Transforming Diabetes Care: The Molecular Pathways through Which GLP1-RAs Impact the Kidneys in Diabetic Kidney Disease
Abstract
:1. Introduction
1.1. Multifaceted Roles of GLP-1 in Metabolic Regulation
1.2. GLP-1RA Development
1.3. Localization and Expression of Glucagon-like Peptide-1 Receptors in Renal Tissues
2. The Role of GLP-1 Receptor Agonists in Renal Protection and Diabetic Kidney Disease Management
2.1. Understanding the Complex Pathophysiology of Diabetic Kidney Disease: Identifying Molecular Sites for Therapeutic Interventions
2.2. Impact of Glycemic Control and GLP-1 Receptor Agonists on CKD Progression: Mitigating Hyperfiltration and Albuminuria in Diabetes
2.3. Exploring the Influence of GLP-1 Receptor Agonists on Renal Hemodynamic
2.3.1. Exploring the Dynamic Role of GLP-1R and GLP-1RA in Renal Natriuresis and Renal Hemodynamic: Acute and Chronic Perspectives
2.3.2. Effects on Renal Autoregulation
2.4. GLP-1RAs: Effect on Blood Pressure Control in Type 2 Diabetes
2.5. GLP-1 Receptor Agonists: Bridging Antioxidative and Anti-Inflammatory Mechanisms in Diabetes, Atherosclerosis, and Kidney Function
2.6. Targeting Obesity-Induced CKD: The Multifaceted Role of GLP-1R Agonists in Metabolic and Renal Health
3. Clinical Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Gribble, F.; Grill, H.J.; Habener, J.F.; Holst, J.J.; et al. Glucagon-like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Niedereichholz, U.; Ettler, R.; Holst, J.J.; Orskov, C.; Ritzel, R. Glucagon-like Peptide 1 Inhibition of Gastric Emptying Outweighs Its Insulinotropic Effects in Healthy Humans. Am. J. Physiol. 1997, 273, E981–E988. [Google Scholar] [CrossRef] [PubMed]
- Jelsing, J.; Vrang, N.; Hansen, G.; Raun, K.; Tang-Christensen, M.; Knudsen, L.B. Liraglutide: Short-Lived Effect on Gastric Emptying—Long Lasting Effects on Body Weight. Diabetes Obes. Metab. 2012, 14, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Tahrani, A.A.; Barnett, A.H.; Bailey, C.J. Pharmacology and Therapeutic Implications of Current Drugs for Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2016, 12, 566–592. [Google Scholar] [CrossRef] [PubMed]
- Granata, A.; Maccarrone, R.; Anzaldi, M.; Leonardi, G.; Pesce, F.; Amico, F.; Gesualdo, L.; Corrao, S. GLP-1 Receptor Agonists and Renal Outcomes in Patients with Diabetes Mellitus Type 2 and Diabetic Kidney Disease: State of the Art. Clin. Kidney J. 2022, 15, 1657–1665. [Google Scholar] [CrossRef]
- McLean, B.A.; Wong, C.K.; Campbell, J.E.; Hodson, D.J.; Trapp, S.; Drucker, D.J. Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocr. Rev. 2021, 42, 101–132. [Google Scholar] [CrossRef]
- Hansen, L.; Deacon, C.F.; Orskov, C.; Holst, J.J. Glucagon-like Peptide-1-(7-36)amide Is Transformed to Glucagon-like Peptide-1-(9-36)amide by Dipeptidyl Peptidase IV in the Capillaries Supplying the L Cells of the Porcine Intestine. Endocrinology 1999, 140, 5356–5363. [Google Scholar] [CrossRef]
- Klen, J.; Dolžan, V. Glucagon-like Peptide-1 Receptor Agonists in the Management of Type 2 Diabetes Mellitus and Obesity: The Impact of Pharmacological Properties and Genetic Factors. Int. J. Mol. Sci. 2022, 23, 3451. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes—State-of-the-Art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef]
- Tran, K.L.; Park, Y.I.; Pandya, S.; Muliyil, N.J.; Jensen, B.D.; Huynh, K.; Nguyen, Q.T. Overview of Glucagon-like Peptide-1 Receptor Agonists for the Treatment of Patients with Type 2 Diabetes. Am. Health Drug Benefits 2017, 10, 178–188. [Google Scholar]
- Gentilella, R.; Pechtner, V.; Corcos, A.; Consoli, A. Glucagon-like Peptide-1 Receptor Agonists in Type 2 Diabetes Treatment: Are They All the Same? Diabetes Metab. Res. Rev. 2019, 35, e3070. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; et al. Discovery of the Once-Weekly Glucagon-like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.J. Efficacy of Semaglutide in a Subcutaneous and an Oral Formulation. Front. Endocrinol. 2021, 12, 645617. [Google Scholar] [CrossRef] [PubMed]
- Thorens, B. Expression Cloning of the Pancreatic Beta Cell Receptor for the Gluco-Incretin Hormone Glucagon-like Peptide 1. Proc. Natl. Acad. Sci. USA 1992, 89, 8641–8645. [Google Scholar] [CrossRef] [PubMed]
- Hviid, A.V.R.; Sørensen, C.M. Glucagon-like Peptide-1 Receptors in the Kidney: Impact on Renal Autoregulation. Am. J. Physiol. Renal. Physiol. 2020, 318, F443–F454. [Google Scholar] [CrossRef]
- Tsimihodimos, V.; Elisaf, M. Effects of Incretin-Based Therapies on Renal Function. Eur. J. Pharmacol. 2018, 818, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Schlatter, P.; Beglinger, C.; Drewe, J.; Gutmann, H. Glucagon-like Peptide 1 Receptor Expression in Primary Porcine Proximal Tubular Cells. Regul. Pept. 2007, 141, 120–128. [Google Scholar] [CrossRef]
