O’Shea, T.M.; Kawaguchi, R.; Coppola, G.; Khakh, B.S.; Deming, T.J.; Sofroniew, M.V. Astrocyte Scar Formation Aids Central Nervous System Axon Regeneration. Nature 2016, 532, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Huo, J. A1/A2 Astrocytes in Central Nervous System Injuries and Diseases: Angels or Devils? Neurochem. Int. 2021, 148, 105080. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central Nervous System Pericytes in Health and Disease. Nat. Neurosci. 2011, 14, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Huntemer-Silveira, A.; Patil, N.; Brickner, M.A.; Parr, A.M. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front. Cell. Neurosci. 2021, 14, 619707. [Google Scholar] [CrossRef]
- Cox, A.L.; Coles, A.J.; Nortje, J.; Bradley, P.G.; Chatfield, D.A.; Thompson, S.J.; Menon, D.K. An Investigation of Auto-Reactivity after Head Injury. J. Neuroimmunol. 2006, 174, 180–186. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Ma, B.; Zhou, M.; Zhao, X.; Fu, X.; Kan, S.; Hu, W.; Zhu, R. Mitochondrial Regulatory Mechanisms in Spinal Cord Injury: A Narrative Review. Medicine 2022, 101, E31930. [Google Scholar] [CrossRef]
- Cheng, G.; Kong, R.H.; Zhang, L.M.; Zhang, J.N. Mitochondria in Traumatic Brain Injury and Mitochondrial-Targeted Multipotential Therapeutic Strategies. Br. J. Pharmacol. 2012, 167, 699–719. [Google Scholar] [CrossRef]
- Slater, P.G.; Domínguez-Romero, M.E.; Villarreal, M.; Eisner, V.; Larraín, J. Mitochondrial Function in Spinal Cord Injury and Regeneration. Cell. Mol. Life Sci. 2022, 79, 239. [Google Scholar] [CrossRef]
- Aghili-Mehrizi, S.; Williams, E.; Yan, S.; Willman, M.; Willman, J.; Lucke-Wold, B. Secondary Mechanisms of Neurotrauma: A Closer Look at the Evidence. Diseases 2022, 10, 30. [Google Scholar] [CrossRef]
- Raghupathi, R.; Graham, D.I.; McIntosh, T.K. Apoptosis after Traumatic Brain Injury. J. Neurotrauma 2000, 17, 927–938. [Google Scholar] [CrossRef]
- Bredesen, D.E. Apoptosis: Overview and Signal Transduction Pathways. J. Neurotrauma 2000, 17, 801–810. [Google Scholar] [CrossRef]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Bansal, D.; Tizzard, K.; Surey, S.; Esmaeili, M.; Gonzalez, A.M.; Berry, M.; Logan, A. Decorin Blocks Scarring and Cystic Cavitation in Acute and Induces Scar Dissolution in Chronic Spinal Cord Wounds. Neurobiol. Dis. 2014, 64, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Douglas, M.R.; John, G.; Berry, M.; Logan, A. AMIGO3 Is an NgR1/P75 Co-Receptor Signalling Axon Growth Inhibition in the Acute Phase of Adult Central Nervous System Injury. PLoS ONE 2013, 8, e61878. [Google Scholar] [CrossRef] [PubMed]
- Almutiri, S.; Berry, M.; Logan, A.; Ahmed, Z. Non-Viral-Mediated Suppression of AMIGO3 Promotes Disinhibited NT3-Mediated Regeneration of Spinal Cord Dorsal Column Axons. Sci. Rep. 2018, 8, 10707. [Google Scholar] [CrossRef]
- Coulthard, M.G.; Morgan, M.; Woodruff, T.M.; Arumugam, T.V.; Taylor, S.M.; Carpenter, T.C.; Lackmann, M.; Boyd, A.W. Eph/Ephrin Signaling in Injury and Inflammation. Am. J. Pathol. 2012, 181, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- De Winter, F.; Oudega, M.; Lankhorst, A.J.; Hamers, F.P.; Blits, B.; Ruitenberg, M.J.; Pasterkamp, R.J.; Gispen, W.H.; Verhaagen, J. Injury-Induced Class 3 Semaphorin Expression in the Rat Spinal Cord. Exp. Neurol. 2002, 175, 61–75. [Google Scholar] [CrossRef]
- Frendo, M.E.; da Silva, A.; Phan, K.D.; Riche, S.; Butler, S.J. The Cofilin/Limk1 Pathway Controls the Growth Rate of Both Developing and Regenerating Motor Axons. J. Neurosci. 2019, 39, 9316. [Google Scholar] [CrossRef] [PubMed]
- Meeker, R.B.; Williams, K.S. The P75 Neurotrophin Receptor: At the Crossroad of Neural Repair and Death. Neural Regen. Res. 2015, 10, 721–725. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK Gene Fusions as Novel Targets of Cancer Therapy across Multiple Tumour Types. ESMO Open 2016, 1, e000023. [Google Scholar] [CrossRef]
- Haddad, Y.; Adam, V.; Heger, Z. Trk Receptors and Neurotrophin Cross-Interactions: New Perspectives Toward Manipulating Therapeutic Side-Effects. Front. Mol. Neurosci. 2017, 10, 130. [Google Scholar] [CrossRef]
- Lin, P.H.; Kuo, L.T.; Luh, H.T. The Roles of Neurotrophins in Traumatic Brain Injury. Life 2022, 12, 26. [Google Scholar] [CrossRef]
- Petersen, A.; Soderstrom, M.; Saha, B.; Sharma, P. Animal Models of Traumatic Brain Injury: A Review of Pathophysiology to Biomarkers and Treatments. Exp. Brain Res. 2021, 239, 2939–2950. [Google Scholar] [CrossRef] [PubMed]
- Cheriyan, T.; Ryan, D.J.; Weinreb, J.H.; Cheriyan, J.; Paul, J.C.; Lafage, V.; Kirsch, T.; Errico, T.J. Spinal Cord Injury Models: A Review. Spinal Cord 2014, 52, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Alunni, A.; Bally-Cuif, L. A Comparative View of Regenerative Neurogenesis in Vertebrates. Development 2016, 143, 741–753. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Babaie, M.; Safdarian, M.; Ghadiri, T.; Rahimi-Movaghar, V. Mechanisms of Spinal Cord Injury Regeneration in Zebrafish: A Systematic Review. Iran. J. Basic Med. Sci. 2017, 20, 1287–1296. [Google Scholar] [CrossRef]
- Vajn, K.; Plunkett, J.A.; Tapanes-Castillo, A.; Oudega, M. Axonal Regeneration after Spinal Cord Injury in Zebrafish and Mammals: Differences, Similarities, Translation. Neurosci. Bull. 2013, 29, 402–410. [Google Scholar] [CrossRef]
- Zeng, C.-W.; Tsai, H.-J. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int. J. Mol. Sci. 2023, 24, 13938. [Google Scholar] [CrossRef]
- Omelchenko, A.; Singh, N.K.; Firestein, B.L. Current Advances in in Vitro Models of Central Nervous System Trauma. Curr. Opin. Biomed. Eng. 2020, 14, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, M.K.R.; Morrison, B. Recent Advancements in in Vitro Models of Traumatic Brain Injury. Curr. Opin. Biomed. Eng. 2022, 23, 100396. [Google Scholar] [CrossRef]
- Hanna, M.E.; Pfister, B.J. Advancements in in vitro Models of Traumatic Brain Injury. Curr. Opin. Biomed. Eng. 2023, 25, 100430. [Google Scholar] [CrossRef]
- Surey, S.; Berry, M.; Logan, A.; Bicknell, R.; Ahmed, Z. Differential Cavitation, Angiogenesis and Wound-Healing Responses in Injured Mouse and Rat Spinal Cords. Neuroscience 2014, 275, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.K.; Sahu, M.R.; Mondal, A.C. Induction of Oxidative Stress and Apoptosis in the Injured Brain: Potential Relevance to Brain Regeneration in Zebrafish. Mol. Biol. Rep. 2021, 48, 5099–5108. [Google Scholar] [CrossRef]
- Cui, C.; Wang, L.F.; Huang, S.B.; Zhao, P.; Chen, Y.Q.; Wu, Y.B.; Qiao, C.M.; Zhao, W.J.; Shen, Y.Q. Adequate Expression of Neuropeptide Y Is Essential for the Recovery of Zebrafish Motor Function Following Spinal Cord Injury. Exp. Neurol. 2021, 345, 113831. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.J.; Nagashima, M.; Li, J.; Kakuk-Atkins, L.; Ashrafzadeh, M.; Hyde, D.R.; Hitchcock, P.F. Inflammation and Matrix Metalloproteinase 9 (Mmp-9) Regulate Photoreceptor Regeneration in Adult Zebrafish. Glia 2020, 68, 1445–1465. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.W.; Kamei, Y.; Shigenobu, S.; Sheu, J.C.; Tsai, H.J. Injury-Induced Cavl-Expressing Cells at Lesion Rostral Side Play Major Roles in Spinal Cord Regeneration. Open Biol. 2021, 11, 200304. [Google Scholar] [CrossRef]
