The Genetic Markers of Knee Osteoarthritis in Women from Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Genotyping
3. Results
3.1. Study of Candidate Genes
3.2. Replication of GWAS Results
4. Discussion
4.1. History of Osteoarthritis Genetic Marker Research
4.2. VNTR
4.3. rs7639618 (DVWA)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezuş, E.; Burlui, A.; Cardoneanu, A.; Macovei, L.A.; Tamba, B.I.; Rezuş, C. From Pathogenesis to Therapy in Knee Osteoarthritis: Bench-to-Bedside. Int. J. Mol. Sci. 2021, 22, 2697. [Google Scholar] [CrossRef]
- Jinks, C.; Jordan, K.; Ong, B.N.; Croft, P. A Brief Screening Tool for Knee Pain in Primary Care (KNEST). 2. Results from a Survey in the General Population Aged 50 and Over. Rheumatology 2004, 43, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Driban, J.B.; Harkey, M.S.; Barbe, M.F.; Ward, R.J.; MacKay, J.W.; Davis, J.E.; Lu, B.; Price, L.L.; Eaton, C.B.; Lo, G.H.; et al. Risk Factors and the Natural History of Accelerated Knee Osteoarthritis: A Narrative Review. BMC Musculoskelet. Disord. 2020, 21, 332. [Google Scholar] [CrossRef] [PubMed]
- Yalaev, B.; Tyurin, A.; Prokopenko, I.; Karunas, A.; Khusnutdinova, E.; Khusainova, R. Using a Polygenic Score to Predict the Risk of Developing Primary Osteoporosis. Int. J. Mol. Sci. 2022, 23, 10021. [Google Scholar] [CrossRef] [PubMed]
- Heidari, B. Knee Osteoarthritis Prevalence, Risk Factors, Pathogenesis and Features: Part, I. Casp. J. Intern. Med. 2011, 2, 205–212. [Google Scholar]
- Tyurin, A.; Shapovalova, D.; Gantseva, H.; Pavlov, V.; Khusainova, R. Association between MiRNA Target Sites and Incidence of Primary Osteoarthritis in Women from Volga-Ural Region of Russia: A Case-Control Study. Diagnostics 2021, 11, 1222. [Google Scholar] [CrossRef] [PubMed]
- Horton, W.E., Jr.; Lethbridge-Cejku, M.; Hochberg, M.C.; Balakir, R.; Precht, P.; Plato, C.C.; Tobin, J.D.; Meek, L.; Doege, K. An Association between an Aggrecan Polymorphic Allele and Bilateral Hand Osteoarthritis in Elderly White Men: Data from the Baltimore Longitudinal Study of Aging (BLSA). Osteoarthr. Cartil. 1998, 6, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Rong, J.; Guan, F.; Jiang, L.; Zhang, T.; Tao, S.; Guan, G.; Xu, L.; Tao, T. Association of ADAMTS5 Gene Polymorphisms with Osteoarthritis in Chinese Han Population: A Community-Based Case-Control Study. Rheumatol. Int. 2013, 33, 2893–2897. [Google Scholar] [CrossRef] [PubMed]
- arcOGEN Consortium and arcOGEN Collaborators. Identification of New Susceptibility Loci for Osteoarthritis (ArcOGEN): A Genome-Wide Association Study. Lancet 2012, 380, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Styrkarsdottir, U.; Thorleifsson, G.; Helgadottir, H.T.; Bomer, N.; Metrustry, S.; Bierma-Zeinstra, S.; Strijbosch, A.M.; Evangelou, E.; Hart, D.; Beekman, M.; et al. Severe Osteoarthritis of the Hand Associates with Common Variants within the ALDH1A2 Gene and with Rare Variants at 1p31. Nat. Genet. 2014, 46, 498–502. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Shi, D.; Nakajima, M.; Ozaki, K.; Sudo, A.; Kotani, A.; Uchida, A.; Tanaka, T.; Fukui, N.; Tsunoda, T.; et al. Common Variants in DVWA on Chromosome 3p24.3 Are Associated with Susceptibility to Knee Osteoarthritis. Nat. Genet. 