- Pyke, C.; Knudsen, L.B. The Glucagon-Like Peptide-1 Receptor—Or Not? Endocrinology 2013, 154, 4–8. [Google Scholar] [CrossRef]
- Pyke, C.; Heller, R.S.; Kirk, R.K.; Ørskov, C.; Reedtz-Runge, S.; Kaastrup, P.; Hvelplund, A.; Bardram, L.; Calatayud, D.; Knudsen, L.B. GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed with Extensively Validated Monoclonal Antibody. Endocrinology 2014, 155, 1280–1290. [Google Scholar] [CrossRef]
- Feng, W.; Chen, L.; Nguyen, P.K.; Wu, S.M.; Li, G. Single Cell Analysis of Endothelial Cells Identified Organ-Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular Features. Front. Cardiovasc. Med. 2019, 6, 165. [Google Scholar] [CrossRef]
- Clarke, S.J.; Giblett, J.P.; Yang, L.L.; Hubsch, A.; Zhao, T.; Aetesam-Ur-Rahman, M.; West, N.E.J.; O’Sullivan, M.; Figg, N.; Bennett, M.; et al. GLP-1 Is a Coronary Artery Vasodilator in Humans. J. Am. Heart Assoc. 2018, 7, e010321. [Google Scholar] [CrossRef]
- Kimura, T.; Obata, A.; Shimoda, M.; Shimizu, I.; da Silva Xavier, G.; Okauchi, S.; Hirukawa, H.; Kohara, K.; Mune, T.; Moriuchi, S.; et al. Down-Regulation of Vascular GLP-1 Receptor Expression in Human Subjects with Obesity. Sci. Rep. 2018, 8, 10644. [Google Scholar] [CrossRef]
- Baggio, L.L.; Yusta, B.; Mulvihill, E.E.; Cao, X.; Streutker, C.J.; Butany, J.; Cappola, T.P.; Margulies, K.B.; Drucker, D.J. GLP-1 Receptor Expression within the Human Heart. Endocrinology 2018, 159, 1570–1584. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.P.; Poulsen, S.S.; Kissow, H.; Holstein-Rathlou, N.H.; Deacon, C.F.; Jensen, B.L.; Holst, J.J.; Sorensen, C.M. Activation of GLP-1 Receptors on Vascular Smooth Muscle Cells Reduces the Autoregulatory Response in Afferent Arterioles and Increases Renal Blood Flow. Am. J. Physiol. Renal. Physiol. 2015, 308, F867–F877. [Google Scholar] [CrossRef] [PubMed]
- Pelle, M.C.; Provenzano, M.; Busutti, M.; Porcu, C.V.; Zaffina, I.; Stanga, L.; Arturi, F. Up-Date on Diabetic Nephropathy. Life 2022, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- MacIsaac, R.J.; Jerums, G.; Ekinci, E.I. Effects of Glycaemic Management on Diabetic Kidney Disease. World J. Diabetes 2017, 8, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Jerums, G.; Ekinci, E.I.; Premaratne, E.; Baker, S.T.; Panagiotopolous, S.; MacIsaac, R.J. Diabetic Nephropathy, 4th ed.; de Fronzo, R., Ferrannini, E., Zimmet, P., Alberti, G., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 911–925. [Google Scholar]
- Buczyńska, A.; Sidorkiewicz, I.; Krętowski, A.J.; Adamska, A. Examining the Clinical Relevance of Metformin as an Antioxidant Intervention. Front. Pharmacol. 2024, 15, 1330797. [Google Scholar] [CrossRef] [PubMed]
- Tonneijck, L.; Muskiet, M.H.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.; van Raalte, D.H.; Joles, J.A. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 872918. [Google Scholar] [CrossRef]
- Xu, C.; Ha, X.; Yang, S.; Tian, X.; Jiang, H. Advances in Understanding and Treating Diabetic Kidney Disease: Focus on Tubulointerstitial Inflammation Mechanisms. Front. Endocrinol. 2023, 14, 1232790. [Google Scholar] [CrossRef]
- Vallon, V.; Thomson, S.C. Renal Function in Diabetic Disease Models: The Tubular System in the Pathophysiology of the Diabetic Kidney. Annu. Rev. Physiol. 2012, 74, 351–375. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Ding, L.; Andoh, V.; Zhang, J.; Chen, L. The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life 2023, 13, 539. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Natarajan, R. Epigenetics and Epigenomics in Diabetic Kidney Disease and Metabolic Memory. Nat. Rev. Nephrol. 2019, 15, 327–345. [Google Scholar] [CrossRef]
- Wilbon, S.S.; Kolonin, M.G. GLP1 Receptor Agonists-Effects Beyond Obesity and Diabetes. Cells 2023, 13, 65. [Google Scholar] [CrossRef]
- Piazzolla, G.; Vozza, A.; Volpe, S.; Bergamasco, A.; Triggiani, V.; Lisco, G.; Falconieri, M.; Tortorella, C.; Solfrizzi, V.; Sabbà, C. Effectiveness and Clinical Benefits of New Anti-Diabetic Drugs: A Real Life Experience. Open Med. 2022, 17, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Park, S.Y.; Lee, D.Y.; Kim, N.H.; Seo, J.A. GLP-1 Receptor Agonists in Diabetic Kidney Disease: Current Evidence and Future Directions. Kidney Res. Clin. Pract. 2022, 41, 136–149. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Bruton, J.L.; Perusek, M.C.; Lancaster, J.L.; Kopp, D.T.; DeFronzo, R.A. Effect of Strict Glycemic Control on Renal Hemodynamic Response to Amino Acids and Renal Enlargement in Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med. 1991, 324, 1626–1632. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial Research Group. Effect of Intensive Diabetes Treatment on the Development and Progression of Long-Term Complications in Adolescents with Insulin-Dependent Diabetes Mellitus: Diabetes Control and Complications Trial. J. Pediatr. 1994, 125, 177–188. [Google Scholar] [CrossRef]