- Zambusi, A.; Novoselc, K.T.; Hutten, S.; Kalpazidou, S.; Koupourtidou, C.; Schieweck, R.; Aschenbroich, S.; Silva, L.; Yazgili, A.S.; van Bebber, F.; et al. TDP-43 Condensates and Lipid Droplets Regulate the Reactivity of Microglia and Regeneration after Traumatic Brain Injury. Nat. Neurosci. 2022, 25, 1608–1625. [Google Scholar] [CrossRef]
- Edwards-Faret, G.; González-Pinto, K.; Cebrián-Silla, A.; Peñailillo, J.; García-Verdugo, J.M.; Larraín, J. Cellular Response to Spinal Cord Injury in Regenerative and Non-Regenerative Stages in Xenopus laevis. Neural Dev. 2021, 16, 2. [Google Scholar] [CrossRef]
- Muñoz, R.; Edwards-Faret, G.; Moreno, M.; Zuñiga, N.; Cline, H.; Larraín, J. Regeneration of Xenopus Laevis Spinal Cord Requires Sox2/3 Expressing Cells. Dev. Biol. 2015, 408, 229–243. [Google Scholar] [CrossRef]
- Tapia, V.S.; Herrera-Rojas, M.; Larrain, J. JAK-STAT Pathway Activation in Response to Spinal Cord Injury in Regenerative and Non-Regenerative Stages of Xenopus Laevis. Regeneration 2017, 4, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Poon, P.C.; Gupta, D.; Shoichet, M.S.; Tator, C.H. Clip Compression Model Is Useful for Thoracic Spinal Cord Injuries: Histologic and Functional Correlates. Spine 2007, 32, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Stevens, A.R.; Ahmed, U.; Vigneswara, V.; Ahmed, Z. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery after Spinal Cord Injury. Mol. Neurobiol. 2019, 56, 7490–7507. [Google Scholar] [CrossRef] [PubMed]
- Vanický, I.; Urdzíková, L.; Saganová, K.; Čízková, D.; Gálik, J. A Simple and Reproducible Model of Spinal Cord Injury Induced by Epidural Balloon Inflation in the Rat. J. Neurotrauma 2004, 18, 1399–1407. [Google Scholar] [CrossRef]
- Alilain, W.J.; Horn, K.P.; Hu, H.; Dick, T.E.; Silver, J. Functional Regeneration of Respiratory Pathways after Spinal Cord Injury. Nature 2011, 475, 196–200. [Google Scholar] [CrossRef]
- Barbeau, H.; Chau, C.; Rossignol, S. Noradrenergic Agonists and Locomotor Training Affect Locomotor Recovery after Cord Transection in Adult Cats. Brain Res. Bull. 1993, 30, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, J.; Li, H.; Li, H.; Xie, F. Models of Traumatic Brain Injury-Highlights and Drawbacks. Front. Neurol. 2023, 14, 1151660. [Google Scholar] [CrossRef]
- Edward Dixon, C.; Clifton, G.L.; Lighthall, J.W.; Yaghmai, A.A.; Hayes, R.L. A Controlled Cortical Impact Model of Traumatic Brain Injury in the Rat. J. Neurosci. Methods 1991, 39, 253–262. [Google Scholar] [CrossRef]
- Xia, Y.; Kong, L.; Yao, Y.; Jiao, Y.; Song, J.; Tao, Z.; You, Z.; Yang, J. Osthole Confers Neuroprotection against Cortical Stab Wound Injury and Attenuates Secondary Brain Injury. J. Neuroinflamm. 2015, 12, 155. [Google Scholar] [CrossRef]
- Kalish, B.T.; Whalen, M.J. Weight Drop Models in Traumatic Brain Injury. Methods Mol. Biol. 2016, 1462, 193–209. [Google Scholar] [CrossRef]
- Cartagena, C.M.; Mountney, A.; Hwang, H.; Swiercz, A.; Rammelkamp, Z.; Boutte, A.M.; Shear, D.A.; Tortella, F.C.; Schmid, K.E. Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau Following Penetrating Traumatic Brain Injury. PLoS ONE 2016, 11, e0158576. [Google Scholar] [CrossRef]
- Lyons, M.K.; Partington, M.D.; Meyer, F.B.; Yarkony, G.M.; Roth, E.J.; Senegor, M.; Stifel, H.G.; Brown, M.; Bracken, M.B.; Shepard, M.J.; et al. A Randomized, Controlled Trial of Methylprednisolone or Naloxone in the Treatment of Acute Spinal-Cord Injury. N. Engl. J. Med. 1990, 323, 1207–1209. [Google Scholar] [CrossRef]
- Geisler, F.H.; Moghaddamjou, A.; Wilson, J.R.F.; Fehlings, M.G. Methylprednisolone in Acute Traumatic Spinal Cord Injury: Case-Matched Outcomes from the NASCIS2 and Sygen Historical Spinal Cord Injury Studies with Contemporary Statistical Analysis. J. Neurosurg. Spine 2023, 38, 595–606. [Google Scholar] [CrossRef]
- Evaniew, N.; Belley-Côté, E.P.; Fallah, N.; Noonan, V.K.; Rivers, C.S.; Dvorak, M.F. Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Systematic Review and Meta-Analysis. J. Neurotrauma 2016, 33, 468. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; He, L.; Pang, M.; Luo, C.; Liu, B.; Rong, L. High-Dose Methylprednisolone for Acute Traumatic Spinal Cord Injury: A Meta-Analysis. Neurology 2019, 93, E841–E850. [Google Scholar] [CrossRef]
- Olldashi, F.; Muzha, I.; Filipi, N.; Lede, R.; Copertari, P.; Traverso, C.; Copertari, A.; Vergara, E.A.; Montenegro, C.; De Huidobro, R.R.; et al. Effect of Intravenous Corticosteroids on Death within 14 Days in 10008 Adults with Clinically Significant Head Injury (MRC CRASH Trial): Randomised Placebo-Controlled Trial. Lancet 2004, 364, 1321–1328. [Google Scholar] [CrossRef]
- Wilson, J.R.; Doty, S.; Petitt, J.C.; El-Abtah, M.; Francis, J.J.; Sharpe, M.G.; Kelly, M.L.; Anderson, K.D. Feasibility of Gabapentin as an Intervention for Neurorecovery after an Acute Spinal Cord Injury: Protocol. Front. Neurol. 2022, 13, 1033386. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Forgione, N.; Fehlings, M.G. Emerging Therapies for Acute Traumatic Spinal Cord Injury. Cmaj Can. Med. Assoc. J. 2013, 185, 485. [Google Scholar] [CrossRef] [PubMed]
- Cragg, J.J.; Haefeli, J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Kalke, Y.B.; Schuld, C.; Curt, A.; et al. Effects of Pain and Pain Management on Motor Recovery of Spinal Cord-Injured Patients: A Longitudinal Study. Neurorehabil. Neural Repair 2016, 30, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Warner, F.M.; Cragg, J.J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Schuld, C.; Curt, A.; Kramer, J.K. Early Administration of Gabapentinoids Improves Motor Recovery after Human Spinal Cord Injury. Cell Rep. 2017, 18, 1614–1618. [Google Scholar] [CrossRef]
- Van Hedel, H.J.A.; Curt, A. Fighting for Each Segment: Estimating the Clinical Value of Cervical and Thoracic Segments in SCI. J. Neurotrauma 2006, 23, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, S.; Wali, A.R.; Pham, M.H. Efficacy of Riluzole in the Treatment of Spinal Cord Injury: A Systematic Review of the Literature. Neurosurg. Focus 2019, 46, E6. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Nakashima, H.; Nagoshi, N.; Chow, D.S.L.; Grossman, R.G.; Kopjar, B. Rationale, Design and Critical End Points for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): A Randomized, Double-Blinded, Placebo-Controlled Parallel Multi-Center Trial. Spinal Cord 2016, 54, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Iranian Registry of Clinical Trials (Registration Number: IRCT20191104045328N6). Evaluation of Riluzole Efficacy on Cognitive and Functional Outcome of Severe Traumatic Brain Injury Patients. Available online: https://en.irct.ir/trial/55278 (accessed on 13 December 2023).
