Current and Future Applications of Arterial Spin Labeling MRI in Cerebral Arteriovenous Malformations
Abstract
:1. Introduction
2. Imaging of AVMs
3. Perfusion-Weighted Imaging (PWI)
3.1. Dynamic Susceptibility Contrast (DSC) PWI
3.2. Dynamic Contrast-Enhanced (DCE) PWI
3.3. Arterial Spin Labeling (ASL) PWI
4. The Role of ASL MRI in Adult AVMs
4.1. Work-Up of AVMs
4.1.1. Differential Diagnosis of Venous-Predominant AVMs and Developmental Venous Anomalies (DVAs)
4.1.2. Detection of Ruptured Angiogram-Negative Micro-AVMs
4.1.3. Assessment of the Extent of Arteriovenous Shunting
4.1.4. Integration of ASL into Stereotactic Radiosurgery (SRS) Planning for AVMs
4.2. Post-Treatment Follow-Up of AVMs
4.2.1. Assessment of the Extent of Arteriovenous Shunting following Embolization
4.2.2. Assessment of the Extent of Arteriovenous Shunting following Surgery
4.2.3. Detection of Residual AVMs following SRS
5. The Role of ASL MRI in Pediatric AVMs
6. Future Perspectives
6.1. Non-Contrast-Enhanced (NCE) Time-Resolved 4D Dynamic MRA at 7T
6.2. Toward Noninvasive Diagnosis and Follow-Up of pAVMs
7. Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, C.J.; Ding, D.; Derdeyn, C.P.; Lanzino, G.; Friedlander, R.M.; Southerland, A.M.; Lawton, M.T.; Sheehan, J.P. Brain arteriovenous malformations: A review of natural history, pathobiology, and interventions. Neurology 2020, 95, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Abecassis, I.J.; Xu, D.S.; Batjer, H.H.; Bendok, B.R. Natural history of brain arteriovenous malformations: A systematic review. Neurosurg. Focus 2014, 37, E7. [Google Scholar] [CrossRef] [PubMed]
- Stapf, C.; Mast, H.; Sciacca, R.R.; Choi, J.H.; Khaw, A.V.; Connolly, E.S.; Pile-Spellman, J.; Mohr, J.P. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 2006, 66, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Gross, B.A.; Du, R. Natural history of cerebral arteriovenous malformations: A meta-analysis. J. Neurosurg. 2013, 118, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Spetzler, R.F.; Wilson, C.B.; Weinstein, P.; Mehdorn, M.; Townsend, J.; Telles, D. Normal perfusion pressure breakthrough theory. Clin. Neurosurg. 1978, 25, 651–672. [Google Scholar] [CrossRef] [PubMed]
- Quick, C.M.; Hashimoto, T.; Young, W.L. Lack of flow regulation may explain the development of arteriovenous malformations. Neurol. Res. 2001, 23, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Guest, W.; Krings, T. Brain Arteriovenous Malformations: The Role of Imaging in Treatment Planning and Monitoring Response. Neuroimaging Clin. N. Am. 2021, 31, 205–222. [Google Scholar] [CrossRef]
- Spetzler, R.F.; Martin, N.A. A proposed grading system for arteriovenous malformations. J. Neurosurg. 1986, 65, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.T.; Kim, H.; McCulloch, C.E.; Mikhak, B.; Young, W.L. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery 2010, 66, 702–713, discussion 713. [Google Scholar] [CrossRef]
- Spetzler, R.F.; Ponce, F.A. A 3-tier classification of cerebral arteriovenous malformations. Clinical article. J. Neurosurg. 2011, 114, 842–849. [Google Scholar] [CrossRef]