- Shichiri, M.; Kishikawa, H.; Ohkubo, Y.; Wake, N. Long-Term Results of the Kumamoto Study on Optimal Diabetes Control in Type 2 Diabetic Patients. Diabetes Care 2000, 23 (Suppl. S2), B21–B29. [Google Scholar]
- Leiter, L.A.; Carr, M.C.; Stewart, M.; Jones-Leone, A.; Scott, R.; Yang, F.; Handelsman, Y. Efficacy and Safety of the Once-Weekly GLP-1 Receptor Agonist Albiglutide versus Sitagliptin in Patients with Type 2 Diabetes and Renal Impairment: A Randomized Phase III Study. Diabetes Care 2014, 37, 2723–2730. [Google Scholar] [CrossRef]
- Davies, M.J.; Bain, S.C.; Atkin, S.L.; Rossing, P.; Scott, D.; Shamkhalova, M.S.; Bosch-Traberg, H.; Syrén, A.; Umpierrez, G.E. Efficacy and Safety of Liraglutide versus Placebo as Add-On to Glucose-Lowering Therapy in Patients with Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial. Diabetes Care 2016, 39, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-to-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Mosenzon, O.; Blicher, T.M.; Rosenlund, S.; Eriksson, J.W.; Heller, S.; Hels, O.H.; Pratley, R.; Sathyapalan, T.; Desouza, C.; Abramof, R.; et al. Efficacy and Safety of Oral Semaglutide in Patients with Type 2 Diabetes and Moderate Renal Impairment (PIONEER 5): A Placebo-Controlled, Randomised, Phase 3a Trial. Lancet Diabetes Endocrinol. 2019, 7, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Bloomgarden, Z. The Kidney and Cardiovascular Outcome Trials. J. Diabetes 2018, 10, 88–89. [Google Scholar] [CrossRef]
- Mosenzon, O.; Schechter, M.; Leibowitz, G. Kidney Outcomes with Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes. Adv. Chronic Kidney Dis. 2021, 28, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Rønn, J.; Jensen, E.P.; Wewer Albrechtsen, N.J.; Holst, J.J.; Sorensen, C.M. Glucagon-like Peptide-1 Acutely Affects Renal Blood Flow and Urinary Flow Rate in Spontaneously Hypertensive Rats Despite Significantly Reduced Renal Expression of GLP-1 Receptors. Physiol. Rep. 2017, 5, e13503. [Google Scholar] [CrossRef] [PubMed]
- Rieg, T.; Gerasimova, M.; Murray, F.; Masuda, T.; Tang, T.; Rose, M.; Drucker, D.J.; Vallon, V. Natriuretic Effect by Exendin-4, but Not the DPP-4 Inhibitor Alogliptin, Is Mediated via the GLP-1 Receptor and Preserved in Obese Type 2 Diabetic Mice. Am. J. Physiol. Renal. Physiol. 2012, 303, F963–F971. [Google Scholar] [CrossRef] [PubMed]
- Savignano, F.A.; Crajoinas, R.O.; Pacheco, B.P.; Campos, L.C.; Shimizu, M.H.; Seguro, A.C.; Girardi, A.C. Attenuated Diuresis and Natriuresis in Response to Glucagon-like Peptide-1 in Hypertensive Rats Are Associated with Lower Expression of the Glucagon-like Peptide-1 Receptor in the Renal Vasculature. Eur. J. Pharmacol. 2017, 811, 38–47. [Google Scholar] [CrossRef]
- Asmar, A.; Cramon, P.K.; Simonsen, L.; Asmar, M.; Sorensen, C.M.; Madsbad, S.; Moro, C.; Hartmann, B.; Jensen, B.L.; Holst, J.J.; et al. Extracellular Fluid Volume Expansion Uncovers a Natriuretic Action of GLP-1: A Functional GLP-1-Renal Axis in Man. J. Clin. Endocrinol. Metab. 2019, 104, 2509–2519. [Google Scholar] [CrossRef]
- Asmar, A.; Simonsen, L.; Asmar, M.; Madsbad, S.; Holst, J.J.; Frandsen, E.; Moro, C.; Sorensen, C.M.; Jonassen, T.; Bülow, J. Glucagon-like Peptide-1 Does Not Have Acute Effects on Central or Renal Hemodynamics in Patients with Type 2 Diabetes without Nephropathy. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E744–E753. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; van Baar, M.J.B.; Kramer, M.H.H.; Hoorn, E.J.; Joles, J.A.; van Raalte , D.H. GLP-1 and the Kidney: From Physiology to Pharmacology and Outcomes in Diabetes. Nat. Rev. Nephrol. 2017, 13, 605–628. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.V.; Russo, G.; Giandalia, A.; Viazzi, F.; Pontremoli, R.; De Cosmo, S. GLP-1 Receptor Agonists and Kidney Protection. Medicina 2019, 55, 233. [Google Scholar] [CrossRef] [PubMed]
- Dieter, B.P.; Alicic, R.Z.; Tuttle, K.R. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From the Patient-Side to the Bench-Side. Am. J. Physiol. Renal. Physiol. 2018, 315, F1519–F1525. [Google Scholar] [CrossRef] [PubMed]