- Saadoun, S.; Papadopoulos, M.C. Spinal Cord Injury: Is Monitoring from the Injury Site the Future? Crit. Care 2016, 20, 308. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, S.; Papadopoulos, M.C. Targeted Perfusion Therapy in Spinal Cord Trauma. Neurotherapeutics 2020, 17, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, S.; Papadopoulos, M.C. Acute, Severe Traumatic Spinal Cord Injury: Monitoring from the Injury Site and Expansion Duraplasty. Neurosurg. Clin. N. Am. 2021, 32, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.K.; Curt, A.N.; Belanger, L.M.; Bernardo, A.; Chan, D.; Markez, J.A.; Gorelik, S.; Slobogean, G.P.; Umedaly, H.; Giffin, M.; et al. Intrathecal Pressure Monitoring and Cerebrospinal Fluid Drainage in Acute Spinal Cord Injury: A Prospective Randomized Trial. J. Neurosurg. Spine 2009, 10, 181–193. [Google Scholar] [CrossRef]
- Tas, J.; Beqiri, E.; van Kaam, C.; Ercole, A.; Bellen, G.; Bruyninckx, D.; Cabeleira, M.; Czosnyka, M.; Depreitere, B.; Donnelly, J.; et al. An Update on the COGiTATE Phase II Study: Feasibility and Safety of Targeting an Optimal Cerebral Perfusion Pressure as a Patient-Tailored Therapy in Severe Traumatic Brain Injury. Acta Neurochir. Suppl. 2021, 131, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; McCrea, M.R.; Li, S. Advances in Molecular Therapies for Targeting Pathophysiology in Spinal Cord Injury. Expert Opin. Ther. Targets 2023, 27, 171–187. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Murray, G.; Henney, H.; Kassem, N.; Legrand, V.; Mangelus, M.; Muizelaar, J.P.; Stocchetti, N.; Knoller, N. Efficacy and Safety of Dexanabinol in Severe Traumatic Brain Injury: Results of a Phase III Randomised, Placebo-Controlled, Clinical Trial. Lancet. Neurol. 2006, 5, 38–45. [Google Scholar] [CrossRef]
- Langham, J.; Goldfrad, C.; Teasdale, G.; Shaw, D.; Rowan, K. Calcium Channel Blockers for Acute Traumatic Brain Injury. Cochrane Database Syst. Rev. 2003, 2003, CD000565. [Google Scholar] [CrossRef]
- Readnower, R.D.; Pandya, J.D.; McEwen, M.L.; Pauly, J.R.; Springer, J.E.; Sullivan, P.G. Post-Injury Administration of the Mitochondrial Permeability Transition Pore Inhibitor, NIM811, Is Neuroprotective and Improves Cognition after Traumatic Brain Injury in Rats. J. Neurotrauma 2011, 28, 1845. [Google Scholar] [CrossRef]
- Monteiro, S.; Salgado, A.J.; Silva, N.A. Immunomodulation as a Neuroprotective Strategy after Spinal Cord Injury. Neural Regen. Res. 2018, 13, 423. [Google Scholar] [CrossRef]
- Torelli, A.G.; Cristante, A.F.; de Barros-Filho, T.E.P.; dos Santos, G.B.; Morena, B.C.; Correia, F.F.; Paschon, V. Effects of Ganglioside GM1 and Erythropoietin on Spinal Cord Injury in Mice: Functional and Immunohistochemical Assessments. Clinics 2022, 77, 100006. [Google Scholar] [CrossRef]
- Mazzeo, A.T.; Brophy, G.M.; Gilman, C.B.; Alves, Ó.L.; Robles, J.R.; Hayes, R.L.; Povlishock, J.T.; Bullock, M.R. Safety and Tolerability of Cyclosporin a in Severe Traumatic Brain Injury Patients: Results from a Prospective Randomized Trial. J. Neurotrauma 2009, 26, 2195–2206. [Google Scholar] [CrossRef]
- Hu, J.; Rodemer, W.; Zhang, G.; Jin, L.Q.; Li, S.; Selzer, M.E. Chondroitinase ABC Promotes Axon Regeneration and Reduces Retrograde Apoptosis Signaling in Lamprey. Front. Cell Dev. Biol. 2021, 9, 653638. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Kwok, J.C.F.; Crespo, D.; Fawcett, J.W. Chondroitinase ABC Has a Long-Lasting Effect on Chondroitin Sulphate Glycosaminoglycan Content in the Injured Rat Brain. J. Neurochem. 2008, 104, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.; Berry, M.; Logan, A.; Ahmed, Z. Decorin Treatment of Spinal Cord Injury. Neural Regen. Res. 2014, 9, 1653. [Google Scholar] [CrossRef] [PubMed]
- Manni, L.; Conti, G.; Chiaretti, A.; Soligo, M. Intranasal nerve growth factor for prevention and recovery of the outcomes of traumatic brain injury. Neural Regen. Res. 2023, 18, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Sieck, G.C.; Gransee, H.M.; Zhan, W.Z.; Mantilla, C.B. Acute Intrathecal BDNF Enhances Functional Recovery after Cervical Spinal Cord Injury in Rats. J. Neurophysiol. 2021, 125, 2158–2165. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, C.; Bao, T.; Zhao, X.; Xiong, W.; Luo, C.; Yin, G.; Fan, J. Exosome-Shuttled MiR-672-5p from Anti-Inflammatory Microglia Repair Traumatic Spinal Cord Injury by Inhibiting AIM2/ASC/Caspase-1 Signaling Pathway Mediated Neuronal Pyroptosis. J. Neurotrauma 2022, 39, 1057–1074. [Google Scholar] [CrossRef] [PubMed]
- Mulherkar, S.; Tolias, K.F. RhoA-ROCK Signaling as a Therapeutic Target in Traumatic Brain Injury. Cells 2020, 9, 245. [Google Scholar] [CrossRef]
- Nikolaeva, I.; Crowell, B.; Valenziano, J.; Meaney, D.; D’Arcangelo, G. Beneficial Effects of Early MTORC1 Inhibition after Traumatic Brain Injury. J. Neurotrauma 2016, 33, 183. [Google Scholar] [CrossRef]
- Taylor, M.J.; Thompson, A.M.; Alhajlah, S.; Tuxworth, R.I.; Ahmed, Z. Inhibition of Chk2 Promotes Neuroprotection, Axon Regeneration, and Functional Recovery after CNS Injury. Sci. Adv. 2022, 8, eabq2611. [Google Scholar] [CrossRef]
- Tani, J.; Wen, Y.T.; Hu, C.J.; Sung, J.Y. Current and Potential Pharmacologic Therapies for Traumatic Brain Injury. Pharmaceuticals 2022, 15, 838. [Google Scholar] [CrossRef]
- Ahmed, Z. Current Clinical Trials in Traumatic Brain Injury. Brain Sci. 2022, 12, 527. [Google Scholar] [CrossRef]