- Tayebi Meybodi, A.; Lawton, M.T. Modern radiosurgical and endovascular classification schemes for brain arteriovenous malformations. Neurosurg. Rev. 2020, 43, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Siebert, E.; Diekmann, S.; Masuhr, F.; Bauknecht, H.C.; Schreiber, S.; Klingebiel, R.; Bohner, G. Measurement of cerebral circulation times using dynamic whole-brain CT-angiography: Feasibility and initial experience. Neurol. Sci. 2012, 33, 741–747. [Google Scholar] [CrossRef]
- Kim, D.J.; Krings, T. Whole-brain perfusion CT patterns of brain arteriovenous malformations: A pilot study in 18 patients. AJNR Am. J. Neuroradiol. 2011, 32, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, J.; Sun, S.; Zhang, Q.; Zhai, Y.; Wang, X.; Ge, P.; Shi, Z.; Zhang, D. CT Angiography Radiomics Combining Traditional Risk Factors to Predict Brain Arteriovenous Malformation Rupture: A Machine Learning, Multicenter Study. Transl. Stroke Res. 2023. ahead of print. [Google Scholar] [CrossRef]
- Bhogal, P.; Lansley, J.; Wong, K.; Udani, S.D.; Uff, C.; Wadley, J.; Kumar, A.; Matouk, C.C.; Makalanda, H.L. Vessel wall enhancement of a ruptured intra-nidal aneurysm in a brain arteriovenous malformation. Interv. Neuroradiol. 2019, 25, 310–314. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Bayrlee, A.; Hirsch, J.A.; Yoo, A.J.; Copen, W.A. Dynamic contrast-enhanced MRA at 1.5 T for detection of arteriovenous shunting before and after Onyx embolization of cerebral arteriovenous malformations. J. Neuroimaging 2013, 23, 514–517. [Google Scholar] [CrossRef]
- Jhaveri, A.; Amirabadi, A.; Dirks, P.; Kulkarni, A.V.; Shroff, M.M.; Shkumat, N.; Krings, T.; Pereira, V.M.; Rea, V.; Muthusami, P. Predictive Value of MRI in Diagnosing Brain AVM Recurrence after Angiographically Documented Exclusion in Children. AJNR Am. J. Neuroradiol. 2019, 40, 1227–1235. [Google Scholar] [CrossRef]
- Raman, A.; Uprety, M.; Calero, M.J.; Villanueva, M.R.B.; Joshaghani, N.; Villa, N.; Badla, O.; Goit, R.; Saddik, S.E.; Dawood, S.N.; et al. A Systematic Review Comparing Digital Subtraction Angiogram with Magnetic Resonance Angiogram Studies in Demonstrating the Angioarchitecture of Cerebral Arteriovenous Malformations. Cureus 2022, 14, e25803. [Google Scholar] [CrossRef] [PubMed]
- Nocuń, A.; Szajner, M.; Gil, K.; Zaorska-Rajca, J. Diagnostic value of cerebral perfusion scintigraphy in evaluation of intracranial arteriovenous malformations--preliminary report. Nucl. Med. Rev. Cent. East. Eur. 2004, 7, 43–48. [Google Scholar]
- Kim, M.; Kim, H.S. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know. Korean J. Radiol. 2016, 17, 598–619. [Google Scholar] [CrossRef]
- Barajas, R.F., Jr.; Phillips, J.J.; Parvataneni, R.; Molinaro, A.; Essock-Burns, E.; Bourne, G.; Parsa, A.T.; Aghi, M.K.; McDermott, M.W.; Berger, M.S.; et al. Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol. 2012, 14, 942–954. [Google Scholar] [CrossRef]
- Eisenhut, F.; Schmidt, M.A.; Putz, F.; Lettmaier, S.; Fröhlich, K.; Arinrad, S.; Coras, R.; Luecking, H.; Lang, S.; Fietkau, R.; et al. Classification of Primary Cerebral Lymphoma and Glioblastoma Featuring Dynamic Susceptibility Contrast and Apparent Diffusion Coefficient. Brain Sci. 2020, 10, 886. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, S.; Liu, D.; Dzaye, O.; Kamson, D.O.; Reis, J.; Liebig, T.; Holdhoff, M.; Van Zijl, P.; Qin, Q.; Lin, D.D.M. Velocity-Selective Arterial Spin Labeling Perfusion in Monitoring High Grade Gliomas Following Therapy: Clinical Feasibility at 1.5 T and Comparison with Dynamic Susceptibility Contrast Perfusion. Brain Sci. 2024, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Law, M.; Oh, S.; Johnson, G.; Babb, J.S.; Zagzag, D.; Golfinos, J.; Kelly, P.J. Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: A second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery 2006, 58, 1099–1107, discussion 1099-107. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Bi, W.L.; Griffith, B.; Kaufmann, T.J.; la Fougère, C.; Schmidt, N.O.; Tonn, J.C.; Vogelbaum, M.A.; Wen, P.Y.; Aldape, K.; et al. Imaging and diagnostic advances for intracranial meningiomas. Neuro Oncol. 2019, 21 (Suppl. S1), i44–i61. [Google Scholar] [CrossRef] [PubMed]
- Tedyanto, E.H.; Tini, K.; Pramana, N.A.K. Magnetic Resonance Imaging in Acute Ischemic Stroke. Cureus 2022, 14, e27224. [Google Scholar] [CrossRef] [PubMed]
- Paldino, M.J.; Barboriak, D.P. Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn. Reson. Imaging Clin. N. Am. 2009, 17, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Bergamino, M.; Bonzano, L.; Levrero, F.; Mancardi, G.L.; Roccatagliata, L. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors. Phys. Med. 2014, 30, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Heye, A.K.; Culling, R.D.; Valdés Hernández Mdel, C.; Thrippleton, M.J.; Wardlaw, J.M. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin. 2014, 6, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.S.; Lee, E.H.; Kim, J.H.; Seo, Y.B.; Choo, Y.J.; Park, J.; Chang, M.C. The Use of Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Evaluation of Blood-Brain Barrier Disruption in Traumatic Brain Injury: What Is the Evidence? Brain Sci. 2021, 11, 775. [Google Scholar] [CrossRef]
- Lüdemann, L.; Jedrzejewski, G.; Heidenreich, J.; Han, E.T.; Bruhn, H. Perfusion imaging of cerebral arteriovenous malformations: A study comparing quantitative continuous arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging at 3 T. Magn. Reson. Imaging 2011, 29, 1157–1164. [Google Scholar] [CrossRef]
- Williams, D.S.; Detre, J.A.; Leigh, J.S.; Koretsky, A.P. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl. Acad. Sci. USA 1992, 89, 212–216, Erratum in Proc. Natl. Acad. Sci. USA 1992, 89, 4220. [Google Scholar] [CrossRef]
- Zaharchuk, G.; El Mogy, I.S.; Fischbein, N.J.; Albers, G.W. Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke 2012, 43, 1843–1848. [Google Scholar] [CrossRef]
- Kambe, A.; Kitao, S.; Ochiai, R.; Hosoya, T.; Fujii, S.; Kurosaki, M. The utility of arterial spin labeling imaging for predicting prognosis after a recurrence of high-grade glioma in patients under bevacizumab treatment. J. Neurooncol. 2024, 166, 175–183. [Google Scholar] [CrossRef]
- Lindner, T.; Bolar, D.S.; Achten, E.; Barkhof, F.; Bastos-Leite, A.J.; Detre, J.A.; Golay, X.; Günther, M.; Wang, D.J.J.; Haller, S.; et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn. Reson. Med. 2023, 89, 2024–2047. [Google Scholar] [CrossRef]
- Can, A.; Gross, B.A.; Du, R. The natural history of cerebral arteriovenous malformations. Handb. Clin. Neurol. 2017, 143, 15–24. [Google Scholar] [CrossRef]
- Niazi, T.N.; Klimo, P., Jr.; Anderson, R.C.; Raffel, C. Diagnosis and management of arteriovenous malformations in children. Neurosurg. Clin. N. Am. 2010, 21, 443–456. [Google Scholar] [CrossRef]