- Skov, J.; Dejgaard, A.; Frøkiær, J.; Holst, J.J.; Jonassen, T.; Rittig, S.; Christiansen, J.S. Glucagon-like peptide-1 (GLP-1): Effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J. Clin. Endocrinol. Metab. 2013, 98, E664–E671. [Google Scholar] [CrossRef]
- Skov, J.; Pedersen, M.; Holst, J.J.; Madsen, B.; Goetze, J.P.; Rittig, S.; Jonassen, T.; Frøkiær, J.; Dejgaard, A.; Christiansen, J.S. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: A randomized clinical trial. Diabetes Obes. Metab. 2016, 18, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Diz-Chaves, Y.; Herrera-Pérez, S.; González-Matías, L.C.; Lamas, J.A.; Mallo, F. Glucagon-like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020, 12, 3304. [Google Scholar] [CrossRef]
- Liu, X.; Patel, K.P.; Zheng, H. Role of Renal Sympathetic Nerves in GLP-1 (Glucagon-like Peptide-1) Receptor Agonist Exendin-4-Mediated Diuresis and Natriuresis in Diet-Induced Obese Rats. J. Am. Heart Assoc. 2021, 10, e022542. [Google Scholar] [CrossRef] [PubMed]
- Katsurada, K.; Nandi, S.S.; Sharma, N.M.; Zheng, H.; Liu, X.; Patel, K.P. Does glucagon-like peptide-1 induce diuresis and natriuresis by modulating afferent renal nerve activity? Am. J. Physiol. Physiol. 2019, 317, F1010–F1021. [Google Scholar] [CrossRef]
- Farah, L.X.; Valentini, V.; Pessoa, T.D.; Malnic, G.; McDonough, A.A.; Girardi, A.C. The Physiological Role of Glucagon-like Peptide-1 in the Regulation of Renal Function. Am. J. Physiol. Renal. Physiol. 2016, 310, F123–F127. [Google Scholar] [CrossRef]
- Skov, J.; Holst, J.J.; Gotze, J.P.; Frokiaer, J.; Christiansen, J.S. Glucagon-like Peptide-1: Effect on Pro-Atrial Natriuretic Peptide in Healthy Males. Endocr. Connect. 2014, 3, 11–16. [Google Scholar] [CrossRef]
- Hansen, P.B.; Friis, U.G.; Uhrenholt, T.R.; Briggs, J.; Schnermann, J. Intracellular Signalling Pathways in the Vasoconstrictor Response of Mouse Afferent Arterioles to Adenosine. Acta Physiol. 2007, 191, 89–97. [Google Scholar] [CrossRef]
- Schnermann, J.; Levine, D.Z. Paracrine Factors in Tubuloglomerular Feedback: Adenosine, ATP, and Nitric Oxide. Annu. Rev. Physiol. 2003, 65, 501–529. [Google Scholar] [CrossRef]
- Just, A. Mechanisms of Renal Blood Flow Autoregulation: Dynamics and Contributions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1–R17. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Mistry, M.; Roman, R.J. Renal effects of glucagon-like peptide in rats. Eur. J. Pharmacol. 2002, 434, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Thomson, S.C.; Kashkouli, A.; Singh, P. Glucagon-like Peptide-1 Receptor Stimulation Increases GFR and Suppresses Proximal Reabsorption in the Rat. Am. J. Physiol. Renal. Physiol. 2013, 304, F137–F144. [Google Scholar] [CrossRef] [PubMed]
- Tatarkiewicz, K.; Sablan, E.J.; Polizzi, C.J.; Villescaz, C.; Parkes, D.G. Long-Term Metabolic Benefits of Exenatide in Mice Are Mediated Solely Via the Known Glucagon-like Peptide 1 Receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R490–R498. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Postnov, D.D.; Sørensen, C.M.; Sosnovtseva, O. In Vivo Mapping of Hemodynamic Responses Mediated by Tubuloglomerular Feedback in Hypertensive Kidneys. Sci. Rep. 2023, 13, 21954. [Google Scholar] [CrossRef]
- Katsurada, K.; Nakata, M.; Saito, T.; Zhang, B.; Maejima, Y.; Nandi, S.S.; Sharma, N.M.; Patel, K.P.; Kario, K.; Yada, T. Central Glucagon-like Peptide-1 Receptor Signaling via Brainstem Catecholamine Neurons Counteracts Hypertension in Spontaneously Hypertensive Rats. Sci. Rep. 2019, 9, 12986. [Google Scholar] [CrossRef]
- Ribeiro-Silva, J.C.; Tavares, C.A.M.; Girardi, A.C.C. The Blood Pressure Lowering Effects of Glucagon-like Peptide-1 Receptor Agonists: A Mini-Review of the Potential Mechanisms. Curr. Opin. Pharmacol. 2023, 69, 102355. [Google Scholar] [CrossRef]
- Helmstädter, J.; Frenis, K.; Filippou, K.; Grill, A.; Dib, M.; Kalinovic, S.; Pawelke, F.; Kus, K.; Kröller-Schön, S.; Oelze, M.; et al. Endothelial GLP-1 (Glucagon-like Peptide-1) Receptor Mediates Cardiovascular Protection by Liraglutide in Mice with Experimental Arterial Hypertension. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 145–158. [Google Scholar] [CrossRef]
- Libby, P.; Hansson, G.K. Inflammation and Immunity in Diseases of the Arterial Tree: Players and Layers. Circ. Res. 2015, 116, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.L.; Bailey, M.A.; Girardi, A.C.C. Endogenous Activation of Glucagon-like Peptide-1 Receptor Contributes to Blood Pressure Control: Role of Proximal Tubule Na+/H+ Exchanger Isoform 3, Renal Angiotensin II, and Insulin Sensitivity. Hypertension 2020, 76, 839–848. [Google Scholar] [CrossRef]
