Unraveling the Role of Endothelial Dysfunction in Osteonecrosis of the Femoral Head: A Pathway to New Therapies
Abstract
:1. Introduction
2. Endothelial Cells Orchestrate Angiogenesis–Osteogenesis Coupling
3. Endothelial Dysfunction Promotes Coagulopathy
4. Endothelial Injury and Inflammation
4.1. Endothelial Injury Promotes Inflammatory Activation
4.2. Continuous Activation of Inflammation Hinders the Repair of Osteonecrosis
4.2.1. Neutrophils and NETs Induce a Procoagulant Phenotype in the Endothelium
4.2.2. Endothelial Cell Junctions Coordinate Macrophage Activation
4.2.3. Adaptive Immune Cells
5. Conclusion and Future Perspectives: Targeting the Endothelium to Treat Osteonecrosis
Author Contributions
Funding
Conflicts of Interest
References
- Chen, C.Y.; Rao, S.S.; Yue, T.; Tan, Y.J.; Yin, H.; Chen, L.J.; Luo, M.J.; Wang, Z.; Wang, Y.Y.; Hong, C.G.; et al. Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. Sci. Adv. 2022, 8, eabg8335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.W.; Yu, M.; Hu, K.; Wang, W.; Yang, L.; Wang, B.J.; Gao, X.H.; Guo, Y.M.; Xu, Y.Q.; Wei, Y.S.; et al. Prevalence of Nontraumatic Osteonecrosis of the Femoral Head and its Associated Risk Factors in the Chinese Population: Results from a Nationally Representative Survey. Chin. Med. J. 2015, 128, 2843–2850. [Google Scholar] [CrossRef] [PubMed]
- Petrigliano, F.A.; Lieberman, J.R. Osteonecrosis of the hip: Novel approaches to evaluation and treatment. Clin. Orthop. Relat. Res. 2007, 465, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, K.; Chen, H.; Kaufman, M.; Sverdlov, I.; Stein, E.M.; Park-Min, K.H. Glucocorticoid-induced osteonecrosis in systemic lupus erythematosus patients. Clin. Transl. Med. 2021, 11, e526. [Google Scholar] [CrossRef] [PubMed]
- Hines, J.T.; Jo, W.L.; Cui, Q.; Mont, M.A.; Koo, K.H.; Cheng, E.Y.; Goodman, S.B.; Ha, Y.C.; Hernigou, P.; Jones, L.C.; et al. Osteonecrosis of the Femoral Head: An Updated Review of ARCO on Pathogenesis, Staging and Treatment. J. Korean Med. Sci. 2021, 36, e177. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Jin, Y.; Chu, Y.; Wu, H.; Li, X.; Deng, Z.; Feng, S.; Chen, N.; Luo, Z.; Zheng, X.; et al. Single-cell transcriptome analysis reveals aberrant stromal cells and heterogeneous endothelial cells in alcohol-induced osteonecrosis of the femoral head. Commun. Biol. 2022, 5, 324. [Google Scholar] [CrossRef] [PubMed]
- Çolak, S.; Erdil, A.; Gevrek, F. Effects of systemic Anatolian propolis administration on a rat-irradiated osteoradionecrosis model. J. Appl. Oral Sci. 2023, 31, e20230231. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Long-term Anticoagulation Prevents Progression of Stages I and II Primary Osteonecrosis of the Hip in Patients with Familial Thrombophilia. Orthopedics 2020, 43, e208–e214. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, P.; Yuan, B.; Li, L.; Bao, S. Pravastatin Protects against Avascular Necrosis of Femoral Head via Autophagy. Front. Physiol. 2018, 9, 307. [Google Scholar] [CrossRef]
- Wang, X.; Hu, L.; Wei, B.; Wang, J.; Hou, D.; Deng, X. Regenerative therapies for femoral head necrosis in the past two decades: A systematic review and network meta-analysis. Stem Cell Res. Ther. 2024, 15, 21. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Medical treatment of osteonecrosis of the knee associated with thrombophilia-hypofibrinolysis. Orthopedics 2014, 37, e911–e916. [Google Scholar] [CrossRef]
- Johnson, A.J.; Mont, M.A.; Tsao, A.K.; Jones, L.C. Treatment of femoral head osteonecrosis in the United States: 16-year analysis of the Nationwide Inpatient Sample. Clin. Orthop. Relat. Res. 2014, 472, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Mont, M.A.; Salem, H.S.; Piuzzi, N.S.; Goodman, S.B.; Jones, L.C. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today?: A 5-Year Update. J. Bone Jt. Surg. Am. 2020, 102, 1084–1099. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Greenspan, A.; Gershwin, M.E. The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. J. Autoimmun. 2020, 110, 102460. [Google Scholar] [CrossRef] [PubMed]
- Kerachian, M.A.; Harvey, E.J.; Cournoyer, D.; Chow, T.Y.; Séguin, C. Avascular necrosis of the femoral head: Vascular hypotheses. Endothelium 2006, 13, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Kavurma, M.M.; Bursill, C.; Stanley, C.P.; Passam, F.; Cartland, S.P.; Patel, S.; Loa, J.; Figtree, G.A.; Golledge, J.; Aitken, S.; et al. Endothelial cell dysfunction: Implications for the pathogenesis of peripheral artery disease. Front. Cardiovasc. Med. 2022, 9, 1054576. [Google Scholar] [CrossRef] [PubMed]