2008, 40, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Day-Williams, A.G.; Southam, L.; Panoutsopoulou, K.; Rayner, N.W.; Esko, T.; Estrada, K.; Helgadottir, H.T.; Hofman, A.; Ingvarsson, T.; Jonsson, H.; et al. A Variant in MCF2L Is Associated with Osteoarthritis. Am. J. Hum. Genet. 2011, 89, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, E.; Valdes, A.M.; Castano-Betancourt, M.C.; Doherty, M.; Doherty, S.; Esko, T.; Ingvarsson, T.; Ioannidis, J.P.A.; Kloppenburg, M.; Metspalu, A.; et al. The DOT1L Rs12982744 Polymorphism Is Associated with Osteoarthritis of the Hip with Genome-Wide Statistical Significance in Males. Ann. Rheum. Dis. 2013, 72, 1264–1265. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fontenla, C.; Calaza, M.; Evangelou, E.; Valdes, A.M.; Arden, N.; Blanco, F.J.; Carr, A.; Chapman, K.; Deloukas, P.; Doherty, M.; et al. Assessment of Osteoarthritis Candidate Genes in a Meta-Analysis of Nine Genome-Wide Association Studies. Arthritis Rheumatol. 2014, 66, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Mabuchi, A.; Shi, D.; Kubo, T.; Takatori, Y.; Saito, S.; Fujioka, M.; Sudo, A.; Uchida, A.; Yamamoto, S.; et al. A Functional Polymorphism in the 5′ UTR of GDF5 Is Associated with Susceptibility to Osteoarthritis. Nat. Genet. 2007, 39, 529–533. [Google Scholar] [CrossRef]
- Panoutsopoulou, K.; Zeggini, E. Advances in Osteoarthritis Genetics. J. Med. Genet. 2013, 50, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Q.; Wang, Y.X.; Li, S.H.; Jiang, G.Y.; Hu, B.; Yang, Y.T.; Meng, J.H.; Yan, S.G. Association between SMAD3 Gene Polymorphisms and Osteoarthritis Risk: A Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2018, 13, 232. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Jiang, Y.; Xu, Y.; Wang, Y.; Li, T. Correlation between Growth Differentiation Factor 5 (Rs143383) Gene Polymorphism and Knee Osteoarthritis: An Updated Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2021, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, Y. Association of BMP-14 Rs143383 Ploymorphism with Its Susceptibility to Osteoarthritis: A Meta-Analysis and Systematic Review According to PRISMA Guideline. Medicine 2017, 96, e7447. [Google Scholar] [CrossRef] [PubMed]
- Southam, L.; Rodriguez-Lopez, J.; Wilkins, J.M.; Pombo-Suarez, M.; Snelling, S.; Gomez-Reino, J.J.; Chapman, K.; Gonzalez, A.; Loughlin, J. An SNP in the 5′-UTR of GDF5 Is Associated with Osteoarthritis Susceptibility in Europeans and with in Vivo Differences in Allelic Expression in Articular Cartilage. Hum. Mol. Genet. 2007, 16, 2226–2232. [Google Scholar] [CrossRef] [PubMed]
- Syddall, C.M.; Reynard, L.N.; Young, D.A.; Loughlin, J. The Identification of Trans-Acting Factors That Regulate the Expression of GDF5 via the Osteoarthritis Susceptibility SNP Rs143383. PLoS Genet. 