- Pontes, R.B.; Girardi, A.C.; Nishi, E.E.; Campos, R.R.; Bergamaschi, C.T. Crosstalk between the Renal Sympathetic Nerve and Intrarenal Angiotensin II Modulates Proximal Tubular Sodium Reabsorption. Exp. Physiol. 2015, 100, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Tong, H.M.; Li, Y.S.; Cui, J. The Effect of Semaglutide on Blood Pressure in Patients with Type-2 Diabetes: A Systematic Review and Meta-Analysis. Endocrine 2023, 83, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Rojano Toimil, A.; Ciudin, A. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. J. Clin. Med. 2021, 10, 3955. [Google Scholar] [CrossRef] [PubMed]
- Winiarska, A.; Knysak, M.; Nabrdalik, K.; Gumprecht, J.; Stompór, T. Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. Int. J. Mol. Sci. 2021, 22, 10822. [Google Scholar] [CrossRef] [PubMed]
- Kawanami, D.; Takashi, Y. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Clinical Outcomes to Mechanisms. Front. Pharmacol. 2020, 11, 967. [Google Scholar] [CrossRef] [PubMed]
- Liljedahl, L.; Pedersen, M.H.; McGuire, J.N.; James, P. The Impact of the Glucagon-like Peptide 1 Receptor Agonist Liraglutide on the Streptozotocin-Induced Diabetic Mouse Kidney Proteome. Physiol. Rep. 2019, 7, e13994. [Google Scholar] [CrossRef]
- Abdel-Latif, R.G.; Ahmed, A.F.; Heeba, G.H. Low-Dose Lixisenatide Protects Against Early-Onset Nephropathy Induced in Diabetic Rats. Life Sci. 2020, 263, 118592. [Google Scholar] [CrossRef]
- Fang, S.; Cai, Y.; Lyu, F.; Zhang, H.; Wu, C.; Zeng, Y.; Fan, C.; Zou, S.; Zhang, Y.; Li, P.; et al. Exendin-4 Improves Diabetic Kidney Disease in C57BL/6 Mice Independent of Brown Adipose Tissue Activation. J. Diabetes Res. 2020, 2020, 9084567. [Google Scholar] [CrossRef]
- Hendarto, H.; Inoguchi, T.; Maeda, Y.; Ikeda, N.; Zheng, J.; Takei, R.; Yokomizo, H.; Hirata, E.; Sonoda, N.; Takayanagi, R. GLP-1 Analog Liraglutide Protects against Oxidative Stress and Albuminuria in Streptozotocin-Induced Diabetic Rats via Protein Kinase A-Mediated Inhibition of Renal NAD(P)H Oxidases. Metabolism 2012, 61, 1422–1434. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Escobedo, B.; Lee, A.Y.; Thorwald, M.; Godoy-Lugo, J.A.; Nakano, D.; Nishiyama, A.; Parkes, D.G.; Ortiz, R.M. Simultaneous Angiotensin Receptor Blockade and Glucagon-like Peptide-1 Receptor Activation Ameliorate Albuminuria in Obese Insulin-Resistant Rats. Clin. Exp. Pharmacol. Physiol. 2019, 47, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Tsai, T.-H.; Yang, C.-C.; Sun, C.-K.; Chang, L.-T.; Chen, H.-H.; Chang, C.-L.; Sung, P.-H.; Zhen, Y.-Y.; Leu, S.; et al. Exendin-4 and Sitagliptin Protect Kidney from Ischemia-Reperfusion Injury Through Suppressing Oxidative Stress and Inflammatory Reaction. J. Transl. Med. 2013, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zheng, Z.; Guan, M.; Zhang, Q.; Li, Y.; Wang, L.; Xue, Y. Exendin-4 Ameliorates High Glucose-Induced Fibrosis by Inhibiting the Secretion of miR-192 from Injured Renal Tubular Epithelial Cells. Exp. Mol. Med. 2018, 50, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, S.F.; Pusapati, S.; Anwar, M.S.; Lohana, D.; Kumar, P.; Nandula, S.A.; Nawaz, F.K.; Tracey, K.; Yang, H.; LeRoith, D.; et al. Glucagon-like Peptide-1: A Multi-Faceted Anti-Inflammatory Agent. Front. Immunol. 2023, 14, 1148209. [Google Scholar] [CrossRef] [PubMed]
- Mosterd, C.M.; Bjornstad, P.; van Raalte, D.H. Nephroprotective Effects of GLP-1 Receptor Agonists: Where Do We Stand? J. Nephrol. 2020, 33, 965–975. [Google Scholar] [CrossRef]
- Guo, Z.; Li, P.; Ge, J.; Li, H. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis. 2022, 13, 1787–1822. [Google Scholar] [CrossRef] [PubMed]
- Turan, B.; Durak, A.; Olgar, Y.; Tuncay, E. Comparisons of Pleiotropic Effects of SGLT2 Inhibition and GLP-1 Agonism on Cardiac Glucose Intolerance in Heart Dysfunction. Mol. Cell. Biochem. 2022, 477, 2609–2625. [Google Scholar] [CrossRef]
- Lang, J. Molecular Mechanisms and Regulation of Insulin Exocytosis as a Paradigm of Endocrine Secretion. Eur. J. Biochem. 1999, 259, 3–17. [Google Scholar] [CrossRef]
- Guo, C.; Huang, T.; Chen, A.; Chen, X.; Wang, L.; Shen, F.; Gu, X. Glucagon-like Peptide 1 Improves Insulin Resistance In Vitro through Anti-Inflammation of Macrophages. Braz. J. Med. Biol. Res. 2016, 49, e5826. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, M.S.; Choung, J.S.; Kim, S.S.; Oh, H.H.; Choi, C.S.; Ha, S.-Y.; Kang, Y.; Kim, Y.; Jun, H.-S. Glucagon-like Peptide-1 Inhibits Adipose Tissue Macrophage Infiltration and Inflammation in an Obese Mouse Model of Diabetes. Diabetologia 2012, 55, 2456–2468. [Google Scholar] [CrossRef] [PubMed]