- Krüger-Genge, A.; Blocki, A.; Franke, R.P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef] [PubMed]
- Adelborg, K.; Larsen, J.B.; Hvas, A.M. Disseminated intravascular coagulation: Epidemiology, biomarkers, and management. Br. J. Haematol. 2021, 192, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 2020, 21, 696–711. [Google Scholar] [CrossRef]
- Neubauer, K.; Zieger, B. Endothelial cells and coagulation. Cell Tissue Res. 2022, 387, 391–398. [Google Scholar] [CrossRef]
- Sabe, S.A.; Feng, J.; Sellke, F.W.; Abid, M.R. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H819–H841. [Google Scholar] [CrossRef]
- Zhu, S.; Bennett, S.; Kuek, V.; Xiang, C.; Xu, H.; Rosen, V.; Xu, J. Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Theranostics 2020, 10, 5957–5965. [Google Scholar] [CrossRef] [PubMed]
- Langen, U.H.; Pitulescu, M.E.; Kim, J.M.; Enriquez-Gasca, R.; Sivaraj, K.K.; Kusumbe, A.P.; Singh, A.; Di Russo, J.; Bixel, M.G.; Zhou, B.; et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat. Cell Biol. 2017, 19, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Xie, X.; Chen, Y.; Zheng, Q.; He, J.; Lu, Q. Exosome-derived miR-5p-72106_14 in vascular endothelial cells regulates fate determination of BMSCs. Toxicol. Appl. Pharmacol. 2024, 482, 116793. [Google Scholar] [CrossRef]
- Wu, H.; Chen, G.; Zhang, G.; Lv, Q.; Gu, D.; Dai, M. Mechanism of vascular endothelial cell-derived exosomes modified with vascular endothelial growth factor in steroid-induced femoral head necrosis. Biomed. Mater. 2023, 18, 025017. [Google Scholar] [CrossRef] [PubMed]
- Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016, 12, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Koh, J.M. Coupling factors involved in preserving bone balance. Cell. Mol. Life Sci. 2019, 76, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hao, J.; Duan, X.; Wu, N.; Zhou, Z.; Yang, F.; Li, J.; Zhao, Z.; Huang, S. The Role of Semaphorin 3A in Bone Remodeling. Front. Cell. Neurosci. 2017, 11, 40. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Ding, Y.; Xie, W.; Li, H.; Li, S.; Li, Y.; Cai, M. Inhibition of PGE2 in Subchondral Bone Attenuates Osteoarthritis. Cells 2022, 11, 2760. [Google Scholar] [CrossRef]
- Wu, J.; Hu, M.; Jiang, H.; Ma, J.; Xie, C.; Zhang, Z.; Zhou, X.; Zhao, J.; Tao, Z.; Meng, Y.; et al. Endothelial Cell-Derived Lactate Triggers Bone Mesenchymal Stem Cell Histone Lactylation to Attenuate Osteoporosis. Adv. Sci. 2023, 10, e2301300. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Huang, X.; Gu, Y.; Li, S.; Yin, P.; Zhang, L.; Tang, P. Skeleton-vasculature chain reaction: A novel insight into the mystery of homeostasis. Bone Res. 2021, 9, 21. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, H.; Guo, Z.; Chang, Y.; Li, Z. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 2021, 11, 8836–8854. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.K.; Kusumbe, A.P.; Wang, L.; Adams, R.H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 2014, 507, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Romeo, S.G.; Alawi, K.M.; Rodrigues, J.; Singh, A.; Kusumbe, A.P.; Ramasamy, S.K. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat. Cell Biol. 2019, 21, 430–441. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, P.; Gu, Y.; Guo, Q.; Liu, Y. Type H vessels: Functions in bone development and diseases. Front. Cell Dev. Biol. 2023, 11, 1236545. [Google Scholar] [CrossRef]
- Kusumbe, A.P.; Ramasamy, S.K.; Adams, R.H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 2014, 507, 323–328. [Google Scholar] [CrossRef]
- Leone, A.M.; Valgimigli, M.; Giannico, M.B.; Zaccone, V.; Perfetti, M.; D’Amario, D.; Rebuzzi, A.G.; Crea, F. From bone marrow to the arterial wall: The ongoing tale of endothelial progenitor cells. Eur. Heart J. 2009, 30, 890–899. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Lyu, L.; Xiao, L.; Memon, A.A.; Yu, X.; Halim, A.; Patel, S.; Osman, A.; Yin, W.; et al. Integrin α5 Is Regulated by miR-218-5p in Endothelial Progenitor Cells. J. Am. Soc. Nephrol. 2022, 33, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.; Chan, J.K.Y. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2022, 18, 286–300. [Google Scholar] [CrossRef]