2013, 9, e1003557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yao, J.; Xu, P.; Ji, B.; Luck, J.V.; Chin, B.; Lu, S.; Kelsoe, J.R.; Ma, J. A Comprehensive Meta-Analysis of Association between Genetic Variants of GDF5 and Osteoarthritis of the Knee, Hip and Hand. Inflamm. Res. 2015, 64, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Evangelou, E.; Kerkhof, H.J.M.; Tamm, A.; Doherty, S.A.; Kisand, K.; Tamm, A.; Kerna, I.; Uitterlinden, A.; Hofman, A.; et al. The GDF5 Rs143383 Polymorphism Is Associated with Osteoarthritis of the Knee with Genome-Wide Statistical Significance. Ann. Rheum. Dis. 2011, 70, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.; Takahashi, A.; Meulenbelt, I.; Watson, C.; Rodriguez-lopez, J.; Egli, R.; Tsezou, A.; Malizos, K.N.; Kloppenburg, M.; Shi, D.; et al. A Meta-Analysis of European and Asian Cohorts Reveals a Global Role of a Functional SNP in the 5′ UTR of GDF5 with Osteoarthritis Susceptibility. Hum. Mol. Genet. 2008, 17, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Kizawa, H.; Kou, I.; Iida, A.; Sudo, A.; Miyamoto, Y.; Fukuda, A.; Mabuchi, A.; Kotani, A.; Kawakami, A.; Yamamoto, S.; et al. An Aspartic Acid Repeat Polymorphism in Asporin Inhibits Chondrogenesis and Increases Susceptibility to Osteoarthritis. Nat. Genet. 2005, 37, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Spector, T.D.; Tamm, A.; Kisand, K.; Doherty, S.A.; Dennison, E.M.; Mangino, M.; Tamm, A.; Kerna, I.; Hart, D.J.; et al. Genetic Variation in the SMAD3 Gene Is Associated with Hip and Knee Osteoarthritis. Arthritis Rheum. 2010, 62, 2347–2352. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, G.; Rice, S.J.; Bruce-Wootton, P.; Loughlin, J. Genetics of Osteoarthritis. Osteoarthr. Cartil. 2022, 30, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Styrkarsdottir, U.; Helgason, H.; Sigurdsson, A.; Norddahl, G.L.; Agustsdottir, A.B.; Reynard, L.N.; Villalvilla, A.; Halldorsson, G.H.; Jonasdottir, A.; Magnusdottir, A.; et al. Whole-Genome Sequencing Identifies Rare Genotypes in COMP and CHADL Associated with High Risk of Hip Osteoarthritis. Nat. Genet. 2017, 49, 801–805. [Google Scholar] [CrossRef]
- Rego-Pérez, I.; Durán-Sotuela, A.; Ramos-Louro, P.; Blanco, F.J. Genetic Biomarkers in Osteoarthritis: A Quick Overview. Fac. Rev. 2021, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Rezuș, E.; Cardoneanu, A.; Burlui, A.; Luca, A.; Codreanu, C.; Tamba, B.I.; Stanciu, G.D.; Dima, N.; Bădescu, C.; Rezuș, C. The Link between Inflammaging and Degenerative Joint Diseases. Int. J. Mol. Sci. 2019, 20, 614. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Adams, M.J.; Palmer, C.N.A.; Agee, M.; Alipanahi, B.; Bell, R.K.; Bryc, K.; Elson, S.L.; Fontanillas, P.; Furlotte, N.A.; et al. Genome-Wide Association Study of Knee Pain Identifies Associations with GDF5 and COL27A1 in UK Biobank. Commun. Biol. 2019, 2, 321. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yau, M.S.; Yerges-Armstrong, L.M.; Duggan, D.J.; Renner, J.B.; Hochberg, M.C.; Mitchell, B.D.; Jackson, R.D.; Jordan, J.M. Genetic Determinants of Radiographic Knee Osteoarthritis in African Americans. J. Rheumatol. 2017, 44, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.T.; Liang, S.; Huang, X.J.; Cheng, P.; Zhu, W.T.; Chen, A.M. Association between ADAM12 Single-Nucleotide Polymorphisms and Knee Osteoarthritis: A Meta-Analysis. Biomed Res. Int. 2017, 2017, 5398181. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.; Roland, S.K.; Plaas, A.; Roughley, P.J. The Glycosaminoglycan Attachment Regions of Human Aggrecan. J. Biol. Chem. 2006, 281, 18444–18450. [Google Scholar] [CrossRef] [PubMed]