- Ajabnoor, G.M.A.; Hashim, K.T.; Alzahrani, M.M.; Alsuheili, A.Z.; Alharbi, A.F.; Alhozali, A.M.; Enani, S.; Eldakhakhny, B.; Elsamanoudy, A. The Possible Effect of the Long-Term Use of Glucagon-like Peptide-1 Receptor Agonists (GLP-1RA) on Hba1c and Lipid Profile in Type 2 Diabetes Mellitus: A Retrospective Study in KAUH, Jeddah, Saudi Arabia. Diseases 2023, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Maleki, M.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. The Impact of Incretin-Based Medications on Lipid Metabolism. J. Diabetes Res. 2021, 2021, 1815178. [Google Scholar] [CrossRef] [PubMed]
- Sancho, V.; Trigo, M.V.; González, N.; Valverde, I.; Malaisse, W.J.; Villanueva-Peñacarrillo, M.L. Effects of Glucagon-like Peptide-1 and Exendins on Kinase Activity, Glucose Transport, and Lipid Metabolism in Adipocytes from Normal and Type-2 Diabetic Rats. J. Mol. Endocrinol. 2005, 35, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Hickey, F.B.; Martin, F. Role of the Immune System in Diabetic Kidney Disease. Curr. Diab. Rep. 2018, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, L.S.; Bosteen, M.H.; Fink, L.N.; Sørensen, C.M.; Rosendahl, A.; Mogensen, C.K.; Mogensen, C.K.; Rasmussen, S.E.; Rolin, B.; Nielsen, L.B.; et al. Liraglutide Reduces Both Atherosclerosis and Kidney Inflammation in Moderately Uremic LDLr−/− Mice. PLoS ONE 2016, 11, e016839. [Google Scholar] [CrossRef] [PubMed]
- Ta, N.N.; Schuyler, C.A.; Li, Y.; Lopes-Virella, M.F.; Huang, Y. DPP-4 (CD26) Inhibitor Alogliptin Inhibits Atherosclerosis in Diabetic Apolipoprotein E-Deficient Mice. J. Cardiovasc. Pharmacol. 2011, 58, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Nogi, Y.; Nagashima, M.; Terasaki, M.; Nohtomi, K.; Watanabe, T.; Hirano, T. Glucose-Dependent Insulinotropic Polypeptide Prevents the Progression of Macrophage-Driven Atherosclerosis in Diabetic Apolipoprotein E-Null Mice. PLoS ONE 2012, 7, e1223. [Google Scholar] [CrossRef]
- Nikolic, D.; Giglio, R.V.; Rizvi, A.A.; Patti, A.M.; Montalto, G.; Maranta, F.; Cianflone, D.; Stoian, A.P.; Rizzo, M. Liraglutide Reduces Carotid Intima-Media Thickness by Reducing Small Dense Low-Density Lipoproteins in a Real-World Setting of Patients with Type 2 Diabetes: A Novel Anti-Atherogenic Effect. Diabetes Ther. 2021, 12, 261–274. [Google Scholar] [CrossRef]
- Filippidou, F.M.; Kirsch, A.H.; Thelen, M.; Kétszeri, M.; Artinger, K.; Aringer, I.; Schabhüttl, C.; Mooslechner, A.A.; Frauscher, B.; Pollheimer, M.; et al. Glucagon-like Peptide-1 Receptor Agonism Improves Nephrotoxic Serum Nephritis by Inhibiting T-Cell Proliferation. Am. J. Pathol. 2020, 190, 400–411. [Google Scholar] [CrossRef]
- Moellmann, J.; Klinkhammer, B.M.; Onstein, J.; Stöhr, R.; Jankowski, V.; Jankowski, J.; Lebherz, C.; Tacke, F.; Marx, N.; Boor, P.; et al. Glucagon-like Peptide 1 and Its Cleavage Products Are Renoprotective in Murine Diabetic Nephropathy. Diabetes 2018, 67, 2410–2419. [Google Scholar] [CrossRef]
- Ye, C.; Kong, L.; Zhao, Z.; Li, M.; Wang, S.; Lin, H.; Xu, Y.; Lu, J.; Chen, Y.; Xu, Y.; et al. Causal Associations of Obesity with Chronic Kidney Disease and Arterial Stiffness: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2022, 107, e825–e835. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zeng, X.; Fu, P. The impact of weight loss on renal function in individuals with obesity and type 2 diabetes: A comprehensive review. Front. Endocrinol. 2024, 15, 1320627. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.W.; Lim, J.H.; Kim, M.Y.; Shin, S.J.; Chung, S.; Choi, B.S.; Kim, H.W.; Kim, Y.-S.; Park, C.W.; Chang, Y.S. High-fat Diet-induced Renal Cell Apoptosis and Oxidative Stress in Spontaneously Hypertensive Rat Are Ameliorated by Fenofibrate through the PPARalpha-FoxO3a-PGC-1alpha Pathway. Nephrol. Dial. Transplant. 2012, 27, 2213–2225. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, L.; Liu, S.; Liao, G.; Li, L.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. GLP-1 Receptor Agonist Ameliorates Obesity-Induced Chronic Kidney Injury via Restoring Renal Metabolism Homeostasis. PLoS ONE 2018, 13, e0193473. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.V.; Okada, S.; Sharma, K. Obesity Related Kidney Disease. Curr. Diabetes Rev. 2011, 7, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Faerch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. Semaglutide 2.4 mg Once a Week in Adults with Overweight or Obesity, and Type 2 Diabetes (STEP 2): A Randomised, Double-Blind, Double-Dummy, Placebo-Controlled, Phase 3 Trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef]