- Salybekov, A.A.; Kobayashi, S.; Asahara, T. Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int. J. Mol. Sci. 2022, 23, 7697. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, S.H.; Xiao, B.J.; Xu, W.H.; Ye, S.N.; Xia, T.; Zheng, D.; Liu, X.Z.; Liao, Y.F. Decreased in the number and function of circulation endothelial progenitor cells in patients with avascular necrosis of the femoral head. Bone 2010, 46, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, S.; Feng, Y.; Wu, X.; Chen, D.; Yu, Q.; Wang, X.; Li, J.; Chen, J. Impairment of two types of circulating endothelial progenitor cells in patients with glucocorticoid-induced avascular osteonecrosis of the femoral head. Jt. Bone Spine 2013, 80, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Zhang, W.; Tan, Q.; Yao, C.; Lin, S. Impairment of circulating endothelial progenitor cells (EPCs) in patients with glucocorticoid-induced avascular necrosis of the femoral head and changes of EPCs after glucocorticoid treatment in vitro. J. Orthop. Surg. Res. 2019, 14, 226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.Y.; Pan, Z.W.; Li, Q.Q.; Sun, L.H.; Li, X.; Gong, M.Y.; Yang, X.W.; Wang, Y.Y.; Li, H.D.; et al. GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization. Acta Pharmacol. Sin. 2023, 44, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Rezus, E.; Tamba, B.I.; Badescu, M.C.; Popescu, D.; Bratoiu, I.; Rezus, C. Osteonecrosis of the Femoral Head in Patients with Hypercoagulability-From Pathophysiology to Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 6801. [Google Scholar] [CrossRef] [PubMed]
- Badescu, M.C.; Rezus, E.; Ciocoiu, M.; Badulescu, O.V.; Butnariu, L.I.; Popescu, D.; Bratoiu, I.; Rezus, C. Osteonecrosis of the Jaws in Patients with Hereditary Thrombophilia/Hypofibrinolysis-From Pathophysiology to Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 640. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Familial Thrombophilia Is Associated With Primary Multifocal Osteonecrosis: A Case-Control Study of 40 Patients. Orthopedics 2023, 46, 164–168. [Google Scholar] [CrossRef]
- Bodary, P.F.; Wickenheiser, K.J.; Eitzman, D.T. Recent advances in understanding endogenous fibrinolysis: Implications for molecular-based treatment of vascular disorders. Expert. Rev. Mol. Med. 2002, 4, 1–10. [Google Scholar] [CrossRef]
- Deaglio, S.; Robson, S.C. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv. Pharmacol. 2011, 61, 301–332. [Google Scholar]
- Kazemi, N.; Bordbar, A.; Bavarsad, S.S.; Ghasemi, P.; Bakhshi, M.; Rezaeeyan, H. Molecular Insights into the Relationship between Platelet Activation and Endothelial Dysfunction: Molecular Approaches and Clinical Practice. Mol. Biotechnol. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Wittig, J.; Drekolia, M.K.; Kyselova, A.; Delgado Lagos, F.; Bochenek, M.L.; Hu, J.; Schäfer, K.; Fleming, I.; Bibli, S.I. Endothelial-dependent S-Sulfhydration of tissue factor pathway inhibitor regulates blood coagulation. Redox Biol. 2023, 62, 102694. [Google Scholar] [CrossRef]
- Stern, D.; Brett, J.; Harris, K.; Nawroth, P. Participation of endothelial cells in the protein C-protein S anticoagulant pathway: The synthesis and release of protein S. J. Cell Biol. 1986, 102, 1971–1978. [Google Scholar] [CrossRef]
- Duque, P.; Mora, L.; Levy, J.H.; Schöchl, H. Pathophysiological Response to Trauma-Induced Coagulopathy: A Comprehensive Review. Anesth. Analg. 2020, 130, 654–664. [Google Scholar] [CrossRef]
- Durand, M.J.; Gutterman, D.D. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation 2013, 20, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yu, Q.; Guo, W.; Hao, Y.; Sun, W.; Cheng, L. Effect of glucocorticoids on the function of microvascular endothelial cells in the human femoral head bone. Adv. Clin. Exp. Med. 2020, 29, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.C.; Santos, C.V.; Vieira Neto, L.; Gadelha, M.R. Adverse effects of glucocorticoids: Coagulopathy. Eur. J. Endocrinol. 2015, 173, M11–M21. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Freiberg, R.A.; Boriel, G.; Khan, Z.; Brar, A.; Padda, J.; Wang, P. The role of the factor V Leiden mutation in osteonecrosis of the hip. Clin. Appl. Thromb. Hemost. 2013, 19, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Zalavras, C.G.; Vartholomatos, G.; Dokou, E.; Malizos, K.N. Genetic background of osteonecrosis: Associated with thrombophilic mutations? Clin. Orthop. Relat. Res. 2004, 422, 251–255. [Google Scholar] [CrossRef]
- Shang, X.F.; Su, H.; Chang, W.W.; Wang, C.C.; Han, Q.; Xu, Z.W. Association between MTHFR C677T polymorphism and osteonecrosis of the femoral head: A meta-analysis. Mol. Biol. Rep. 2012, 39, 7089–7094. [Google Scholar] [CrossRef]
- Rathod, T.N.; Tayade, M.B.; Shetty, S.D.; Jadhav, P.; Sathe, A.H.; Mohanty, S.S. Association of Thrombophilic Factors in Pathogenesis of Osteonecrosis of Femoral Head in Indian Population. Indian J. Orthop. 2020, 54, 33–38. [Google Scholar] [CrossRef]