- Grüter, B.E.; Sun, W.; Fierstra, J.; Regli, L.; Germans, M.R. Systematic review of brain arteriovenous malformation grading systems evaluating microsurgical treatment recommendation. Neurosurg. Rev. 2021, 44, 2571–2582. [Google Scholar] [CrossRef]
- Al-Shahi, R.; Warlow, C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain 2001, 124 Pt 10, 1900–1926. [Google Scholar] [CrossRef]
- Aoki, R.; Srivatanakul, K. Developmental Venous Anomaly: Benign or Not Benign. Neurol. Med. Chir. 2016, 56, 534–543. [Google Scholar] [CrossRef]
- De Maria, L.; Lanzino, G.; Flemming, K.D.; Brinjikji, W. Transitional venous anomalies and DVAs draining brain AVMs: A single-institution case series and review of the literature. J. Clin. Neurosci. 2019, 66, 165–177. [Google Scholar] [CrossRef]
- Im, S.H.; Han, M.H.; Kwon, B.J.; Ahn, J.Y.; Jung, C.; Park, S.H.; Oh, C.W.; Han, D.H. Venous-predominant parenchymal arteriovenous malformation: A rare subtype with a venous drainage pattern mimicking developmental venous anomaly. J. Neurosurg. 2008, 108, 1142–1147. [Google Scholar] [CrossRef]
- Yoo, D.H.; Sohn, C.H.; Kang, H.S.; Cho, Y.D.; Kim, K.M. Arterial Spin-Labeling MR Imaging for the Differential Diagnosis of Venous-Predominant AVMs and Developmental Venous Anomalies. AJNR Am. J. Neuroradiol. 2023, 44, 916–921. [Google Scholar] [CrossRef]
- Zhang, M.; Connolly, I.D.; Teo, M.K.; Yang, G.; Dodd, R.; Marks, M.; Zuccarello, M.; Steinberg, G.K. Management of Arteriovenous Malformations Associated with Developmental Venous Anomalies: A Literature Review and Report of 2 Cases. World Neurosurg. 2017, 106, 563–569. [Google Scholar] [CrossRef]
- Yasargil, M.G. Microneurosurgery III A: AVM of the Brain, History, Embryology, Pathological Considerations, Hemodynamics, Diagnostic Studies, Microsurgical Anatomy; Pathological Considerations; Thieme: New York, NY, USA, 1987; pp. 85–91. [Google Scholar]
- Ogilvy, C.S.; Heros, R.C.; Ojemann, R.G.; New, P.F. Angiographically occult arteriovenous malformations. J. Neurosurg. 1988, 69, 350–355, Correction in J. Neurosurg. 1989, 70, 293. [Google Scholar] [CrossRef]
- Kochi, R.; Endo, H.; Uchida, H.; Kawaguchi, T.; Omodaka, S.; Matsumoto, Y.; Tominaga, T. Efficacy of arterial spin labeling for detection of the ruptured micro-arteriovenous malformation: Illustrative cases. J. Neurosurg. Case Lessons 2022, 3, CASE21597. [Google Scholar] [CrossRef]
- Le, T.T.; Fischbein, N.J.; André, J.B.; Wijman, C.; Rosenberg, J.; Zaharchuk, G. Identification of venous signal on arterial spin labeling improves diagnosis of dural arteriovenous fistulas and small arteriovenous malformations. AJNR Am. J. Neuroradiol. 2012, 33, 61–68. [Google Scholar] [CrossRef]
- Kochi, R.; Suzuki, Y.; Yamazaki, H.; Aikawa, T.; Endo, H.; Tominaga, T. Efficacy of repeat arterial spin labeling for angiogram-negative ruptured micro-arteriovenous malformation: A case report. Surg. Neurol. Int. 2023, 14, 119. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Hamabe, J.; Horie, N.; Iki, Y.; Sadakata, E.; Hiu, T.; Yagi, N.; Suyama, K. Hypointensity of draining veins on susceptibility-weighted magnetic resonance images might indicate normal venous flow and a lower risk of intracerebral hemorrhage in patients with intracranial arteriovenous shunt(s). J. Clin. Neurosci. 2020, 80, 250–256. [Google Scholar] [CrossRef]