- Shrestha, B.; Coykendall, K.; Li, Y.; Moon, A.; Priyadarshani, P.; Yao, L. Repair of Injured Spinal Cord Using Biomaterial Scaffolds and Stem Cells. Stem Cell Res. Ther. 2014, 5, 91. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, F.; Xiao, Z.; Han, G.; Wang, N.; Yin, N.; Chen, B.; Jiang, X.; Yun, C.; Han, W.; et al. Clinical Study of NeuroRegen Scaffold Combined with Human Mesenchymal Stem Cells for the Repair of Chronic Complete Spinal Cord Injury. Cell Transplant. 2017, 26, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Ghaith, H.S.; Nawar, A.A.; Gabra, M.D.; Abdelrahman, M.E.; Nafady, M.H.; Bahbah, E.I.; Ebada, M.A.; Ashraf, G.M.; Negida, A.; Barreto, G.E. A Literature Review of Traumatic Brain Injury Biomarkers. Mol. Neurobiol. 2022, 59, 4141. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, V.; Yakoub, K.M.; Scarpa, U.; Di Pietro, C.; Belli, A. MicroRNA Signature of Traumatic Brain Injury: From the Biomarker Discovery to the Point-of-Care. Front. Neurol. 2018, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Lafrenaye, A.D.; Mondello, S.; Wang, K.K.; Yang, Z.; Povlishock, J.T.; Gorse, K.; Walker, S.; Hayes, R.L.; Kochanek, P.M. Circulating GFAP and Iba-1 Levels Are Associated with Pathophysiological Sequelae in the Thalamus in a Pig Model of Mild TBI. Sci. Rep. 2020, 10, 13369. [Google Scholar] [CrossRef]
- Toman, E.; Harrisson, S.; Belli, T. Biomarkers in Traumatic Brain Injury: A Review. J. R. Army Med. Corps 2016, 162, 103–108. [Google Scholar] [CrossRef]
- Chiaretti, A.; Barone, G.; Riccardi, R.; Antonelli, A.; Pezzotti, P.; Genovese, O.; Tortorolo, L.; Conti, G. NGF, DCX, and NSE Upregulation Correlates with Severity and Outcome of Head Trauma in Children. Neurology 2009, 72, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Antonelli, A.; Riccardi, R.; Genovese, O.; Pezzotti, P.; Di Rocco, C.; Tortorolo, L.; Piedimonte, G. Nerve Growth Factor Expression Correlates with Severity and Outcome of Traumatic Brain Injury in Children. Eur. J. Paediatr. Neurol. 2008, 12, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.; Shum, A.; Caraveo, G. GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front. Cell Dev. Biol. 2020, 8, 567537. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, F.; Ohshima, T.; Goshima, Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front. Cell. Neurosci. 2020, 14, 547897. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Saikia, J.M.; Monte, K.M.A.; Ha, E.; Romaus-Sanjurjo, D.; Sanchez, J.J.; Moore, A.X.; Hernaiz-Llorens, M.; Chavez-Martinez, C.L.; Agba, C.K.; et al. Deep ScRNA Sequencing Reveals a Broadly Applicable Regeneration Classifier and Implicates Antioxidant Response in Corticospinal Axon Regeneration. Neuron 2023, 111, 3953.e5–3969.e5. [Google Scholar] [CrossRef]
- Yip, P.K.; Hasan, S.; Liu, Z.-H.; Uff, C.E.G. Characterisation of Severe Traumatic Brain Injury Severity from Fresh Cerebral Biopsy of Living Patients: An Immunohistochemical Study. Biomedicines 2022, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Stevens, A.R.; Stickland, C.A.; Harris, G.; Ahmed, Z.; Goldberg Oppenheimer, P.; Belli, A.; Huang, W.; An, S.A.; Shyu, B.C.; Lin, M.-S.; et al. Raman Spectroscopy as a Neuromonitoring Tool in Traumatic Brain Injury: A Systematic Review and Clinical Perspectives. Cells 2022, 11, 1227. [Google Scholar] [CrossRef]
- Ercole, A.; Magnoni, S.; Vegliante, G.; Pastorelli, R.; Surmacki, J.; Bohndiek, S.; Zanier, E. Current and Emerging Technologies for Probing Molecular Signatures of Traumatic Brain Injury. Front. Neurol. 2017, 8, 450. [Google Scholar] [CrossRef]
- Dash, P.K.; Zhao, J.; Hergenroeder, G.; Moore, A.N. Biomarkers for the Diagnosis, Prognosis, and Evaluation of Treatment Efficacy for Traumatic Brain Injury. Neurotherapeutics 2010, 7, 100–114. [Google Scholar] [CrossRef]
- Stovell, M.G.; Yan, J.L.; Sleigh, A.; Mada, M.O.; Carpenter, T.A.; Hutchinson, P.J.A.; Carpenter, K.L.H. Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications. Front. Neurol. 2017, 8, 426. [Google Scholar] [CrossRef]
- Donovan, J.; Kirshblum, S. Clinical Trials in Traumatic Spinal Cord Injury. Neurotherapeutics 2018, 15, 654–668. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Q.; Wang, W.; Wang, Y.; Fang, K.; Wan, Q.; Li, H.; Wu, T. Potential Use of Bioactive Nanofibrous Dural Substitutes with Controlled Release of IGF-1 for Neuroprotection after Traumatic Brain Injury. Nanoscale 2022, 14, 18217–18230. [Google Scholar] [CrossRef]
- Yao, H.; Shen, Y.; Song, Z.; Han, A.; Chen, X.; Zhang, Y.; Hu, B. Rab11 Promotes Single Mauthner Cell Axon Regeneration in Vivo through Axon Guidance Molecule Ntng2b. Exp. Neurol. 2024, 374, 114715. [Google Scholar] [CrossRef] [PubMed]
- Basso, M.; Milelli, A. Transglutaminases, Neuronal Cell Death and Neural Repair: Implications for Traumatic Brain Injury and Therapeutics. Curr. Opin. Neurol. 2019, 32, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, R.; Fernandez, S.C.; Murai, H.; Trusko, S.P.; Scott, R.W.; Nishioka, W.K.; McIntosh, T.K. BCL-2 Overexpression Attenuates Cortical Cell Loss after Traumatic Brain Injury in Transgenic Mice. J. Cereb. Blood Flow Metab. 1998, 18, 1259–1269. [Google Scholar] [CrossRef]
- Lee, S.H.; Kho, A.R.; Lee, S.H.; Hong, D.K.; Kang, B.S.; Park, M.K.; Lee, C.J.; Yang, H.W.; Woo, S.Y.; Park, S.W.; et al. Acid Sphingomyelinase Inhibitor, Imipramine, Reduces Hippocampal Neuronal Death after Traumatic Brain Injury. Int. J. Mol. Sci. 2022, 23, 14749. [Google Scholar] [CrossRef]