- Garcia, F.L.; Ramalli, E.L.; Picado, C.H. Coagulation disorders in patients with femoral head osteonecrosis. Acta Ortop. Bras. 2013, 21, 43–45. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, H.; Wang, Q.; Feng, Y.; Zhang, C. Inhibition of PERK Signaling Prevents Against Glucocorticoid-induced Endotheliocyte Apoptosis and Osteonecrosis of the Femoral Head. Int. J. Biol. Sci. 2020, 16, 543–552. [Google Scholar] [CrossRef]
- Bouarab, C.; Roullot-Lacarrière, V.; Vallée, M.; Le Roux, A.; Guette, C.; Mennesson, M.; Marighetto, A.; Desmedt, A.; Piazza, P.V.; Revest, J.M. PAI-1 protein is a key molecular effector in the transition from normal to PTSD-like fear memory. Mol. Psychiatry 2021, 26, 4968–4981. [Google Scholar] [CrossRef]
- Kerachian, M.A.; Séguin, C.; Harvey, E.J. Glucocorticoids in osteonecrosis of the femoral head: A new understanding of the mechanisms of action. J. Steroid Biochem. Mol. Biol. 2009, 114, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Kim, K.H.; Lee, W.K.; Hong, W.; Won, H.; Kim, S.Y. Abnormal Lipid Profiles in Nontraumatic Osteonecrosis of the Femoral Head: A Comparison with Osteoarthritis Using Propensity Score Matching. J. Bone Jt. Surg. Am. 2022, 104, 19–24. [Google Scholar] [CrossRef]
- Liu, K.; Wang, K.; Wang, L.; Zhou, Z. Changes of lipid and bone metabolism in broilers with spontaneous femoral head necrosis. Poult. Sci. 2021, 100, 100808. [Google Scholar] [CrossRef] [PubMed]
- van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179. [Google Scholar] [CrossRef]
- Pacinella, G.; Ciaccio, A.M.; Tuttolomondo, A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int. J. Mol. Sci. 2022, 23, 15722. [Google Scholar] [CrossRef]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef]
- Friedrich, E.E.; Hong, Z.; Xiong, S.; Zhong, M.; Di, A.; Rehman, J.; Komarova, Y.A.; Malik, A.B. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc. Natl. Acad. Sci. USA 2019, 116, 12980–12985. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Ji, W.; Yang, H.; Chen, S.; Zhang, W.; Duan, G. Endothelial activation and dysfunction in COVID-19: From basic mechanisms to potential therapeutic approaches. Signal Transduct. Target. Ther. 2020, 5, 293. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 925923. [Google Scholar] [CrossRef] [PubMed]
- Horio, E.; Kadomatsu, T.; Miyata, K.; Arai, Y.; Hosokawa, K.; Doi, Y.; Ninomiya, T.; Horiguchi, H.; Endo, M.; Tabata, M.; et al. Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Nie, Z.; Sun, F.; Peng, H. Glucocorticoids induce femoral head necrosis in rats through the ROS/JNK/c-Jun pathway. FEBS Open Bio 2021, 11, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Deng, Y.; Deng, G.; Chen, P.; Wang, Y.; Wu, H.; Ji, Z.; Yao, Z.; Zhang, X.; Yu, B.; et al. High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells. Stem Cell Res. Ther. 2020, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Haag, F.; Janicova, A.; Xu, B.; Powerski, M.; Fachet, M.; Bundkirchen, K.; Neunaber, C.; Marzi, I.; Relja, B.; Sturm, R. Reduced phagocytosis, ROS production and enhanced apoptosis of leukocytes upon alcohol drinking in healthy volunteers. Eur. J. Trauma Emerg. Surg. 2022, 48, 2689–2699. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.I.; Romano, M.; Basarali, M.K.; Elzagallaai, A.; Karaman, M.; Demir, Z.; Demir, M.F.; Akcay, F.; Seyrek, M.; Haksever, N.; et al. The Effect of Corrected Inflammation, Oxidative Stress and Endothelial Dysfunction on Fmd Levels in Patients with Selected Chronic Diseases: A Quasi-Experimental Study. Sci. Rep. 2020, 10, 9018. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liu, J.; Piao, H.; Zhu, Z.; Wei, R.; Liu, K. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front. Immunol. 2022, 13, 1039241. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef]
- Balta, S. Endothelial Dysfunction and Inflammatory Markers of Vascular Disease. Curr. Vasc. Pharmacol. 2021, 19, 243–249. [Google Scholar] [CrossRef]
- Luk, C.; Haywood, N.J.; Bridge, K.I.; Kearney, M.T. Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Front. Cardiovasc. Med. 2022, 9, 882923. [Google Scholar] [CrossRef]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Cao, Y.; Zhang, S.; Sun, J.; Wang, Y.; Song, S.; Zhang, H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. Adv. Mater. 2022, 34, e2110660. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.; Scoazec, A.; Lafont, A.; Boddaert, J.; Al Hajzen, A.; Addad, F.; Mirshahi, M.; Desnos, M.; Tedgui, A.; Mallat, Z. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: A clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 2004, 109, 2503–2506. [Google Scholar] [CrossRef]
- Maruyama, M.; Rhee, C.; Utsunomiya, T.; Zhang, N.; Ueno, M.; Yao, Z.; Goodman, S.B. Modulation of the Inflammatory Response and Bone Healing. Front. Endocrinol. 2020, 11, 386. [Google Scholar] [CrossRef]
