Cerebral Amyloidosis in Individuals with Subjective Cognitive Decline: From Genetic Predisposition to Actual Cerebrospinal Fluid Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Neurological and Neuropsychological Evaluation
2.3. Subjective Cognitive Decline (SCD) Assessment
2.4. Cerebrospinal Fluid (CSF) Analysis in ALBION
2.5. Genotyping and Imputation in HELIAD
2.6. Polygenic Risk Score (PRS) Calculation in HELIAD
2.7. Statistical Analysis
3. Results
3.1. Descriptive Statistics and Participants’ Demographics
3.2. Factors Associated with the Odds of Prevalent SCD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Rabin, L.A.; Sikkes, S.A.M.; Tommet, D.; Jones, R.N.; Crane, P.K.; Elbulok-Charcape, M.M.; Dubbelman, M.A.; Koscik, R.; Amariglio, R.E.; Buckley, R.F.; et al. Linking self-perceived cognitive functioning questionnaires using item response theory: The subjective cognitive decline initiative. Neuropsychology 2023, 37, 463–499. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Beaumont, H.; Ferguson, D.; Yadegarfar, M.; Stubbs, B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 2014, 130, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Slot, R.E.R.; Verfaillie, S.C.J.; Overbeek, J.M.; Timmers, T.; Wesselman, L.M.P.; Teunissen, C.E.; Dols, A.; Bouwman, F.H.; Prins, N.D.; Barkhof, F.; et al. Subjective Cognitive Impairment Cohort (SCIENCe): Study design and first results. Alzheimers Res. Ther. 2018, 10, 76. [Google Scholar] [CrossRef]
- Zuroff, L.; Wisse, L.E.; Glenn, T.; Xie, S.X.; Nasrallah, I.M.; Habes, M.; Dubroff, J.; de Flores, R.; Xie, L.; Yushkevich, P.; et al. Self- and Partner-Reported Subjective Memory Complaints: Association with Objective Cognitive Impairment and Risk of Decline. J. Alzheimers Dis. Rep. 2022, 6, 411–430. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.E.; Cavuoto, M.G.; Li, L.; Wright, B.J.; Kinsella, G.J. Subjective Cognitive Decline: Level of Risk for Future Dementia and Mild Cognitive Impairment, a Meta-Analysis of Longitudinal Studies. Neuropsychol. Rev. 2022, 32, 703–735. [Google Scholar] [CrossRef] [PubMed]
- Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for Alzheimer’s Disease Early Diagnosis. J. Pers. Med. 2020, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.E.; Boyle, R.; Chen, X.; Coughlan, G.; Gonzalez, C.; Jutten, R.J.; Martinez, J.; Orlovsky, I.; Robinson, T.; Weizenbaum, E.; et al. Recent contributions to the field of subjective cognitive decline in aging: A literature review. Alzheimers Dement. 2023, 15, e12475. [Google Scholar] [CrossRef] [PubMed]
- Tijms, B.M.; Bertens, D.; Slot, R.E.; Gouw, A.A.; Teunissen, C.E.; Scheltens, P.; van der Flier, W.M.; Visser, P.J. Low normal cerebrospinal fluid Abeta42 levels predict clinical progression in nondemented subjects. Ann. Neurol. 2017, 81, 749–753. [Google Scholar] [CrossRef]
- Wolfsgruber, S.; Polcher, A.; Koppara, A.; Kleineidam, L.; Frolich, L.; Peters, O.; Hull, M.; Ruther, E.; Wiltfang, J.; Maier, W.; et al. Cerebrospinal fluid biomarkers and clinical progression in patients with subjective cognitive decline and mild cognitive impairment. J. Alzheimers Dis. 2017, 58, 939–950. [Google Scholar] [CrossRef]
- Van Harten, A.C.; Visser, P.J.; Pijnenburg, Y.A.; Teunissen, C.E.; Blankenstein, M.A.; Scheltens, P.; van der Flier, W.M. Cerebrospinal fluid Aβ42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimers Dement. 2013, 9, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Ebenau, J.L.; Timmers, T.; Wesselman, L.M.P.; Verberk, I.M.W.; Verfaillie, S.C.J.; Slot, R.E.R.; van Harten, A.C.; Teunissen, C.E.; Barkhof, F.; van den Bosch, K.A.; et al. ATN classification and clinical progression in subjective cognitive decline: The SCIENCe project. Neurology 2020, 95, e46–e58. [Google Scholar] [CrossRef] [PubMed]