- Sunwoo, L.; Sohn, C.H.; Lee, J.Y.; Yi, K.S.; Yun, T.J.; Choi, S.H.; Cho, Y.D.; Kim, J.H.; Park, S.W.; Han, M.H.; et al. Evaluation of the degree of arteriovenous shunting in intracranial arteriovenous malformations using pseudo-continuous arterial spin labeling magnetic resonance imaging. Neuroradiology 2015, 57, 775–782. [Google Scholar] [CrossRef]
- Chen, C.J.; Ding, D.; Lee, C.C.; Kearns, K.N.; Pomeraniec, I.J.; Cifarelli, C.P.; Arsanious, D.E.; Liscak, R.; Hanuska, J.; Williams, B.J.; et al. Stereotactic radiosurgery with versus without prior Onyx embolization for brain arteriovenous malformations. J. Neurosurg. 2020, 135, 742–750. [Google Scholar] [CrossRef]
- Xiaochuan, H.; Yuhua, J.; Xianli, L.; Hongchao, Y.; Yang, Z.; Youxiang, L. Targeted embolization reduces hemorrhage complications in partially embolized cerebral AVM combined with gamma knife surgery. Interv. Neuroradiol. 2015, 21, 80–87. [Google Scholar] [CrossRef]
- Taeshineetanakul, P.; Krings, T.; Geibprasert, S.; Menezes, R.; Agid, R.; Terbrugge, K.G.; Schwartz, M.L. Angioarchitecture determines obliteration rate after radiosurgery in brain arteriovenous malformations. Neurosurgery. 2012, 71, 1071–1078, discussion 1079. [Google Scholar] [CrossRef]
- Wu, C.X.; Zang, Z.X.; Hong, T.; Dong, M.Q.; Shan, Y.; Zhao, Z.L.; Hou, C.B.; Lu, J. Signal intensity ratio of draining vein on silent MR angiography as an indicator of high-flow arteriovenous shunt in brain arteriovenous malformation. Eur. Radiol. 2021, 31, 9252–9261. [Google Scholar] [CrossRef]
- Lunsford, L.D.; Kondziolka, D.; Flickinger, J.C.; Bissonette, D.J.; Jungreis, C.A.; Maitz, A.H.; Horton, J.A.; Coffey, R.J. Stereotactic radiosurgery for arteriovenous malformations of the brain. J. Neurosurg. 1991, 75, 512–524. [Google Scholar] [CrossRef]
- Torrens, M.; Chung, C.; Chung, H.T.; Hanssens, P.; Jaffray, D.; Kemeny, A.; Larson, D.; Levivier, M.; Lindquist, C.; Lippitz, B.; et al. Standardization of terminology in stereotactic radiosurgery: Report from the Standardization Committee of the International Leksell Gamma Knife Society: Special topic. J. Neurosurg. 2014, 121 (Suppl. S2), 2–15. [Google Scholar] [CrossRef]
- Hadizadeh, D.R.; Kukuk, G.M.; Steck, D.T.; Gieseke, J.; Urbach, H.; Tschampa, H.J.; Greschus, S.; Kovàcs, A.; Möhlenbruch, M.; Bostroem, A.; et al. Noninvasive evaluation of cerebral arteriovenous malformations by 4D-MRA for preoperative planning and postoperative follow-up in 56 patients: Comparison with DSA and intraoperative findings. AJNR Am. J. Neuroradiol. 2012, 33, 1095–1101. [Google Scholar] [CrossRef]
- Bi, X.; Weale, P.; Schmitt, P.; Zuehlsdorff, S.; Jerecic, R. Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: A feasibility study. Magn. Reson. Med. 2010, 63, 835–841. [Google Scholar] [CrossRef]
- Ozyurt, O.; Dincer, A.; Erdem Yildiz, M.; Peker, S.; Yilmaz, M.; Sengoz, M.; Ozturk, C. Integration of arterial spin labeling into stereotactic radiosurgery planning of cerebral arteriovenous malformations. J. Magn. Reson. Imaging 2017, 46, 1718–1727. [Google Scholar] [CrossRef]
- Cohen-Inbar, O.; Starke, R.M.; Paisan, G.; Kano, H.; Huang, P.P.; Rodriguez-Mercado, R.; Almodovar, L.; Grills, I.S.; Mathieu, D.; Silva, D.; et al. Early versus late arteriovenous malformation responders after stereotactic radiosurgery: An international multicenter study. J. Neurosurg. 2017, 127, 503–511. [Google Scholar] [CrossRef]