- Sharifiaghdam, M.; Shaabani, E.; Faridi-Majidi, R.; De Smedt, S.C.; Braeckmans, K.; Fraire, J.C. Macrophages as a therapeutic target to promote diabetic wound healing. Mol. Ther. 2022, 30, 2891–2908. [Google Scholar] [CrossRef] [PubMed]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, Z.; Xue, L.; Wang, D.; Tan, Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front. Immunol. 2022, 13, 1064245. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Qu, M.; Li, W.; Wu, D.; Cata, J.P.; Miao, C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin. Transl. Med. 2023, 13, e1170. [Google Scholar] [CrossRef]
- Vazquez-Garza, E.; Jerjes-Sanchez, C.; Navarrete, A.; Joya-Harrison, J.; Rodriguez, D. Venous thromboembolism: Thrombosis, inflammation, and immunothrombosis for clinicians. J. Thromb. Thrombolysis 2017, 44, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ntelis, K.; Solomou, E.E.; Sakkas, L.; Liossis, S.N.; Daoussis, D. The role of platelets in autoimmunity, vasculopathy, and fibrosis: Implications for systemic sclerosis. Semin. Arthritis Rheum. 2017, 47, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Savill, J.; Dransfield, I.; Gregory, C.; Haslett, C. A blast from the past: Clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2002, 2, 965–975. [Google Scholar] [CrossRef]
- Castanheira, F.V.S.; Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Smith, C.K.; Vivekanandan-Giri, A.; Tang, C.; Knight, J.S.; Mathew, A.; Padilla, R.L.; Gillespie, B.W.; Carmona-Rivera, C.; Liu, X.; Subramanian, V.; et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: An additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 2014, 66, 2532–2544. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Li, T.; Peng, R.; Wang, F.; Hua, L.; Liu, S.; Han, Z.; Pei, J.; Pei, S.; Zhao, Z.; Jiang, X.; et al. Lysophosphatidic acid promotes thrombus stability by inducing rapid formation of neutrophil extracellular traps: A new mechanism of thrombosis. J. Thromb. Haemost. 2020, 18, 1952–1964. [Google Scholar] [CrossRef]
- Fernández, S.; Moreno-Castaño, A.B.; Palomo, M.; Martinez-Sanchez, J.; Torramadé-Moix, S.; Téllez, A.; Ventosa, H.; Seguí, F.; Escolar, G.; Carreras, E.; et al. Distinctive Biomarker Features in the Endotheliopathy of COVID-19 and Septic Syndromes. Shock 2022, 57, 95–105. [Google Scholar] [CrossRef]
- Sandoval-Pérez, A.; Berger, R.M.L.; Garaizar, A.; Farr, S.E.; Brehm, M.A.; König, G.; Schneider, S.W.; Collepardo-Guevara, R.; Huck, V.; Rädler, J.O.; et al. DNA binds to a specific site of the adhesive blood-protein von Willebrand factor guided by electrostatic interactions. Nucleic Acids Res. 2020, 48, 7333–7344. [Google Scholar] [CrossRef]
- Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Investig. 2020, 130, 6151–6157. [Google Scholar] [CrossRef]
- Döring, Y.; Libby, P.; Soehnlein, O. Neutrophil Extracellular Traps Participate in Cardiovascular Diseases: Recent Experimental and Clinical Insights. Circ. Res. 2020, 126, 1228–1241. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, X.; Lai, B.; Hu, D.; Lai, L.; Xu, J.; Chen, S.; Li, X. Correlational analysis between neutrophil granulocyte levels and osteonecrosis of the femoral head. BMC Musculoskelet. Disord. 2019, 20, 393. [Google Scholar] [CrossRef]
- Nonokawa, M.; Shimizu, T.; Yoshinari, M.; Hashimoto, Y.; Nakamura, Y.; Takahashi, D.; Asano, T.; Nishibata, Y.; Masuda, S.; Nakazawa, D.; et al. Association of Neutrophil Extracellular Traps with the Development of Idiopathic Osteonecrosis of the Femoral Head. Am. J. Pathol. 2020, 190, 2282–2289. [Google Scholar] [CrossRef]
- Vannella, K.M.; Wynn, T.A. Mechanisms of Organ Injury and Repair by Macrophages. Annu. Rev. Physiol. 2017, 79, 593–617. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 2011, 11, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kong, X.; You, Y.; Xiang, L.; Zhang, Y.; Wu, R.; Zhou, L.; Duan, L. S100A8-Mediated NLRP3 Inflammasome-Dependent Pyroptosis in Macrophages Facilitates Liver Fibrosis Progression. Cells 2022, 11, 3579. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Wang, Y.; Chen, Y.; Liu, Y.; Ma, M.; Ma, Z.; Wang, C.; Zeng, H.; Xue, L.; Yue, C.; et al. The Dynamic Feature of Macrophage M1/M2 Imbalance Facilitates the Progression of Non-Traumatic Osteonecrosis of the Femoral Head. Front. Bioeng. Biotechnol. 2022, 10, 912133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Luo, N.S.; Ying, R.; Xie, Y.; Chen, J.Y.; Wang, X.Q.; Gu, Z.J.; Mai, J.T.; Liu, W.H.; Wu, M.X.; et al. Macrophage-derived foam cells impair endothelial barrier function by inducing endothelial-mesenchymal transition via CCL-4. Int. J. Mol. Med. 2017, 40, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Dejana, E.; Tournier-Lasserve, E.; Weinstein, B.M. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Dev. Cell 2009, 16, 209–221. [Google Scholar] [CrossRef]