- Van Maurik, I.S.; Slot, R.E.R.; Verfaillie, S.C.J.; Zwan, M.D.; Bouwman, F.H.; Prins, N.D.; Teunissen, C.E.; Scheltens, P.; Barkhof, F.; Wattjes, M.P.; et al. Personalized risk for clinical progression in cognitively normal subjects—The ABIDE project. Alzheimers Res. Ther. 2019, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Bi, Y.L.; Hu, H.; Huang, S.Y.; Ma, Y.H.; Hu, H.Y.; Tan, L.; Yu, J.T. Association of Subjective Cognitive Decline with Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J. Alzheimers Dis. 2022, 85, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Amariglio, R.E.; Becker, J.A.; Carmasin, J.; Wadsworth, L.P.; Lorius, N.; Sullivan, C.; Maye, J.E.; Gidicsin, C.; Pepin, L.C.; Sperling, R.A.; et al. Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 2012, 50, 2880–2886. [Google Scholar] [CrossRef]
- Pavisic, I.M.; Lu, K.; Keuss, S.E.; James, S.N.; Lane, C.A.; Parker, T.D.; Keshavan, A.; Buchanan, S.M.; Murray-Smith, H.; Cash, D.M.; et al. Subjective cognitive complaints at age 70: Associations with amyloid and mental health. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Dardiotis, E.; Kosmidis, M.H.; Yannakoulia, M.; Hadjigeorgiou, G.M.; Scarmeas, N. The Hellenic Longitudinal Investigation of Aging and Diet (HELIAD): Rationale, study design, and cohort description. Neuroepidemiology 2014, 43, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kalligerou, F.; Ntanasi, E.; Voskou, P.; Velonakis, G.; Karavasilis, E.; Mamalaki, E.; Kyrozis, A.; Sigala, E.; Economou, N.T.; Patas, K.; et al. Aiginition Longitudinal Biomarker Investigation of Neurodegeneration (ALBION): Study design, cohort description, and preliminary data. Postgrad. Med. 2019, 131, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Vlahou, C.H.; Kosmidis, M.H.; Dardagani, A.; Tsotsi, S.; Giannakou, M.; Giazkoulidou, A.; Zervoudakis, E.; Pontikakis, N. Development of the Greek verbal learning test: Reliability, construct validity, and normative standards. Arch. Clin. Neuropsychol. 2013, 28, 52–64. [Google Scholar] [CrossRef]
- Ingram, F.; Soukup, V.M.; Ingram, P.T. The Medical College of Georgia Complex Figures: Reliability and preliminary normative data using an intentional learning paradigm in older adults. Neuropsychiatry Neuropsychol. Behav. Neurol. 1997, 10, 144–146. [Google Scholar] [PubMed]
- Kosmidis, M.H.; Vlahou, C.H.; Panagiotaki, P.; Kiosseoglou, G. The verbal fluency task in the Greek population: Normative data, and clustering and switching strategies. J. Int. Neuropsychol. Soc. 2004, 10, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Tsapkini, K.; Vlahou, C.H.; Potagas, C. Adaptation and validation of standardized aphasia tests in different languages: Lessons from the Boston diagnostic aphasia examination—Short form in Greek. Behav. Neurol. 2010, 22, 111–119. [Google Scholar] [CrossRef]
- Vlahou, C.H.; Kosmidis, M.H. The Greek trail making test: Preliminary norms for clinical and research use. Psychol. J. Hell. Psychol. Soc. 2002, 9, 336–352. (In Greek) [Google Scholar]