- De Souza, T.B.; Mentz, E.F.; Brenol, C.V.; Xavier, R.M.; Brenol, J.C.T.; Chies, J.A.; Simon, D. Association between the Aggrecan Gene and Rheumatoid Arthritis. J. Rheumatol. 2008, 35, 2325–2328. [Google Scholar] [CrossRef] [PubMed]
- Doege, K.J.; Coulter, S.N.; Meek, L.M.; Maslen, K.; Wood, J.G. A Human-Specific Polymorphism in the Coding Region of the Aggrecan Gene: Variable Number of Tandem Repeats Produce a Range of Core Protein Sizes in the General Population. J. Biol. Chem. 1997, 272, 13974–13979. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Guan, F.; Guan, G.; Xu, G.; Wang, X.; Zhao, W.; Ji, Y.; Yan, J. Aggrecan Variable Number of Tandem Repeat Polymorphism and Lumbar Disc Degeneration: A Meta-Analysis. Spine 2013, 38, E1600–E1607. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Mei, Q.; Zhou, D.; Wu, J.; Han, L. Vitamin D Receptor Gene and Aggrecan Gene Polymorphisms and the Risk of Intervertebral Disc Degeneration—A Meta-Analysis. PLoS ONE 2012, 7, e50243. [Google Scholar] [CrossRef] [PubMed]
- Kämäräinen, O.P.; Solovieva, S.; Vehmas, T.; Luoma, K.; Leino-Arjas, P.; Riihimäki, H.; Ala-Kokko, L.; Männikkö, M. Aggrecan Core Protein of a Certain Length Is Protective against Hand Osteoarthritis. Osteoarthr. Cartil. 2006, 14, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Roughley, P.J.; Mort, J.S. The Role of Aggrecan in Normal and Osteoarthritic Cartilage. J. Exp. Orthop. 2014, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Kirk, K.M.; Doege, K.J.; Hecht, J.; Bellamy, N.; Martin, N.G. Osteoarthritis of the Hands, Hips and Knees in an Australian Twin Sample—Evidence of Association with the Aggrecan VNTR Polymorphism. Twin Res. 2003, 6, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Doege, K.J.; Sasaki, M.; Kimura, T.; Yamada, Y. Complete Coding Sequence and Deduced Primary Structure of the Human Cartilage Large Aggregating Proteoglycan, Aggrecan: Human-Specific Repeats, and Additional Alternatively Spliced Forms. J. Biol. Chem. 1991, 266, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhou, K.; Chen, Z.; Yang, F.; Zhang, C.; Zhou, Z.; Pei, F. The Association between DVWA Polymorphisms and Osteoarthritis Susceptibility: A Genetic Meta-Analysis. Int. J. Clin. Exp. Med. 2015, 8, 12566–12574. [Google Scholar] [PubMed]
- Bravatà, V.; Minafra, L.; Forte, G.I.; Cammarata, F.P.; Saporito, M.; Boniforti, F.; Lio, D.; Gilardi, M.C.; Messa, C. DVWA Gene Polymorphisms and Osteoarthritis. BMC Res. Notes 2015, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Meulenbelt, I.; Chapman, K.; Dieguez-Gonzalez, R.; Shi, D.; Tsezou, A.; Dai, J.; Malizos, K.N.; Kloppenburg, M.; Carr, A.; Nakajima, M.; et al. Large Replication Study and Meta-Analyses of DVWA as an Osteoarthritis Susceptibility Locus in European and Asian Populations. Hum. Mol. Genet. 2009, 18, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Spector, T.D.; Doherty, S.; Wheeler, M.; Hart, D.J.; Doherty, M. Association of the DVWA and GDF5 Polymorphisms with Osteoarthritis in UK Populations. Ann. Rheum. Dis. 2009, 68, 1916–1920. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Qin, W.; Wang, X.Y.; Guo, T.W.; Bian, L.; Duan, S.W.; Li, X.W.; Zou, F.G.; Fang, Y.R.; Fang, J.X.; et al. Further Evidence for the Association between G72/G30 Genes and Schizophrenia in Two Ethnically Distinct Populations. Mol. Psychiatry 2006, 11, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yao, J.; Xu, P.; Ji, B.; Voegeli, G.; Hou, W.; Li, H.; Wang, Y.; Kelsoe, J.R.; Ma, J. Association between Genetic Variants of DVWA Andosteoarthritis of the Knee and Hip: A Comprehensive Meta-Analysis. Int. J. Clin. Exp. Med. 2015, 8, 9430–9437. [Google Scholar] [PubMed]
- Ding, J.; Li, H.; Qiao, L.; Zhang, C.; Wang, T.; Xue, Y.; Li, H.; Zheng, Q.; Shen, C.; He, Q.; et al. Single Nucleotide Polymorphisms and Osteoarthritis. Medicine 2016, 95, e2811. [Google Scholar]
n | Age, Years | |||
---|---|---|---|---|
M ± m | Min | Max | ||
Total OA | 256 | 55.74 ± 8.64 p = 0.51 | 20 | 86 |
Knee OA | 137 | 57.13 ± 7.98 p = 0.14 | 26 | 86 |
Control group | 161 | 45.55 ± 12.55 | 32 | 73 |
Gene | Locus | Primer Sequence (5′-3′), Fragment Length, Annealing t0. | Detection Method | Link |
---|---|---|---|---|
Candidate genes | ||||
ACAN | VNTR | 5′-TAGAGGGCTCTGCCTCTGGAGTTG-3′ 5′-AGGTCCCCTACCGCAGAGGTAGAA-3′ t0: 58 °C PCR product length: 1143–1770 n.p. | 6% polyacrylamide gel | Doege K.J., 1997 [7] |
ADAMTS5 | rs226794 | 5′-TCCTCCACATACTCCGCACT-3′ 5′-CAAAATCTGCTTTCTGGCAAT-3′ t0: 59 °C fragment length—330 n.p. *GG—105 и 225 n.p. *AG—330, 105 и 225 n.p. *AA—330 n.p. | PCR/RFLP MbiI | Jiaao Gu., 2013 [8] |
rs2830585 | 5′-GCCTGGACAACAGTGTGAGA-3′ 5′-GGAGTGCAGTTTGCCTATCG-3′ t0: 65 °C fragment length—310 n.p. *TT—310 n.p. *CT—310, 241, 69 n.p. *CC—241, 69 n.p. | PCR/RFLP BsuRI | Jiaao Gu., 2013 | |
SOX9 | rs1042667 | Primers: FJ:CCAGAACTCCAGCTCCTA RJ:CTGGTTGGTCCTCTCTTTC Probes: FAM-aagggCgaAgaTggc-BHQ-1 VIC-aagggCgaCgaTggc-BHQ-2 t0: 62 °C | TaqMan PCR | Own development |
rs2229989 | Primers: FJ:GAACGAGAGCGAGAAGCG RJ:GGAGATGTGCGTCTGCTC Probes: FAM-agaaGgaCcaTccgga-BHQ-1 VIC-agaaGgaCcaCccgga-BHQ-2 t0: 64 °C | TaqMan PCR | Own development | |
rs7217932 | FJ: AAGGCTTATTATATGTTAGAA RJ: GTCCAAGTTGATTTTTTC FAM-cagCactTcttGtaga-BHQ-1 VIC-cagCactCcttGtaga-BHQ-2 t0: 56 °C | TaqMan PCR | Own development | |
CHST11 | rs6539153 | Primers: FJ: CCAACTCCATGATCTCTG RJ: TGACCTCTCACCTCATAG Probes: FAM-tcagaaGtcTaaTtccctgt-BHQ-1 VIC-tcagaaGtcCaaTtccctgt-BHQ-2 t0: 60 °C | TaqMan PCR | Own development |
COL1A1 | rs1107946 | GTCAGTTCCAAGAGA[A/C]CCCCTCCCTAATAGG | KASPTM | Own development |
rs1800012 | CCTGCCCAGGGAATG[G/T]GGGCGGGATGAGGGC | KASPTM | Own development | |
Replication of GWAS results | ||||
ASTN2 | rs4836732 | GAGAGACAGCACCTA[C/T]TTTCTGAGGTCTAAG | KASPTM | Own development |
DVWA | rs7639618 | CATTGACCCCTACCA[C/T]ATAACACAACAACTC | KASPTM | Own development |
MCF2L | rs11842874 | TAATGTATGGTGACA[A/G]GAGTCGGGATGGGGC | KASPTM | Own development |
GLT8D1 | rs6976 | AACTGTTACTTCCCA[C/T]GCATGCTATCTTCCA | KASPTM | Own development |
DOT1L | rs2302061 | GCCCGGGACCGCGAG[C/G]TCGACCTCAAGAATG | KASPTM | Own development |
rs12982744 | TCGGCTGTGGGCACC[C/G]GACATGTGGCTGGCG | KASPTM | Own development | |
ALDH1A | rs3204689 | GGAGCTGGTACACTA[C/G]AGATGTAGTAAGAAC | KASPTM | Own development |