- Suazo, L.; Foerster, B.; Fermin, R.; Speckter, H.; Vilchez, C.; Oviedo, J.; Stoeter, P. Measurement of blood flow in arteriovenous malformations before and after embolization using arterial spin labeling. Interv. Neuroradiol. 2012, 18, 42–48. [Google Scholar] [CrossRef]
- Alaraj, A.; Amin-Hanjani, S.; Shakur, S.F.; Aletich, V.A.; Ivanov, A.; Carlson, A.P.; Oh, G.; Charbel, F.T. Quantitative assessment of changes in cerebral arteriovenous malformation hemodynamics after embolization. Stroke 2015, 46, 942–947. [Google Scholar] [CrossRef]
- Han, S.J.; Englot, D.J.; Kim, H.; Lawton, M.T. Brainstem arteriovenous malformations: Anatomical subtypes, assessment of “occlusion in situ” technique, and microsurgical results. J. Neurosurg. 2015, 122, 107–117. [Google Scholar] [CrossRef]
- Schramm, J.; Schaller, K.; Esche, J.; Boström, A. Microsurgery for cerebral arteriovenous malformations: Subgroup outcomes in a consecutive series of 288 cases. J. Neurosurg. 2017, 126, 1056–1063. [Google Scholar] [CrossRef]
- Steiner, L.; Lindquist, C.; Adler, J.R.; Torner, J.C.; Alves, W.; Steiner, M. Clinical out come of radiosurgery for cerebral arteriovenous malformations. J. Neurosurg. 1992, 77, 1–8. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Lu, L.; Zhang, Y. The factors associated with obliteration following stereotactic radiosurgery in patients with brain arteriovenous malformations: A meta-analysis. ANZ J. Surg. 2022, 92, 970–979. [Google Scholar] [CrossRef]
- Kodera, T.; Arai, Y.; Arishima, H.; Higashino, Y.; Isozaki, M.; Tsunetoshi, K.; Matsuda, K.; Kitai, R.; Shimizu, K.; Kosaka, N.; et al. Evaluation of obliteration of arteriovenous malformations after stereotactic radiosurgery with arterial spin labeling MR imaging. Br. J. Neurosurg. 2017, 31, 641–647. [Google Scholar] [CrossRef]
- Heit, J.J.; Thakur, N.H.; Iv, M.; Fischbein, N.J.; Wintermark, M.; Dodd, R.L.; Steinberg, G.K.; Chang, S.D.; Kapadia, K.B.; Zaharchuk, G. Arterial-spin labeling MRI identifies residual cerebral arteriovenous malformation following stereotactic radiosurgery treatment. J. Neuroradiol. 2020, 47, 13–19. [Google Scholar] [CrossRef]
- Abdelaziz, O.; Shereen, A.; Inoue, T.; Hirai, H.; Shima, A. Correlation of Appearance of MRI Perinidal T2 Hyperintensity Signal and Eventual Nidus Obliteration Following Photon Radiosurgery of Brain AVMs: Combined Results of LINAC and Gamma Knife Centers. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2019, 80, 187–197. [Google Scholar] [CrossRef]
- Kitajima, M.; Uetani, H. Arterial Spin Labeling for Pediatric Central Nervous System Diseases: Techniques and Clinical Applications. Magn. Reson. Med. Sci. 2023, 22, 27–43. [Google Scholar] [CrossRef]
- Hak, J.F.; Boulouis, G.; Kerleroux, B.; Benichi, S.; Stricker, S.; Gariel, F.; Garzelli, L.; Meyer, P.; Kossorotoff, M.; Boddaert, N.; et al. Noninvasive Follow-up Imaging of Ruptured Pediatric Brain AVMs Using Arterial Spin-Labeling. AJNR Am. J. Neuroradiol. 2022, 43, 1363–1368. [Google Scholar] [CrossRef]
- Copelan, A.; Drocton, G.; Caton, M.T.; Smith, E.R.; Cooke, D.L.; Nelson, J.; Abla, A.A.; Fox, C.; Amans, M.R.; Dowd, C.F.; et al. Brain Arteriovenous Malformation Recurrence After Apparent Microsurgical Cure: Increased Risk in Children Who Present with Arteriovenous Malformation Rupture. Stroke 2020, 51, 2990–2996. [Google Scholar] [CrossRef] [PubMed]