- Liu, J.; Guo, S.; Li, H.; Liu, X.Y. Effects of Glucagon-like Peptide-1 Receptor Agonists (GLP-1RAs) on Podocytes, Inflammation, and Oxidative Stress in Patients with Diabetic Nephropathy (DN). Pak. J. Med. Sci. 2022, 38, 1170–1174. [Google Scholar] [CrossRef]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’Neil, P.M.; Rosenstock, J.; Sorrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T.; Investigators, S. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults with Overweight or Obesity without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Huang, Y.; Liu, M.; Saremi, A.; Heerspink, H.J.L.; van Raalte, D.H. Lixisenatide and Renal Outcomes in Patients with Type 2 Diabetes and Acute Coronary Syndrome: An Exploratory Analysis of the ELIXA Randomised, Placebo-Controlled Trial. Lancet Diabetes Endocrinol. 2018, 6, 859–869. [Google Scholar] [CrossRef]
- Shaman, A.M.; Bain, S.C.; Bakris, G.L.; Buse, J.B.; Idorn, T.; Mahaffey, K.W.; Mann, J.F.E.; Nauck, M.A.; Rasmussen, S.; Rossing, P.; et al. Effect of the Glucagon-like Peptide-1 Receptor Agonists Semaglutide and Liraglutide on Kidney Outcomes in Patients with Type 2 Diabetes: Pooled Analysis of SUSTAIN 6 and LEADER. Circulation 2022, 145, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Zhang, Q.; Guan, M.; Sheng, S.; Mo, W.; Zou, M.; Li, J.; Bi, J.; Tang, X.; et al. Exenatide and Renal Outcomes in Patients with Type 2 Diabetes and Diabetic Kidney Disease. Am. J. Nephrol. 2020, 51, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Botros, F.T.; Gerstein, H.C.; Malik, R.; Nicolay, C.; Hoover, A.; Turfanda, I.; Colhoun, H.M.; Shaw, J.E. Dulaglutide and Kidney Function-Related Outcomes in Type 2 Diabetes: A REWIND Post Hoc Analysis. Diabetes Care 2023, 46, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, K.R.; Rayner, B.; Lakshmanan, M.C.; Kwan, A.Y.M.; Konig, M.; Shurzinske, L.; Botros, F.T. Clinical Outcomes by Albuminuria Status with Dulaglutide versus Insulin Glargine in Participants with Diabetes and CKD: AWARD-7 Exploratory Analysis. Kidney 360 2020, 2, 254–262. [Google Scholar] [CrossRef]
- Aviles Bueno, B.; Soler, M.J.; Perez-Belmonte, L.; Jimenez Millan, A.; Rivas Ruiz, F.; Garcia de Lucas, M.D. Semaglutide in Type 2 Diabetes with Chronic Kidney Disease at High Risk Progression-Real-World Clinical Practice. Clin. Kidney J. 2022, 15, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Gragnano, F.; De Sio, V.; Calabrò, P. FLOW Trial Stopped Early Due to Evidence of Renal Protection with Semaglutide. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 7–9. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Yang, C.T.; Lin, W.H.; Yao, W.Y.; Ou, H.T.; Kuo, S. Chronic Kidney Outcomes Associated with GLP-1 Receptor Agonists versus Long-Acting Insulins Among Type 2 Diabetes Patients Requiring Intensive Glycemic Control: A Nationwide Cohort Study. Cardiovasc. Diabetol. 2023, 22, 272. [Google Scholar] [CrossRef]
- Michos, E.D.; Bakris, G.L.; Rodbard, H.W.; Tuttle, K.R. Glucagon-like Peptide-1 Receptor Agonists in Diabetic Kidney Disease: A Review of Their Kidney and Heart Protection. Am. J. Prev. Cardiol. 2023, 14, 100502. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Bhatt, D.L.; Buse, J.B.; Prato, S.D.; Kahn, S.E.; Lincoff, A.M.; McGuire, D.K.; Nauck, M.A.; Nissen, S.E.; Sattar, N.; et al. Comparison of Tirzepatide and Dulaglutide on Major Adverse Cardiovascular Events in Participants with Type 2 Diabetes and Atherosclerotic Cardiovascular Disease: SURPASS-CVOT Design and Baseline Characteristics. Am. Heart J. 2024, 267, 1–11. [Google Scholar] [CrossRef] [PubMed]
Effects | Pathway | Outcome |
---|---|---|
Antioxidative Stress Mechanisms | GLP-1RAs activate receptor-mediated pathways (cAMP, PI3K, PKC), leading to the activation of Nrf-2. | Enhanced activity of antioxidant enzymes (superoxide dismutase, glutathione reductase, catalase), reduction in oxidative stress markers, and protection against oxidative damage in pancreatic cells, liver, and cardiac tissues [5,15,76,77,78]. |
Anti-inflammatory Effects | GLP-1RAs modulate the immune system, reducing proinflammatory cytokine and chemokine levels (TNF-alpha, MCP-1/CCL2, IL-6, IL-1β), and decreasing macrophage infiltration in renal and vascular tissues. | Suppression of inflammation in diabetic nephropathy and atherosclerosis, protection against kidney and cardiovascular diseases [5,15,86,87,101,102]. |
Renal Protection | Restoration of critical enzymes for oxidative stress protection (catalase, glutathione peroxidase-3), inhibition of superoxide generation and NADPH oxidase activity. | Decreased risk of CKD progression, protection against diabetic nephropathy [79,80,81,82,83,84,85]. |