- Mbye, L.H.A.N.; Singh, I.N.; Carrico, K.M.; Saatman, K.E.; Hall, E.D. Comparative Neuroprotective Effects of Cyclosporin A and NIM811, a Nonimmunosuppressive Cyclosporin A Analog, Following Traumatic Brain Injury. J. Cereb. Blood Flow Metab. 2009, 29, 87. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Aguilar, M.; Tapia-Pérez, J.H.; Sánchez-Rodríguez, J.J.; Viñas-Ríos, J.M.; Martínez-Pérez, P.; De La Cruz-Mendoza, E.; Sánchez-Reyna, M.; Torres-Corzo, J.G.; Gordillo-Moscoso, A. Effect of Rosuvastatin on Cytokines after Traumatic Head Injury. J. Neurosurg. 2013, 118, 669–675. [Google Scholar] [CrossRef]
- Michinaga, S.; Hishinuma, S.; Koyama, Y. Roles of Astrocytic Endothelin ETB Receptor in Traumatic Brain Injury. Cells 2023, 12, 719. [Google Scholar] [CrossRef]
- Ye, L.; Li, W.; Tang, X.; Xu, T.; Wang, G. Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management. Curr. Neuropharmacol. 2024, 22, 38288835. [Google Scholar] [CrossRef]
- He, J.; Huang, Y.; Liu, H.; Sun, X.; Wu, J.; Zhang, Z.; Liu, L.; Zhou, C.; Jiang, S.; Huang, Z.; et al. Bexarotene Promotes Microglia/Macrophages-Specific Brain-Derived Neurotrophic Factor Expression and Axon Sprouting after Traumatic Brain Injury. Exp. Neurol. 2020, 334, 113462. [Google Scholar] [CrossRef] [PubMed]
- Sathyamurthy, V.H.; Nagarajan, Y.; Parvathi, V.D. Mitochondria-Endoplasmic Reticulum Contact Sites (MERCS): A New Axis in Neuronal Degeneration and Regeneration. Mol. Neurobiol. 2024, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Han, Y.; Han, Z.; Zhang, D.; Zhang, L.; Zhao, G.; Li, S.; Jin, G.; Yu, R.; Liu, H. In Situ Implantable, Post-Trauma Microenvironment-Responsive, ROS Depletion Hydrogels for the Treatment of Traumatic Brain Injury. Biomaterials 2021, 270, 120675. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, W.; Tang, J.; Han, M.; Xu, Y.; Zhang, L.; Wu, J.; Huang, Y.; Ding, Z.; Sun, H.; et al. Ligand-Screened Cerium-Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. Adv. Sci. 2024, 11, 2306780. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, J.; Lu, D.; Zhang, Y.; Xu, J.; Wang, S.; Cheng, X.; Qin, J.; Zhang, L.; Li, H.; et al. Uqcr11 Alleviates Oxidative Stress and Apoptosis after Traumatic Brain Injury. Exp. Neurol. 2023, 370, 114582. [Google Scholar] [CrossRef] [PubMed]
- Štepánková, K.; Chudíčková, M.; Šimková, Z.; Martinez-Varea, N.; Kubinová, Š.; Urdzíková, L.M.; Jendelová, P.; Kwok, J.C.F. Low Oral Dose of 4-Methylumbelliferone Reduces Glial Scar but Is Insufficient to Induce Functional Recovery after Spinal Cord Injury. Sci. Rep. 2023, 13, 19183. [Google Scholar] [CrossRef] [PubMed]
- Puls, B.; Ding, Y.; Zhang, F.; Pan, M.; Lei, Z.; Pei, Z.; Jiang, M.; Bai, Y.; Forsyth, C.; Metzger, M.; et al. Regeneration of Functional Neurons after Spinal Cord Injury via In Situ NeuroD1-Mediated Astrocyte-to-Neuron Conversion. Front. Cell Dev. Biol. 2020, 8, 1595. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, S.; Wu, B.; Shi, H.; Wang, Y.; Xiang, J.; Li, J.; Shi, Z.; Wu, G.; Lyu, Y.; et al. HSPB2 Facilitates Neural Regeneration through Autophagy for Sensorimotor Recovery after Traumatic Brain Injury. JCI Insight 2023, 8, e168919. [Google Scholar] [CrossRef]
- Skolnick, B.E.; Maas, A.I.; Narayan, R.K.; van der Hoop, R.G.; MacAllister, T.; Ward, J.D.; Nelson, N.R.; Stocchetti, N. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N. Engl. J. Med. 2014, 371, 2467–2476. [Google Scholar] [CrossRef]
- Li, Q.; Gan, X.; Zhang, M.; Zhang, G.; Li, Y.; Gao, L. Erianin Promotes Endogenous Neurogenesis in Traumatic Brain Injury Rats. Sci. Rep. 2024, 14, 4108. [Google Scholar] [CrossRef] [PubMed]
- Albashari, A.A.; He, Y.; Luo, Y.; Duan, X.; Ali, J.; Li, M.; Fu, D.; Xiang, Y.; Peng, Y.; Li, S.; et al. Local Spinal Cord Injury Treatment Using a Dental Pulp Stem Cell Encapsulated H2S Releasing Multifunctional Injectable Hydrogel. Adv. Healthc. Mater. 2023, 2023, 2302286. [Google Scholar] [CrossRef]
- Hao, Z.T.; Yin, C.; Wang, X.L.; Huo, Z.Q.; Zhang, G.R.; Jiang, D.; An, M. Tetramethylpyrazine Promotes Angiogenesis and Nerve Regeneration and Nerve Defect Repair in Rats with Spinal Cord Injury. Heliyon 2023, 9, e21549. [Google Scholar] [CrossRef]
- Deng, H.; Liu, Y.; Shi, Z.; Yang, J.; Liu, C.; Mei, X. Zinc Regulates a Specific Subpopulation of VEGFA + Microglia to Improve the Hypoxic Microenvironment for Functional Recovery after Spinal Cord Injury. Int. Immunopharmacol. 2023, 125, 111092. [Google Scholar] [CrossRef]
- Chen, C.M.; Gung, P.Y.; Ho, Y.C.; Hamdin, C.D.; Yet, S.F. Probucol Treatment after Traumatic Brain Injury Activates BDNF/TrkB Pathway, Promotes Neuroregeneration and Ameliorates Functional Deficits in Mice. Br. J. Pharmacol. 2023, 180, 2605–2622. [Google Scholar] [CrossRef]
- Greig, N.H.; Lecca, D.; Hsueh, S.C.; Nogueras-Ortiz, C.; Kapogiannis, D.; Tweedie, D.; Glotfelty, E.J.; Becker, R.E.; Chiang, Y.H.; Hoffer, B.J. (−)-Phenserine Tartrate (PhenT) as a Treatment for Traumatic Brain Injury. CNS Neurosci. Ther. 2020, 26, 636. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.; Huang, C.; Xia, A.; Wang, G.; Liu, S. Hyperbaric Oxygen Therapy Improves Neurological Function via the P38-MAPK/CCL2 Signaling Pathway Following Traumatic Brain Injury. Neuroreport 2021, 32, 1255–1262. [Google Scholar] [CrossRef]