- Hak, J.F.; Boulouis, G.; Kerleroux, B.; Benichi, S.; Stricker, S.; Gariel, F.; Garzelli, L.; Meyer, P.; Kossorotoff, M.; Boddaert, N.; et al. Arterial Spin Labeling for the Etiological Workup of Intracerebral Hemorrhage in Children. Stroke 2022, 53, 185–193. [Google Scholar] [CrossRef]
- Shao, X.; Yan, L.; Ma, S.J.; Wang, K.; Wang, D.J.J. High-Resolution Neurovascular Imaging at 7T: Arterial Spin Labeling Perfusion, 4-Dimensional MR Angiography, and Black Blood MR Imaging. Magn. Reson. Imaging Clin. N. Am. 2021, 29, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Cong, F.; Zhuo, Y.; Yu, S.; Zhang, X.; Miao, X.; An, J.; Wang, S.; Cao, Y.; Zhang, Y.; Song, H.K.; et al. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study. J. Magn. Reson. Imaging 2018, 48, 111–120. [Google Scholar] [CrossRef]
- Togao, O.; Obara, M.; Helle, M.; Yamashita, K.; Kikuchi, K.; Momosaka, D.; Kikuchi, Y.; Nishimura, A.; Arimura, K.; Wada, T.; et al. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics. Eur. Radiol. 2020, 30, 6452–6463. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, X.; Gauvrit, J.Y.; Trystram, D.; Reyns, N.; Pruvo, J.P.; Meder, J.F. Imagerie vasculaire non invasive et malformations artérioveineuses cérébrales Cerebral arteriovenous malformations: Value of the non invasive vascular imaging techniques. J. Neuroradiol. 2004, 31, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Lerwick, J.L. Minimizing pediatric healthcare-induced anxiety and trauma. World J. Clin. Pediatr. 2016, 5, 143–150. [Google Scholar] [CrossRef]
- Chen, Y.; Han, H.; Meng, X.; Jin, H.; Gao, D.; Ma, L.; Li, R.; Li, Z.; Yan, D.; Zhang, H.; et al. Development and Validation of a Scoring System for Hemorrhage Risk in Brain Arteriovenous Malformations. JAMA Netw. Open. 2023, 6, e231070. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Clingman, C.; Golay, X.; van Zijl, P.C.M. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn. Reson. Med. 2004, 52, 679–682. [Google Scholar] [CrossRef]
- Schubert, T.; Clark, Z.; Sandoval-Garcia, C.; Zea, R.; Wieben, O.; Wu, H.; Wieben, O.; Turski, P.A.; Johnson, K.M. Non contrast, pseudo-continuous arterial spin labeling and accelerated 3-dimensional radial acquisition intracranial 3-dimensional magnetic resonance angiography for the detection and classification of intracranial arteriovenous shunts. Investig. Radiol. 2018, 53, 80–86. [Google Scholar] [CrossRef]
- Noguchi, T.; Irie, H.; Takase, Y.; Kawashima, M.; Ootsuka, T.; Nishihara, M.; Egashira, Y.; Nojiri, J.; Matsushima, T.; Kudo, S. Hemodynamic studies of intracranial dural arteriovenous fistulas using arterial spin-labeling MR imaging. Interv. Neuroradiol. 2010, 16, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Mukherjee, D.; Delf, J.; Bown, M.J.; Kandiyil, N. A comparison of arterial spin labelling with catheter angiography in evaluating arteriovenous malformations: A systematic review. Br. J. Radiol. 2020, 93, 20190830. [Google Scholar] [CrossRef] [PubMed]
- Jensen-Kondering, U.; Lindner, T.; van Osch, M.J.P.; Rohr, A.; Jansen, O.; Helle, M.; Van, O.M. Superselective pseudo-continuous arterial spin labeling angiography. Eur. J. Radiol. 2015, 84, 1758–1767. [Google Scholar] [CrossRef] [PubMed]
Classification | Purpose/Modality | Key Factors Assessed |
---|---|---|
Spetzler–Martin Grading System | Surgical risk estimation | Nidus size, location in brain, and venous drainage |