- Kosmidis, M.H.; Tsotsi, S.; Karambela, O.; Takou, E.; Vlahou, C.H. Cultural factors influencing performance on visuo-perceptual neuropsychological tasks. Behav. Neurol. 2010, 23, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Bozikas, V.P.; Giazkoulidou, A.; Hatzigeorgiadou, M.; Karavatos, A.; Kosmidis, M.H. Do age and education contribute to performance on the clock drawing test? Normative data for the Greek population. J. Clin. Exp. Neuropsychol. 2008, 30, 199–203. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Wasef, S.; Laksono, I.; Kapoor, P.; Tang-Wei, D.; Gold, D.; Saripella, A.; Riazi, S.; Islam, S.; Englesakis, M.; Wong, J.; et al. Screening for subjective cognitive decline in the elderly via subjective cognitive complaints and informant-reported questionnaires: A systematic review. BMC Anesthesiol. 2021, 21, 177. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, C.E.; Tumani, H.; Engelborghs, S.; Mollenhauer, B. Biobanking of CSF: International standardization to optimize biomarker development. Clin. Biochem. 2014, 47, 288–292. [Google Scholar] [CrossRef]
- Mamalaki, E.; Charisis, S.; Mourtzi, N.; Hatzimanolis, A.; Ntanasi, E.; Kosmidis, M.H.; Constantinides, V.C.; Pantes, G.; Kolovou, D.; Dardiotis, E.; et al. Genetic risk for Alzheimer’s disease and adherence to the Mediterranean diet: Results from the HELIAD study. Nutr. Neurosci. 2024, 27, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Deming, Y.; Li, Z.; Kapoor, M.; Harari, O.; Del-Aguila, J.L.; Black, K.; Carrell, D.; Cai, Y.; Fernandez, M.V.; Budde, J. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 2017, 133, 839–856. [Google Scholar] [CrossRef] [PubMed]
- Sarnowski, C.; Ghanbari, M.; Bis, J.C.; Logue, M.; Fornage, M.; Mishra, A.; Ahmad, S.; Beiser, A.S.; Boerwinkle, E.; Bouteloup, V.; et al. Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun. Biol. 2022, 5, 336. [Google Scholar] [CrossRef] [PubMed]
- Reese, S.E.; Archer, K.J.; Therneau, T.M.; Atkinson, E.J.; Vachon, C.M.; de Andrade, M.; Kocher, J.P.; Eckel-Passow, J.E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics 2013, 29, 2877–2883. [Google Scholar] [CrossRef] [PubMed]
- Van der Lee, S.J.; Wolters, F.J.; Ikram, M.K.; Hofman, A.; Ikram, M.A.; Amin, N.; van Duijn, C.M. The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: A community-based cohort study. Lancet Neurol. 2018, 17, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Miebach, L.; Wolfsgruber, S.; Polcher, A.; Peters, O.; Menne, F.; Luther, K.; Incesoy, E.; Priller, J.; Spruth, E.; Altenstein, S.; et al. Which features of subjective cognitive decline are related to amyloid pathology? Findings from the DELCODE study. Alzheimers Res. Ther. 2019, 11, 66. [Google Scholar] [CrossRef]
- Schwarz, C.; Lange, C.; Benson, G.S.; Horn, N.; Wurdack, K.; Lukas, M.; Buchert, R.; Wirth, M.; Flöel, A. Severity of Subjective Cognitive Complaints and Worries in Older Adults Are Associated with Cerebral Amyloid-β Load. Front. Aging Neurosci. 2021, 13, 675583. [Google Scholar] [CrossRef] [PubMed]
- Gatchel, J.R.; Lopera, F.; Norton, D.J.; Baena, A.; Guzman-Velez, E.; Sanchez, J.S.; d’Oleire Uquillas, F.; Schultz, A.; Vannini, P.; Artola, A.; et al. Association of subjective cognitive decline with markers of brain pathology in preclinical autosomal dominant Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.F.; Hanseeuw, B.; Schultz, A.P.; Vannini, P.; Aghjayan, S.L.; Properzi, M.J.; Jackson, J.D.; Mormino, E.C.; Rentz, D.M.; Sperling, R.A.; et al. Region-Specific Association of Subjective Cognitive Decline with Tauopathy Independent of Global β-Amyloid Burden. JAMA Neurol. 2017, 74, 1455–1463. [Google Scholar] [CrossRef]