- Jones, I.; Novikova, L.N.; Wiberg, M.; Carlsson, L.; Novikov, L.N. Human Embryonic Stem Cell-Derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transpl. 2021, 30, 0963689720988245. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Yamaguchi, R.; He, C.C.J.; Ikeda, A.; Okano, H.; Kohyama, J. Current Status and Prospects of Regenerative Medicine for Spinal Cord Injury Using Human Induced Pluripotent Stem Cells: A Review. Stem Cell Investig. 2023, 10, 6. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Thankam, F.G.; Patil, A.A.; Chamczuk, A.J.; Agrawal, D.K. Brain Injury and Neural Stem Cells. Neural Regen. Res. 2018, 13, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Skardelly, M.; Gaber, K.; Burdack, S.; Scheidt, F.; Hilbig, H.; Boltze, J.; Förschler, A.; Schwarz, S.; Schwarz, J.; Meixensberger, J.; et al. Long-Term Benefit of Human Fetal Neuronal Progenitor Cell Transplantation in a Clinically Adapted Model after Traumatic Brain Injury. J. Neurotrauma 2011, 28, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Manley, N.C.; Priest, C.A.; Denham, J.; Wirth, E.D.; Lebkowski, J.S. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury. Stem Cells Transl. Med. 2017, 6, 1917–1929. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Teng, M.; Zhang, Y.; Ji, W. Decellularized Extracellular Matrix Scaffold Seeded with Adipose-Derived Stem Cells Promotes Neurorestoration and Functional Recovery after Spinal Cord Injury through Wnt/β-Catenin Signaling Pathway Regulation. Biomed. Mater. 2023, 19, 015007. [Google Scholar] [CrossRef]
- Ursavas, S.; Darici, H.; Karaoz, E. Olfactory Ensheathing Cells: Unique Glial Cells Promising for Treatments of Spinal Cord Injury. J. Neurosci. Res. 2021, 99, 1579–1597. [Google Scholar] [CrossRef]
- Zhou, X.H.; Ning, G.Z.; Feng, S.Q.; Kong, X.H.; Chen, J.T.; Zheng, Y.F.; Ban, D.X.; Liu, T.; Li, H.; Wang, P. Transplantation of Autologous Activated Schwann Cells in the Treatment of Spinal Cord Injury: Six Cases, More than Five Years of Follow-Up. Cell Transplant. 2012, 21 (Suppl. S1), 39–47. [Google Scholar] [CrossRef]
- Kobashi, S.; Terashima, T.; Katagi, M.; Nakae, Y.; Okano, J.; Suzuki, Y.; Urushitani, M.; Kojima, H. Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Mol. Ther. 2020, 28, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Borys, B.; Karimi-Abdolrezaee, S. Neural Stem Cell Therapies for Spinal Cord Injury Repair: An Update on Recent Preclinical and Clinical Advances. Brain 2023, 17, awad392. [Google Scholar] [CrossRef]
- Yang, R.; Pan, J.; Wang, Y.; Xia, P.; Tai, M.; Jiang, Z.; Chen, G. Application and Prospects of Somatic Cell Reprogramming Technology for Spinal Cord Injury Treatment. Front. Cell. Neurosci. 2022, 16, 1005399. [Google Scholar] [CrossRef]
- Baklaushev, V.P.; Durov, O.V.; Kalsin, V.A.; Gulaev, E.V.; Kim, S.V.; Gubskiy, I.L.; Revkova, V.A.; Samoilova, E.M.; Melnikov, P.A.; Karal-Ogly, D.D.; et al. Disease Modifying Treatment of Spinal Cord Injury with Directly Reprogrammed Neural Precursor Cells in Non-Human Primates. World J. Stem Cells 2021, 13, 452–469. [Google Scholar] [CrossRef]
- Lu, H.; Zhan, Y.; Ai, L.; Chen, H.; Chen, J. AQP4-SiRNA Alleviates Traumatic Brain Edema by Altering Post-Traumatic AQP4 Polarity Reversal in TBI Rats. J. Clin. Neurosci. 2020, 81, 113–119. [Google Scholar] [CrossRef]
- Boone, D.R.; Leek, J.M.; Falduto, M.T.; Torres, K.E.O.; Sell, S.L.; Parsley, M.A.; Cowart, J.C.; Uchida, T.; Micci, M.A.; DeWitt, D.S.; et al. Effects of AAV-Mediated Knockdown of NNOS and GPx-1 Gene Expression in Rat Hippocampus after Traumatic Brain Injury. PLoS ONE 2017, 12, e0185943. [Google Scholar] [CrossRef]
- Gao, W.; Li, J. Targeted SiRNA Delivery Reduces Nitric Oxide Mediated Cell Death after Spinal Cord Injury. J. Nanobiotechnol. 2017, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Yu, D.; Liu, F. Effect of SiRNA-induced Inhibition of IL-6 Expression in Rat Cerebral Gliocytes on Cerebral Edema Following Traumatic Brain Injury. Med. Rep. 2014, 10, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; Hanrahan, F.; Gobbo, O.L.; Kelly, M.E.; Kiang, A.S.; Humphries, M.M.; Nguyen, A.T.H.; Ozaki, E.; Keaney, J.; Blau, C.W.; et al. Targeted Suppression of Claudin-5 Decreases Cerebral Oedema and Improves Cognitive Outcome Following Traumatic Brain Injury. Nat. Commun. 2012, 3, 849. [Google Scholar] [CrossRef]
- Macks, C.; Jeong, D.U.; Lee, J.S. Local Delivery of RhoA SiRNA by PgP Nanocarrier Reduces Inflammatory Response and Improves Neuronal Cell Survival in a Rat TBI Model. Nanomed. Nanotechnol. Biol. Med. 2021, 32, 102343. [Google Scholar] [CrossRef]
- Otsuka, S.; Adamson, C.; Sankar, V.; Gibbs, K.M.; Kane-Goldsmith, N.; Ayer, J.; Babiarz, J.; Kalinski, H.; Ashush, H.; Alpert, E.; et al. Delayed Intrathecal Delivery of RhoA SiRNA to the Contused Spinal Cord Inhibits Allodynia, Preserves White Matter, and Increases Serotonergic Fiber Growth. J. Neurotrauma 2011, 28, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, R.; Jiang, B.; Xu, X.; Guan, J.J.; Jiang, X.J.; Zhou, Y.; Zhou, Y.L.; Chen, X. Repair of Spinal Cord Injury by Inhibition of PLK4 Expression Through Local Delivery of SiRNA-Loaded Nanoparticles. J. Mol. Neurosci. 2022, 72, 544–554. [Google Scholar] [CrossRef]
- Guo, S.; Perets, N.; Betzer, O.; Ben-Shaul, S.; Sheinin, A.; Michaelevski, I.; Popovtzer, R.; Offen, D.; Levenberg, S. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog SiRNA Repairs Complete Spinal Cord Injury. ACS Nano 2019, 13, 10015–10028. [Google Scholar] [CrossRef]
- Offen, D.; Perets, N.; Guo, S.; Betzer, O.; Popovtzer, R.; Ben-Shaul, S.; Sheinin, A.; Michaelevski, I.; Levenberg, S. Exosomes Loaded with PTEN SiRNA Leads to Functional Recovery after Complete Transection of the Spinal Cord by Specifically Targeting the Damaged Area. Cytotherapy 2019, 21, e7–e8. [Google Scholar] [CrossRef]
- Kim, S.J.; Ko, W.K.; Han, G.H.; Lee, D.; Cho, M.J.; Sheen, S.H.; Sohn, S. Axon Guidance Gene-Targeted SiRNA Delivery System Improves Neural Stem Cell Transplantation Therapy after Spinal Cord Injury. Biomater. Res. 2023, 27, 101. [Google Scholar] [CrossRef]