- Wettschureck, N.; Strilic, B.; Offermanns, S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol. Rev. 2019, 99, 1467–1525. [Google Scholar] [CrossRef]
- Saigusa, R.; Winkels, H.; Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 2020, 17, 387–401. [Google Scholar] [CrossRef]
- Kikuiri, T.; Kim, I.; Yamaza, T.; Akiyama, K.; Zhang, Q.; Li, Y.; Chen, C.; Chen, W.; Wang, S.; Le, A.D.; et al. Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J. Bone Miner. Res. 2010, 25, 1668–1679. [Google Scholar] [CrossRef]
- Zou, D.; Zhang, K.; Yang, Y.; Ren, Y.; Zhang, L.; Xiao, X.; Zhang, H.; Liu, S.; Li, J. Th17 and IL-17 exhibit higher levels in osteonecrosis of the femoral head and have a positive correlation with severity of pain. Endokrynol. Pol. 2018, 69, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gong, S.; Shao, W.; Han, L.; Li, Z.; Zhang, Z.; Zheng, Y.; Ouyang, F.; Ma, Y.; Xu, W.; et al. Comprehensive analysis of pivotal biomarkers, immune cell infiltration and therapeutic drugs for steroid-induced osteonecrosis of the femoral head. Bioengineered 2021, 12, 5971–5984. [Google Scholar] [CrossRef] [PubMed]
- Camacho, V.; Matkins, V.R.; Patel, S.B.; Lever, J.M.; Yang, Z.; Ying, L.; Landuyt, A.E.; Dean, E.C.; George, J.F.; Yang, H.; et al. Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight 2020, 5, e135681. [Google Scholar] [CrossRef] [PubMed]
- Mangge, H.; Prüller, F.; Schnedl, W.; Renner, W.; Almer, G. Beyond Macrophages and T Cells: B Cells and Immunoglobulins Determine the Fate of the Atherosclerotic Plaque. Int. J. Mol. Sci. 2020, 21, 4082. [Google Scholar] [CrossRef] [PubMed]
- Baumgarth, N. The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 2011, 11, 34–46. [Google Scholar] [CrossRef]
- Okazaki, S.; Nishitani, Y.; Nagoya, S.; Kaya, M.; Yamashita, T.; Matsumoto, H. Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway. Rheumatology 2009, 48, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Korompilias, A.V.; Gilkeson, G.S.; Ortel, T.L.; Seaber, A.V.; Urbaniak, J.R. Anticardiolipin antibodies and osteonecrosis of the femoral head. Clin. Orthop. Relat. Res. 1997, 345, 174–180. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, F.; Liu, Y.; Zhao, D.; Shan, Y.; Jiang, Y. A higher frequency of peripheral blood activated B cells in patients with non-traumatic osteonecrosis of the femoral head. Int. Immunopharmacol. 2014, 20, 95–100. [Google Scholar] [CrossRef]
- Ran, Z.; Luo, Y.-B.; Zeng, Q.-M.; Huan, Y. Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases. Front. Immunol. 2020, 11, 1884. [Google Scholar] [CrossRef]
- Ng, M.K.; Gordon, A.M.; Piuzzi, N.S.; Wong, C.H.J.; Jones, L.C.; Mont, M.A. Trends in Surgical Management of Osteonecrosis of the Femoral Head: A 2010 to 2020 Nationwide Study. J. Arthroplast. 2023, 38, S51–S57. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Fan, X.; Xu, X.; Sun, W. Extracorporeal shockwave relieves endothelial injury and dysfunction in steroid-induced osteonecrosis of the femoral head via miR-135b targeting FOXO1: In vitro and in vivo studies. Aging 2022, 14, 410–429. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.; Ma, C.; Gu, G.; Han, D.F. A Mini Review: Stem Cell Therapy for Osteonecrosis of the Femoral Head and Pharmacological Aspects. Curr. Pharm. Des. 2019, 25, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, B.; Tian, S.; Liu, B.; Qin, K.; Zhao, D. Retrospective Long-Term Follow-Up Survival Analysis of the Management of Osteonecrosis of the Femoral Head with Pedicled Vascularized Iliac Bone Graft Transfer. J. Arthroplast. 2019, 34, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hua, Z.; Liao, S.; Li, B.; Tang, S.; Huang, Q.; Wei, Z.; Lu, R.; Lin, C.; Ding, X. Prediction of the active compounds and mechanism of Biochanin A in the treatment of Legg-Calvé-Perthes disease based on network pharmacology and molecular docking. BMC Complement. Med. Ther. 2024, 24, 26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, W.; Mao, Y.; Jiang, L.; Yu, J.; Zhu, X.; Fu, H.; Lin, Z.; Shen, H.; Pan, X.; et al. Morroniside-mediated mitigation of stem cell and endothelial cell dysfunction for the therapy of glucocorticoid-induced osteonecrosis of the femoral head. Int. Immunopharmacol. 2024, 127, 111421. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhang, J. Vitamin B(2) Prevents Glucocorticoid-Caused Damage of Blood Vessels in Osteonecrosis of the Femoral Head. Biomed. Res. Int. 2022, 2022, 4006184. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jie, S.; Li, W.; Li, H.; Ni, J.; Liu, C. miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway. Mol. Cell. Endocrinol. 2022, 544, 111541. [Google Scholar] [CrossRef]