GNL3 | rs11177 | GGCTTCTTGTGACCC[C/T]GCTTTTTAGCCTCCT | KASPTM | Own development |
FILIP1/ SENP6 | rs9350591 | GTTGACAACATGAAC[C/T]GGAGACAAGAAATAA | KASPTM | Own development |
NCOA3 | rs6094710 | GGGCTGTCTGCACGT[A/G]CAATGTGTTTATTGG | KASPTM | Own development |
CHST11 | rs835487 | Primers: FJ, GACTCTGTCTGCATCACA RJ, GGTCAACTGGAATGTTCTG Probes: FAM-cgttttAaaggTacctCctatt-BHQ-1 VIC-cgttttAaaggCacctCctatt-BHQ-2 t0: 60 °C | TaqMan PCR | Own development |
Locus | Gene | Chromosomal Localization | Hpred | Hobs | HWpval | MAF |
---|---|---|---|---|---|---|
VNTR | ACAN | 15q26.1 | 0.665 | 0.629 | 0.998 | 0.001 |
rs6539153 | CHST11 | 12q23.3 | 0.481 | 0.476 | 0.935 | 0.402 |
rs226794 | ADAMTS5 | 21q21.3 | 0.261 | 0.284 | 0.183 | 0.155 |
rs2830585 | ADAMTS5 | 21q21.3 | 0.199 | 0.192 | 0.706 | 0.112 |
rs1042667 | SOX9 | 17q24.3 | 0.477 | 0.456 | 0.483 | 0.392 |
rs2229989 | SOX9 | 17q24.3 | 0.363 | 0.363 | 1 | 0.238 |
rs7217932 | SOX9 | 17q24.3 | 0.499 | 0.478 | 0.494 | 0.483 |
rs1107946 | COL1A1 | 17q21.33 | 0.324 | 0.306 | 0.390 | 0.203 |
rs1800012 | COL1A1 | 17q21.33 | 0.253 | 0.240 | 0.465 | 0.148 |
Locus | Gene | Chromosomal Localization | Hpred | Hobs | HWpval | MAF | GWAS p-Value | GWAS OR |
---|---|---|---|---|---|---|---|---|
rs6976 | GLT8D1 | 3p21.1 | 0.494 | 0.484 | 0.742 | 0.446 | 1.2 × 10−10 | 1.12 (1.08–1.16 |
rs11177 | GNL3 | 3p21.1 | 0.495 | 0.489 | 0.880 | 0.448 | 7.2 × 10−11 | 1.12 (1.08–1.16) |
rs7639618 | DVWA | 3p25.1 | 0.327 | 0.320 | 0.731 | 0.206 | 7.3 × 10−8 | 1.54 (1.32–1.81) |
rs9350591 | FILIP/SENP6 | 6q14.1 | 0.209 | 0.218 | 0.554 | 0.119 | 2.42 × 10−9 | 1.18 (1.12–1.25) |
rs4836732 | ASTN2 | 9q33.1 | 0.500 | 0.559 | 0.022 | 0.500 | 6.1 × 10−10 | 1.20 (1.13–1.27) |
rs835487 | CHST11 | 12q23.3 | 0.416 | 0.425 | 0.800 | 0.295 | 1.64 × 10−8 | 1.13 (1.09–1.18) |
rs11842874 | MCF2L | 13q34 | 0.227 | 0.223 | 0.821 | 0.131 | 2 × 10−8 | 1.22 (1.14–1.30) |
rs3204689 | ALDH1A2 | 15q21.3 | 0.471 | 0.480 | 0.796 | 0.379 | 8.6 × 10−11 | 1.46 (1.31–1.63) |
rs1298744 | DOT1L | 19p13.3 | 0.454 | 0.492 | 0.121 | 0.349 | 1.1 × 10−11 | 1.17 (1.11–1.23) |
rs2302061 | DOT1L | 19p13.3 | 0.250 | 0.254 | 0.913 | 0.146 | 1.1 × 10−11 | 1.18 (1.13–1.35) |
rs6094710 | NCOA3 | 20q13.12 | 0.104 | 0.101 | 0.714 | 0.055 | 7.9 × 10−9 | 1.20 (1.08–1.34) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyurin, A.; Akhiiarova, K.; Minniakhmetov, I.; Mokrysheva, N.; Khusainova, R. The Genetic Markers of Knee Osteoarthritis in Women from Russia. Biomedicines 2024, 12, 782. https://doi.org/10.3390/biomedicines12040782
Tyurin A, Akhiiarova K, Minniakhmetov I, Mokrysheva N, Khusainova R. The Genetic Markers of Knee Osteoarthritis in Women from Russia. Biomedicines. 2024; 12(4):782. https://doi.org/10.3390/biomedicines12040782
Chicago/Turabian StyleTyurin, Anton, Karina Akhiiarova, Ildar Minniakhmetov, Natalia Mokrysheva, and Rita Khusainova. 2024. "The Genetic Markers of Knee Osteoarthritis in Women from Russia" Biomedicines 12, no. 4: 782. https://doi.org/10.3390/biomedicines12040782
APA StyleTyurin, A., Akhiiarova, K., Minniakhmetov, I., Mokrysheva, N., & Khusainova, R. (2024). The Genetic Markers of Knee Osteoarthritis in Women from Russia. Biomedicines, 12(4), 782. https://doi.org/10.3390/biomedicines12040782