- Jessen, F.; Wolfsgruber, S.; Kleineindam, L.; Spottke, A.; Altenstein, S.; Bartels, C.; Berger, M.; Brosseron, F.; Daamen, M.; Dichgans, M.; et al. Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers. Alzheimers Dement. 2023, 19, 487–497. [Google Scholar] [CrossRef]
- Ebenau, J.L.; van der Lee, S.J.; Hulsman, M.; Tesi, N.; Jansen, I.E.; Verberk, I.M.W.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Prins, N.D.; et al. Risk of dementia in APOE ε4 carriers is mitigated by a polygenic risk score. Alzheimers Dement. 2021, 13, e12229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fu, Z.; Meng, L.; He, M.; Zhang, Z. The Early Events That Initiate β-Amyloid Aggregation in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 2021, 69, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Ning, Y.; Chen, M.; Wang, S.; Yang, H.; Li, F.; Ding, J.; Li, Y.; Zhao, B.; Lyu, J.; et al. Biomarker Changes during 20 Years Preceding Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Rabin, L.A.; Smart, C.M.; Amariglio, R.E. Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Annu. Rev. Clin. Psychol. 2017, 13, 369–396. [Google Scholar] [CrossRef] [PubMed]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.; Visser, P.J.; Amyloid Biomarker Study Group; Aalten, P.; Aarsland, D.; et al. Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lim, K.C.; Ko, H. Factors influencing subjective cognitive function among community-dwelling older adults. Geriatr. Nurs. 2021, 42, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Balmik, A.A.; Chinnathambi, S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer’s disease. Cell Commun. Signal. 2021, 19, 51. [Google Scholar] [CrossRef]
- Xicota, L.; Ichou, F.; Lejeune, F.X.; Colsch, B.; Tenenhaus, A.; Leroy, I.; Fontaine, G.; Lhomme, M.; Bertin, H.; Habert, M.O.; et al. Multi-omics signature of brain amyloid deposition in asymptomatic individuals at-risk for Alzheimer’s disease: The INSIGHT-preAD study. EBioMedicine 2019, 47, 518–528. [Google Scholar] [CrossRef]
- Grove, M.L.; Yu, B.; Cochran, B.J.; Haritunians, T.; Bis, J.C.; Taylor, K.D.; Hansen, M.; Borecki, I.B.; Cupples, L.A.; Fornage, M.; et al. Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium. PLoS ONE 2013, 8, e68095. [Google Scholar] [CrossRef]
- Abraham, G.; Qiu, Y.; Inouye, M. FlashPCA2: Principal component analysis of Biobank-scale genotype datasets. Bioinformatics 2017, 33, 2776–2778. [Google Scholar] [CrossRef]
- McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K.; et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016, 48, 1279–1283. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Marchini, J.; Howie, B.; Myers, S.; McVean, G.; Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 2007, 39, 906–913. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef]
- Loh, P.R.; Danecek, P.; Palamara, P.F.; Fuchsberger, C.; Reshef, Y.A.; Finucane, H.K.; Schoenherr, S.; Forer, L.; McCarthy, S.; Abecasis, G.R.; et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 2016, 48, 1443–1448. [Google Scholar] [CrossRef]
- Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef]
- The International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar] [CrossRef]
- Morris, J.C.; Roe, C.M.; Xiong, C.; Fagan, A.M.; Goate, A.M.; Holtzman, D.M.; Mintun, M.A. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 2010, 67, 122–131. [Google Scholar] [CrossRef]
- Moore, A.M.; Filshtein, T.J.; Dumitrescu, L.; Harrati, A.; Elahi, F.; Mormino, E.C.; Deming, Y.; Kunkle, B.W.; Mungas, D.M.; Hedden, T.; et al. A/T/N polygenic risk score for cognitive decline in old age. bioRxiv 2019, 838847. [Google Scholar] [CrossRef]