Insulin Sensitivity and Lipid Metabolism | GLP-1RAs improve lipid metabolism by reducing lipogenesis, inhibiting lipid peroxidation, and enhancing fatty acid β-oxidation. They also enhance insulin sensitivity by reducing the production of inflammatory cytokines in adipose tissue. | Reduced lipotoxicity and improved lipid homeostasis Improved lipid homeostasis, reduced insulin resistance, and therapeutic benefits extending beyond glycemic control [90,91,92,93,94,95]. |
Cardiovascular Protection | Reduction in endothelial dysfunction, attenuation of microvascular permeability, and reduced expression of adhesion molecules. GLP-1RAs inhibit oxidative stress in endothelial cells and reduce atherosclerotic lesions through AMPK and MAPK-dependent mechanisms. | Lowered progression of atherosclerosis, reduced cardiovascular risks, and improved endothelial function [53,87,88,89,96,97,98,99,100]. |
Direct Anti-Atherosclerotic Action | GLP-1RAs directly influence atherosclerotic plaque development and stability, reducing foam cell formation and carotid intima-media thickness, and affecting the formation and progression of early-stage atherosclerosis. | Stabilization of existing plaques, improved endothelial function, and reduced atherosclerosis progression [96,97,98,99,100]. |
GLP-1RA Used | Population Characteristics | Duration | Key Findings on Renal Outcomes | |
---|---|---|---|---|
ELIXA | Lixisenatide | T2D patients with recent acute coronary events | 108 weeks | Significant reduction in UACR; no significant change in eGFR or other hard renal endpoints [111] |
LEADER | Liraglutide | Individuals with T2D and high cardiovascular risk | 3.8 years | Significant reductions in macroalbuminuria; slightly slower decline in eGFR compared to placebo, more pronounced in patients with moderate or severe renal impairment [112] |
SUSTAIN-6 | Semaglutide | Individuals with T2D and high cardiovascular risk | 104 weeks | 58.6% of the UACR lowering effect independent of body weight and HbA1c; significant reductions in macroalbuminuria; slightly slower decline in eGFR compared to placebo [112] |
EXSCEL | Exenatide | T2D patients with a history of cardiovascular disease (CVD) | Mean 3.2 years | Reduced progression to microalbuminuria (p = 0.02); for the 40% eGFR decline + ESRD endpoint, the predicted and observed risk reductions were 11.0% (HR 0.89; 0.82–0.97) and 13.7% (HR 0.86, 0.72–1.04), respectively [113] |
REWIND | Dulaglutide | T2D patients, longer-term study | 5.4 years | Reduced albuminuria and surrogate renal endpoints; a ≥40% sustained eGFR decline occurred less frequently among participants assigned to DU than placebo (HR 0.72, 95% CI 0.58–0.88, p = 0.002); the mean annual decline in eGFR slope was significantly smaller for participants assigned to DU than placebo (−1.37 vs. −1.56 mL/min/1.73 m2/year, p < 0.001) [113,114] |
AWARD-7 | Dulaglutide | T2D patients with moderate to severe CKD | 52 weeks | Significantly lower decline in eGFR; reduced UACR, particularly in patients with macroalbuminuria at baseline [115] |
PIONEER-5 | Oral Semaglutide | T2D patients with eGFR between 30–59 mL/min/1.73 m2 | 52 weeks | No alteration in eGFR; effective reduction in UACR [116] |
Meta-analysis including AMPLITUDE-O trial | Various GLP-1RAs | Large-scale trials involving 60,080 patients with T2D | Varied across studies | GLP-1RAs reduced the risk composite kidney outcomes by 21% [117]. |
FLOW | Semaglutide | T2DM patients with CKD | (Trial halted early due to efficacy) | Early termination due to compelling evidence of renal protection; awaiting detailed results [118]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rroji, M.; Spasovski, G. Transforming Diabetes Care: The Molecular Pathways through Which GLP1-RAs Impact the Kidneys in Diabetic Kidney Disease. Biomedicines 2024, 12, 657. https://doi.org/10.3390/biomedicines12030657
Rroji M, Spasovski G. Transforming Diabetes Care: The Molecular Pathways through Which GLP1-RAs Impact the Kidneys in Diabetic Kidney Disease. Biomedicines. 2024; 12(3):657. https://doi.org/10.3390/biomedicines12030657
Chicago/Turabian StyleRroji, Merita, and Goce Spasovski. 2024. "Transforming Diabetes Care: The Molecular Pathways through Which GLP1-RAs Impact the Kidneys in Diabetic Kidney Disease" Biomedicines 12, no. 3: 657. https://doi.org/10.3390/biomedicines12030657
APA StyleRroji, M., & Spasovski, G. (2024). Transforming Diabetes Care: The Molecular Pathways through Which GLP1-RAs Impact the Kidneys in Diabetic Kidney Disease. Biomedicines, 12(3), 657. https://doi.org/10.3390/biomedicines12030657