- Huang, W.; Qu, M.; Li, L.; Liu, T.; Lin, M.; Yu, X. SiRNA in MSC-Derived Exosomes Silences CTGF Gene for Locomotor Recovery in Spinal Cord Injury Rats. Stem Cell Res. Ther. 2021, 12, 334. [Google Scholar] [CrossRef]
- Michael, F.M.; Chandran, P.; Chandramohan, K.; Iyer, K.; Jayaraj, K.; Sundaramoorthy, R.; Venkatachalam, S. Prospects of SiRNA Cocktails as Tools for Modifying Multiple Gene Targets in the Injured Spinal Cord. Exp. Biol. Med. 2019, 244, 1096–1110. [Google Scholar] [CrossRef]
- Li, W.; Qiu, J.; Li, X.L.; Aday, S.; Zhang, J.; Conley, G.; Xu, J.; Joseph, J.; Lan, H.; Langer, R.; et al. BBB Pathophysiology-Independent Delivery of SiRNA in Traumatic Brain Injury. Sci. Adv. 2021, 7, eabd6889. [Google Scholar] [CrossRef]
- Xiao, H.; Amarsaikhan, O.; Zhao, Y.; Yu, X.; Hu, X.; Han, S.; Chaolumen; Baigude, H. Astrocyte-Targeted SiRNA Delivery by Adenosine-Functionalized LNP in Mouse TBI Model. Mol. Ther. Nucleic Acids 2023, 34, 102065. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.J.; Skalak, M.; Lo Bu, R.; Bhatia, S.N. Neuron-Targeted Nanoparticle for SiRNA Delivery to Traumatic Brain Injuries. ACS Nano 2016, 10, 7926–7933. [Google Scholar] [CrossRef]
- Rong, Y.; Wang, Z.; Tang, P.; Wang, J.; Ji, C.; Chang, J.; Zhu, Y.; Ye, W.; Bai, J.; Liu, W.; et al. Engineered Extracellular Vesicles for Delivery of SiRNA Promoting Targeted Repair of Traumatic Spinal Cord Injury. Bioact. Mater. 2023, 23, 328. [Google Scholar] [CrossRef]
- Ando, T.; Sato, S.; Toyooka, T.; Kobayashi, H.; Nawashiro, H.; Ashida, H.; Obara, M. Photomechanical Wave-Driven Delivery of SiRNAs Targeting Intermediate Filament Proteins Promotes Functional Recovery after Spinal Cord Injury in Rats. PLoS ONE 2012, 7, e51744. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, X.; Yang, C.; Liu, M.; Huang, Q.; Yang, L.; Wang, Y.; Feng, H.; Gao, Z.; Chen, T. Chemogenetic Stimulation of Intact Corticospinal Tract during Rehabilitative Training Promotes Circuit Rewiring and Functional Recovery after Stroke. Exp. Neurol. 2024, 371, 114603. [Google Scholar] [CrossRef]
- Lv, Z.; Dong, C.; Zhang, T.; Zhang, S. Hydrogels in Spinal Cord Injury Repair: A Review. Front. Bioeng. Biotechnol. 2022, 10, 931800. [Google Scholar] [CrossRef] [PubMed]
- Tsintou, M.; Dalamagkas, K.; Seifalian, A.M. Advances in Regenerative Therapies for Spinal Cord Injury: A Biomaterials Approach. Neural Regen. Res. 2015, 10, 726–742. [Google Scholar] [CrossRef]
- Zhou, L.; Tu, J.; Fang, G.; Deng, L.; Gao, X.; Guo, K.; Kong, J.; Lv, J.; Guan, W.; Yang, C. Combining PLGA Scaffold and MSCs for Brain Tissue Engineering: A Potential Tool for Treatment of Brain Injury. Stem Cells Int. 2018, 2018, 5024175. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, Z.; Castaño, O.; Castells, A.A.; Mateos-Timoneda, M.A.; Planell, J.A.; Engel, E.; Alcántara, S. Neurogenesis and Vascularization of the Damaged Brain Using a Lactate-Releasing Biomimetic Scaffold. Biomaterials 2014, 35, 4769–4781. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chang, Z.H.; Chen, C.; Liang, J.; Shi, J.X.; Fan, X.; Shao, Q.; Meng, W.W.; Wang, J.J.; Li, X.H. 3D Printing of Injury-Preconditioned Secretome/Collagen/Heparan Sulfate Scaffolds for Neurological Recovery after Traumatic Brain Injury in Rats. Stem Cell Res. Ther. 2022, 13, 525. [Google Scholar] [CrossRef]
- Latchoumane, C.F.V.; Betancur, M.I.; Simchick, G.A.; Sun, M.K.; Forghani, R.; Lenear, C.E.; Ahmed, A.; Mohankumar, R.; Balaji, N.; Mason, H.D.; et al. Engineered Glycomaterial Implants Orchestrate Large-Scale Functional Repair of Brain Tissue Chronically after Severe Traumatic Brain Injury. Sci. Adv. 2021, 7, eabe0207. [Google Scholar] [CrossRef] [PubMed]
- Moisenovich, M.M.; Plotnikov, E.Y.; Moysenovich, A.M.; Silachev, D.N.; Danilina, T.I.; Savchenko, E.S.; Bobrova, M.M.; Safonova, L.A.; Tatarskiy, V.V.; Kotliarova, M.S.; et al. Effect of Silk Fibroin on Neuroregeneration after Traumatic Brain Injury. Neurochem. Res. 2019, 44, 2261–2272. [Google Scholar] [CrossRef]
- Chen, X.; Huang, X.; Liu, C.; Li, S.; Yang, Z.; Zhang, F.; Chen, X.; Shan, H.; Tao, L.; Zhang, M. Surface-Fill H2S-Releasing Silk Fibroin Hydrogel for Brain Repair through the Repression of Neuronal Pyroptosis. Acta Biomater. 2022, 154, 259–274. [Google Scholar] [CrossRef]
- Li, W.; Xu, K.; Liu, Y.; Lei, X.; Ru, X.; Guo, P.; Feng, H.; Chen, Y.; Xing, M. Hydrophobic Polystyrene-Modified Gelatin Enhances Fast Hemostasis and Tissue Regeneration in Traumatic Brain Injury. Adv. Healthc. Mater. 2023, 12, 2300708. [Google Scholar] [CrossRef]
- Sahab Negah, S.; Oliazadeh, P.; Jahanbazi Jahan-Abad, A.; Eshaghabadi, A.; Samini, F.; Ghasemi, S.; Asghari, A.; Gorji, A. Transplantation of Human Meningioma Stem Cells Loaded on a Self-Assembling Peptide Nanoscaffold Containing IKVAV Improves Traumatic Brain Injury in Rats. Acta Biomater. 2019, 92, 132–144. [Google Scholar] [CrossRef]
- Sulejczak, D.; Andrychowski, J.; Kowalczyk, T.; Nakielski, P.; Frontczak-Baniewicz, M.; Kowalewski, T. Electrospun Nanofiber Mat as a Protector against the Consequences of Brain Injury. Folia Neuropathol. 2014, 52, 56–69. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, K.; Wu, S.; Wu, J.; Zhang, J.; Li, J.; Lei, S.; Duan, X.; Men, K. Injectable and Photocurable Gene Scaffold Facilitates Efficient Repair of Spinal Cord Injury. ACS Appl. Mater. Interfaces 2024, 16, 4375. [Google Scholar] [CrossRef] [PubMed]