Spetzler–Ponce Model | Surgical guidance | Categorizes AVMs into three tiers based on Spetzler–Martin grades |
Supplementary Grading Scale by Lawton and Young | Predict neurological outcome and refine patient selection | Patient age, hemorrhagic presentation, nidal diffuseness, and deep perforating artery supply |
Pittsburgh Modified RBAS | Radiosurgery outcomes | Nidus volume, location, and clinical factors (history, age) |
Virginia Radiosurgery AVM Scale | Radiosurgery outcomes | Nidus volume, location, and clinical factors (history) |
Toronto, Puerto Rico, and Buffalo Score | Endovascular assessment | AVM angioarchitecture, arterial pedicles, and draining veins |
Embocure Scor | Endovascular assessment | AVM angioarchitecture, arterial pedicles, and draining veins |
Characteristics Analyzed | Advantages of ASL | Advantages of DSA | Disadvantages of ASL | Disadvantages of DSA |
---|---|---|---|---|
Endogenous Tracer Usage (water) | ++ | − | − | Contrast agent required; risk of complications |
Safety as a Noninvasive Alternative | + | − | − | Invasive procedure; potential for vascular complications |
Functional AVM Assessment | Provides functional assessment | − | Reduced reliability for venous drainage assessment (spin inversion) | Limited functional information; anatomical focus |
Identification of Arterial Feeders | −/+ | − | Difficulty in detecting AVMs in specific locations | Excellent identification of arterial feeders; comprehensive view |
Characterization of Low-Flow Segments | − | − | Underestimation of total blood flow in AVMs | May not provide detailed information on low-flow segments |
Mitigation of Overestimation Risk | −/+ | − | Limitations in the immediate postintervention period | Potential for overestimation due to strong contrast agent injection |
Identification Despite Mass Effect | − | − | Challenges in interpretation due to inhomogeneities | Excellent for overcoming mass effect; direct visualization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Simone, M.; Fontanella, M.M.; Choucha, A.; Schaller, K.; Machi, P.; Lanzino, G.; Bijlenga, P.; Kurz, F.T.; Lövblad, K.-O.; De Maria, L. Current and Future Applications of Arterial Spin Labeling MRI in Cerebral Arteriovenous Malformations. Biomedicines 2024, 12, 753. https://doi.org/10.3390/biomedicines12040753
De Simone M, Fontanella MM, Choucha A, Schaller K, Machi P, Lanzino G, Bijlenga P, Kurz FT, Lövblad K-O, De Maria L. Current and Future Applications of Arterial Spin Labeling MRI in Cerebral Arteriovenous Malformations. Biomedicines. 2024; 12(4):753. https://doi.org/10.3390/biomedicines12040753
Chicago/Turabian StyleDe Simone, Matteo, Marco Maria Fontanella, Anis Choucha, Karl Schaller, Paolo Machi, Giuseppe Lanzino, Philippe Bijlenga, Felix T. Kurz, Karl-Olof Lövblad, and Lucio De Maria. 2024. "Current and Future Applications of Arterial Spin Labeling MRI in Cerebral Arteriovenous Malformations" Biomedicines 12, no. 4: 753. https://doi.org/10.3390/biomedicines12040753
APA StyleDe Simone, M., Fontanella, M. M., Choucha, A., Schaller, K., Machi, P., Lanzino, G., Bijlenga, P., Kurz, F. T., Lövblad, K. -O., & De Maria, L. (2024). Current and Future Applications of Arterial Spin Labeling MRI in Cerebral Arteriovenous Malformations. Biomedicines, 12(4), 753. https://doi.org/10.3390/biomedicines12040753