- Kong, L.; Zuo, R.; Wang, M.; Wang, W.; Xu, J.; Chai, Y.; Guan, J.; Kang, Q. Silencing MicroRNA-137-3p, which Targets RUNX2 and CXCL12 Prevents Steroid-induced Osteonecrosis of the Femoral Head by Facilitating Osteogenesis and Angiogenesis. Int. J. Biol. Sci. 2020, 16, 655–670. [Google Scholar] [CrossRef]
- Shao, W.; Li, Z.; Wang, B.; Gong, S.; Wang, P.; Song, B.; Chen, Z.; Feng, Y. Dimethyloxalylglycine Attenuates Steroid-Associated Endothelial Progenitor Cell Impairment and Osteonecrosis of the Femoral Head by Regulating the HIF-1α Signaling Pathway. Biomedicines 2023, 11, 992. [Google Scholar] [CrossRef]
- Xu, X.; Fan, X.; Wu, X.; Xia, R.; Liang, J.; Gao, F.; Shu, J.; Yang, M.; Sun, W. Luteolin ameliorates necroptosis in Glucocorticoid-induced osteonecrosis of the femoral head via RIPK1/RIPK3/MLKL pathway based on network pharmacology analysis. Biochem. Biophys. Res. Commun. 2023, 661, 108–118. [Google Scholar] [CrossRef]
- Fan, X.; Xu, X.; Wu, X.; Xia, R.; Gao, F.; Zhang, Q.; Sun, W. The protective effect of DNA aptamer on osteonecrosis of the femoral head by alleviating TNF-α-mediated necroptosis via RIP1/RIP3/MLKL pathway. J. Orthop. Translat. 2022, 36, 44–51. [Google Scholar] [CrossRef]
- Cao, F.; Qin, K.R.; Kang, K.; Zheng, G.; Wang, W.; Zhang, X.; Zhao, D. Ginkgo biloba L. extract prevents steroid-induced necrosis of the femoral head by rescuing apoptosis and dysfunction in vascular endothelial cells via the PI3K/AKT/eNOS pathway. J. Ethnopharmacol. 2022, 296, 115476. [Google Scholar] [CrossRef]
- Jing, X.; Du, T.; Yang, X.; Zhang, W.; Wang, G.; Liu, X.; Li, T.; Jiang, Z. Desferoxamine protects against glucocorticoid-induced osteonecrosis of the femoral head via activating HIF-1α expression. J. Cell. Physiol. 2020, 235, 9864–9875. [Google Scholar] [CrossRef]
- Yao, X.; Yu, S.; Jing, X.; Guo, J.; Sun, K.; Guo, F.; Ye, Y. PTEN inhibitor VO-OHpic attenuates GC-associated endothelial progenitor cell dysfunction and osteonecrosis of the femoral head via activating Nrf2 signaling and inhibiting mitochondrial apoptosis pathway. Stem Cell Res. Ther. 2020, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yue, J.; Wang, W.; Liu, P.; Zuo, W.; Guo, W.; Zhang, Q. Icariin promotes angiogenesis in glucocorticoid-induced osteonecrosis of femoral heads: In vitro and in vivo studies. J. Cell. Mol. Med. 2019, 23, 7320–7330. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Yu, H.; Liu, P.; Wen, P.; Zhang, H.; Guo, W.; Zhang, Q. Preliminary study of icariin indicating prevention of steroid-induced osteonecrosis of femoral head by regulating abnormal expression of miRNA-335 and protecting the functions of bone microvascular endothelial cells in rats. Gene 2021, 766, 145128. [Google Scholar] [CrossRef] [PubMed]
- Haydock, M.M.; Elhamdani, S.; Alsharedi, M. Long-term direct oral anticoagulation in primary osteonecrosis with elevated plasminogen activation inhibitor. SAGE Open Med. Case Rep. 2019, 7, 2050313x19827747. [Google Scholar] [CrossRef] [PubMed]
- Li, C.G.; Shen, L.; Yang, Y.P.; Xu, X.J.; Shuai, B.; Ma, C. Effects of Modified Qing’e Pill on expression of adiponectin, bone morphogenetic protein 2 and coagulation-related factors in patients with nontraumatic osteonecrosis of femoral head. Chin. J. Integr. Med. 2017, 23, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.L.; Weng, X.S.; Wu, Z.H.; Guo, S.G. Effect of Resveratrol on Preventing Steroid-induced Osteonecrosis in a Rabbit Model. Chin. Med. J. 2016, 129, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Beytemur, O.; Dasci, M.F.; Gök Yurttaş, A.; Bayrak, B.Y.; Alagöz, E. The protective role of vitamins C and E in steroid-induced femoral head osteonecrosis: An experimental study in rats. Jt. Dis. Relat. Surg. 2024, 35, 72–84. [Google Scholar] [CrossRef]
Factors | Targets | Effects | Mechanism | References |
---|---|---|---|---|
Exosome | MSC | Promotes osteogenic differentiation and inhibits adipogenic differentiation | Inhibits STAT1 Activates MAPK/ERK pathway | Li et al. [24] Wu et al. [25] |
Lactate | MSC | Promotes osteogenic differentiation | Histone H3K18la lactylation | Wu et al. [30] |
BMP | MSC and chondrocyte | Promotes osteogenic differentiation and bone mineralized matrix formation | Via SMAD pathway | Salazar et al. [26] |