- Ozcicek, I.; Aysit, N.; Balcikanli, Z.; Ayturk, N.U.; Aydeger, A.; Baydas, G.; Aydin, M.S.; Altintas, E.; Erim, U.C. Development of BDNF/NGF/IKVAV Peptide Modified and Gold Nanoparticle Conductive PCL/PLGA Nerve Guidance Conduit for Regeneration of the Rat Spinal Cord Injury. Macromol. Biosci. 2024, 1, 2300453. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Moon, S.H.; Kang, D.; Choi, E.; Yang, G.H.; Kim, K.N.; Won, J.Y.; Yi, S. A Multi-Channel Collagen Conduit with Aligned Schwann Cells and Endothelial Cells for Enhanced Neuronal Regeneration in Spinal Cord Injury. Biomater. Sci. 2023, 11, 7884–7896. [Google Scholar] [CrossRef] [PubMed]
- Yari-Ilkhchi, A.; Mahkam, M.; Ebrahimi-Kalan, A.; Zangbar, H.S. Design and Synthesis of Nano-Biomaterials Based on Graphene and Local Delivery of Cerebrolysin into the Injured Spinal Cord of Mice, Promising Neural Restoration. Nanoscale Adv. 2024, 6, 990. [Google Scholar] [CrossRef]
- Dong, Z.; Pei, Z.; Wang, Y.; Li, Z.; Khan, A.; Meng, X. Ascl1 Regulates Electric Field-Induced Neuronal Differentiation through PI3K/Akt Pathway. Neuroscience 2019, 404, 141–152. [Google Scholar] [CrossRef]
- Milosevic, M.; Nakanishi, T.; Sasaki, A.; Yamaguchi, A.; Nomura, T.; Popovic, M.R.; Nakazawa, K. Cortical Re-Organization after Traumatic Brain Injury Elicited Using Functional Electrical Stimulation Therapy: A Case Report. Front. Neurosci. 2021, 15, 693861. [Google Scholar] [CrossRef] [PubMed]
- Pink, A.E.; Williams, C.; Alderman, N.; Stoffels, M. The Use of Repetitive Transcranial Magnetic Stimulation (RTMS) Following Traumatic Brain Injury (TBI): A Scoping Review. Neuropsychol. Rehabil. 2021, 31, 479–505. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sahu, S.; Kaur, S.; Jain, S. Effect of Low Intensity Magnetic Field Stimulation on Calcium-Mediated Cytotoxicity after Mild Spinal Cord Contusion Injury in Rats. Ann. Neurosci. 2020, 27, 49–56. [Google Scholar] [CrossRef]
- Chen, S.-F.; Su, W.-S.; Wu, C.-H.; Lan, T.-H.; Yang, F.-Y. Transcranial Ultrasound Stimulation Improves Long-Term Functional Outcomes and Protects against Brain Damage in Traumatic Brain Injury. Mol. Neurobiol. 2018, 55, 7079. [Google Scholar] [CrossRef]
- Hong, Y.; Lee, E.; Park, K.; Han, M.; Kim, K.T.; Park, J. Ultrasound Stimulation Improves Inflammatory Resolution, Neuroprotection, and Functional Recovery after Spinal Cord Injury. Sci. Rep. 2022, 12, 3636. [Google Scholar] [CrossRef]
- Stevens, A.R.; Hadis, M.; Milward, M.R.; Ahmed, Z.; Belli, A.; Palin, W.M.; Davies, D.J. Photobiomodulation in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. J. Neurotrauma 2022, 40, 3–4. [Google Scholar] [CrossRef]
- Ramezani, F.; Razmgir, M.; Tanha, K.; Nasirinezhad, F.; Neshastehriz, A.; Bahrami-Ahmadi, A.; Hamblin, M.; Janzadeh, A. Photobiomodulation for Spinal Cord Injury: A Systematic Review and Meta-Analysis. Physiol. Behav. 2020, 224, 112977. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.J.; Zhao, Z.; Chang, J.Q.; He, L.W.; Su, W.N.; Feng, T.; Zhao, C.; Xu, M.; Rao, J.S. Epidural Combined Optical and Electrical Stimulation Induces High-Specificity Activation of Target Muscles in Spinal Cord Injured Rats. Front. Neurosci. 2023, 17, 1282558. [Google Scholar] [CrossRef]
- Medina, R.; Ho, A.; Reddy, R.; Chen, J.; Castellanos, J. Narrative Review of Current Neuromodulation Modalities for Spinal Cord Injury. Front. Pain Res. 2023, 4, 1143405. [Google Scholar] [CrossRef]
- Oh, J.; Scheffler, M.S.; Mahan, E.E.; King, S.T.; Martin, C.A.; Dinh, J.; Steele, A.G.; O’Malley, M.K.; Sayenko, D.G. Combinatorial Effects of Transcutaneous Spinal Stimulation and Task-Specific Training to Enhance Hand Motor Output after Paralysis. Top. Spinal Cord Inj. Rehabil. 2023, 29, 15–22. [Google Scholar] [CrossRef]
- Kandilakis, C.; Sasso-Lance, E. Exoskeletons for Personal Use after Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2021, 102, 331–337. [Google Scholar] [CrossRef]
- Forte, G.; Leemhuis, E.; Favieri, F.; Casagrande, M.; Giannini, A.M.; De Gennaro, L.; Pazzaglia, M. Exoskeletons for Mobility after Spinal Cord Injury: A Personalized Embodied Approach. J. Pers. Med. 2022, 12, 380. [Google Scholar] [CrossRef] [PubMed]
- Cajigas, I.; Davis, K.C.; Meschede-Krasa, B.; Prins, N.W.; Gallo, S.; Naeem, J.A.; Palermo, A.; Wilson, A.; Guerra, S.; Parks, B.A.; et al. Implantable Brain-Computer Interface for Neuroprosthetic-Enabled Volitional Hand Grasp Restoration in Spinal Cord Injury. Brain Commun. 2021, 3, fcab248. [Google Scholar] [CrossRef] [PubMed]
ASIA Grade | PPV | 95% CI |
---|---|---|
A | 8.3% | 5.2–12.6 |
B | 39.4% | 27.6–52.2 |
C | 61.8% | 50.0–72.8 |
D | 97.3% | 92.2–99.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, A.R.; Belli, A.; Ahmed, Z. Neurotrauma—From Injury to Repair: Clinical Perspectives, Cellular Mechanisms and Promoting Regeneration of the Injured Brain and Spinal Cord. Biomedicines 2024, 12, 643. https://doi.org/10.3390/biomedicines12030643
Stevens AR, Belli A, Ahmed Z. Neurotrauma—From Injury to Repair: Clinical Perspectives, Cellular Mechanisms and Promoting Regeneration of the Injured Brain and Spinal Cord. Biomedicines. 2024; 12(3):643. https://doi.org/10.3390/biomedicines12030643
Chicago/Turabian StyleStevens, Andrew R., Antonio Belli, and Zubair Ahmed. 2024. "Neurotrauma—From Injury to Repair: Clinical Perspectives, Cellular Mechanisms and Promoting Regeneration of the Injured Brain and Spinal Cord" Biomedicines 12, no. 3: 643. https://doi.org/10.3390/biomedicines12030643
APA StyleStevens, A. R., Belli, A., & Ahmed, Z. (2024). Neurotrauma—From Injury to Repair: Clinical Perspectives, Cellular Mechanisms and Promoting Regeneration of the Injured Brain and Spinal Cord. Biomedicines, 12(3), 643. https://doi.org/10.3390/biomedicines12030643