Sema3a | Osteoblast and osteoclast | Promotes osteogenesis and inhibits bone resorption | Regulates Rho A and Wnt/β-catenin pathway | Kim et al. [27] |
PGE2 | Osteoblast, MSC, and chondrocyte | Promotes osteogenic differentiation and cartilage degeneration | Activates cAMP pathway | Li et al. [28] Sun et al. [29] |
Noggin | Osteoprogenitor and chondrocyte | Promotes bone formation and induces hypertrophic chondrocytes | Promotes SOX9 expression | Cheng et al. [32] Ramasamy et al. [33] |
MMP9 | Chondrocyte | Removes the cartilage matrix and resorbs the cartilage template | Coordinates with non-resorbing osteoclasts to promote bone elongation | Romeo et al. [34] |
Therapy | Effects | Mechanism | References |
---|---|---|---|
Biochanin A | Attenuates endothelial dysfunction via an increase in ZO-1 expression and a decrease in ICAM-1 expression | Binds to its target proteins, AKT1 and TNF-α | Liu et al. [128] |
Morroniside or Vitamin B2 | Promotes tube formation, migration, and angiogenic protein expression in a rat model of GIONFH | Activates the PI3K/AKT pathway | Jiang et al. [129] Guo et al. [130] |
MicroRNA-112-5p | Attenuates endothelial viability, migration, and tube formation and decreases the level of proinflammatory cytokines in GIONFH patients | Binds to GREM2 and inhibits its downstream BMP/SMAD signaling | Huang et al. [131] |
MicroRNA-137-3p | Promotes angiogenesis and increases the number of circulating EPCs in a rat model of GIONFH | Targets RUNX2 and CXCL12 | Kong et al. [132] |
Extracorporeal shockwave | Ameliorates endothelial apoptosis and promotes the angiogenesis and proliferation in a rat model of GIONFH | Via the microRNA-135b/FOXO1 pathway | Wu et al. [125] |
Dimethylox-alylglycine | Attenuates endothelial dysfunction in a rabbit model of GIONFH | Activates HIF-1α signaling | Shao et al. [133] |
Luteolin or DNA aptamer | Ameliorates endothelial necroptosis and promotes angiogenesis and migration in GIONFH patients | Regulates the RIPK1/RIPK3/MLKL pathway | Xu et al. [134] Fan et al. [135] |
Ginkgo biloba L. extract | Ameliorates endothelial apoptosis and promotes angiogenesis and migration in a mouse model of GIONFH | Activates the PI3K/AKT/eNOS pathway | Cao et al. [136] |
Desferoxamine | Promotes angiogenesis in a rat model of GIONFH | Via the HIF-1α/VEGF pathway | Jing et al. [137] |
VO-OHpic | Attenuates apoptosis and promotes the angiogenesis of EPCs in a rat model of GIONFH | Activates the Nrf2 pathway and inhibits the mitochondrial apoptosis pathway | Yao et al. [138] |
Icariin | Promotes migration, proliferation, tube formation, and angiogenesis-related cytokine expression in a rat model of GIONFH | Activates AKT and BCL-2 Inhibits BAX Increases MicroRNA-335 | Yu et al. [139] Yue et al. [140] |
Pravastatin | Promotes the autophagy of EPCs and protects against GC-induced apoptosis | AMPK-mTOR pathway via LKB1 | Liao et al. [9] |
Enoxaparin | Improves hypofibrinolysis in patients with osteonecrosis | Decreases the level of PAI-1 | Heydock et al. [141] |
Modified Qing’e Pill | Promotes fibrinolysis in patients with ONFH | Induces higher adiponectin levels and lower vWF and PAI-1 levels | Li et al. [142] |
Resveratrol | Reduces thrombosis in a rabbit model of GIONFH | Increases the level of thrombomodulin | Zhai et al. [143] |
Anticoagulation treatment | Prevents progression in patients with early ONFH | Daily low-dose apixaban treatment controls the disease | Glueck et al. [8] |
Vitamin C/E | Reduces apoptosis, endothelial dysfunction, and inflammation | Increases the level of HDL and decreases the level of GSH, TG, and TC | Beytemur et al. [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, W.; Wang, P.; Lv, X.; Wang, B.; Gong, S.; Feng, Y. Unraveling the Role of Endothelial Dysfunction in Osteonecrosis of the Femoral Head: A Pathway to New Therapies. Biomedicines 2024, 12, 664. https://doi.org/10.3390/biomedicines12030664
Shao W, Wang P, Lv X, Wang B, Gong S, Feng Y. Unraveling the Role of Endothelial Dysfunction in Osteonecrosis of the Femoral Head: A Pathway to New Therapies. Biomedicines. 2024; 12(3):664. https://doi.org/10.3390/biomedicines12030664
Chicago/Turabian StyleShao, Wenkai, Ping Wang, Xiao Lv, Bo Wang, Song Gong, and Yong Feng. 2024. "Unraveling the Role of Endothelial Dysfunction in Osteonecrosis of the Femoral Head: A Pathway to New Therapies" Biomedicines 12, no. 3: 664. https://doi.org/10.3390/biomedicines12030664
APA StyleShao, W., Wang, P., Lv, X., Wang, B., Gong, S., & Feng, Y. (2024). Unraveling the Role of Endothelial Dysfunction in Osteonecrosis of the Femoral Head: A Pathway to New Therapies. Biomedicines, 12(3), 664. https://doi.org/10.3390/biomedicines12030664