- Kennedy, G.; Moore, A.M.; Mahoney, E.R.; Dumitrescu, L.; Sperling, R.A.; Deming, Y.; Cruchaga, C.; Hohman, T.J.; Mormino, E.C. CSF polygenic risk AD biomarkers predict brain amyloid and free recall. Alzheimer’s Dement. 2021, 17, e056252. [Google Scholar] [CrossRef]
Questions Regarding Subjective Cognitive Complaints | |
---|---|
HELIAD | 1. Do you have symptoms of memory loss? 2. Do you have difficulty in recalling recent events? |
ALBION | 1. Do you feel that your memory is worse than 5 years ago? 2. Do you feel that your memory is worse than peers? |
All | SCD 1 Group | Non-SCD | ||
---|---|---|---|---|
n = 742 | n = 186 | n = 556 | p-Value | |
Age, years, mean ± SD 2 | 73.7 ± 5.2 | 73.6 ± 5.4 | 73.7 ± 5.1 | 0.819 |
Sex, female (%) | 438 (59.0) | 115 (61.8) | 323 (58.1) | 0.390 |
Education, years, mean ± SD | 7.2 ± 4.4 | 8.5 ± 4.7 | 6.8 ± 4.3 | <0.001 |
Neuropsychological score, mean ± SD | −0.17 ± 0.72 | −0.24 ± 0.73 | 0.02 ± 0.69 | <0.001 |
Depression, yes (%) | 47 (6.3) | 21 (11.3) | 26 (4.7) | 0.030 |
PRS 3 Aβ42, high (%) | 371 (50.0) | 106 (57.0) | 265 (47.7) | 0.028 |
PRS Tau, high (%) | 371 (50.0) | 89 (47.8) | 282 (50.7) | 0.498 |
All | SCD 1 Group | Non-SCD | ||
---|---|---|---|---|
n = 107 | n = 78 | n = 29 | p-Value | |
Age, years, mean ± SD 2 | 62.6 ± 9.2 | 62.3 ± 9.5 | 63.2 ± 9.3 | 0.644 |
Sex, female (%) | 75 (70.1) | 55 (70.5) | 20 (69.0) | 0.877 |
Education, years, mean ± SD | 14.2 ± 3.6 | 13.8 ± 3.7 | 14.8 ± 3.3 | 0.238 |
Neuropsychological score, mean ± SD | 0.266 ± 0.533 | −0.003 ± 0.534 | 0.099 ± 0.577 | 0.391 |
Depression, yes (%) | 28 (26.2) | 24 (30.8) | 4 (13.8) | 0.076 |
CSF 3 Aβ42, abnormal (%) | 48 (43.9) | 40 (51.3) | 8 (27.6) | 0.038 |
CSF Tau, abnormal (%) | 18 (16.8) | 12 (15.4) | 6 (20.7) | 0.671 |
CSF P-Tau, abnormal (%) | 14 (13.1) | 11 (14.1) | 3 (10.3) | 0.595 |
HELIAD, OR 1 (95% CI 2) | ALBION, OR (95%CI) | |
---|---|---|
Age, years | 1.027 (1.017, 1.037), p < 0.001 | 1.012 (0.984, 1.040) |
Sex (male as reference) | 1.203 (0.858, 1.548) | 1.195 (0.789, 1.601) |
Education, years | 1.047 (0.988, 1.106) | 0.967 (0.871, 1.073) |
Neuropsychological score | 0.626 (0.118, 1.134) | 0.667 (0.274, 1.060) |
Depression (no as reference) | 1.133 (1.044, 1.222), p = 0.027 | 1.464 (0.891, 2.037) |
PRS 3 Aβ42 (low as reference) | 1.689 (1.487, 1.891), p = 0.035 | - |
PRS Tau (low as reference) | 1.144 (0.954, 1.334) | - |
CSF 4 Aβ42 (normal as reference) | - | 2.583 (1.020, 4.047), p = 0.045 |
CSF Tau (normal as reference) | - | 1.521 (0.805, 2.236) |
CSF P-Tau (normal as reference) | - | 1.149 (0.407, 1.891) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampatakakis, S.N.; Mourtzi, N.; Charisis, S.; Kalligerou, F.; Mamalaki, E.; Ntanasi, E.; Hatzimanolis, A.; Koutsis, G.; Ramirez, A.; Lambert, J.-C.; et al. Cerebral Amyloidosis in Individuals with Subjective Cognitive Decline: From Genetic Predisposition to Actual Cerebrospinal Fluid Measurements. Biomedicines 2024, 12, 1053. https://doi.org/10.3390/biomedicines12051053
Sampatakakis SN, Mourtzi N, Charisis S, Kalligerou F, Mamalaki E, Ntanasi E, Hatzimanolis A, Koutsis G, Ramirez A, Lambert J-C, et al. Cerebral Amyloidosis in Individuals with Subjective Cognitive Decline: From Genetic Predisposition to Actual Cerebrospinal Fluid Measurements. Biomedicines. 2024; 12(5):1053. https://doi.org/10.3390/biomedicines12051053
Chicago/Turabian StyleSampatakakis, Stefanos N., Niki Mourtzi, Sokratis Charisis, Faidra Kalligerou, Eirini Mamalaki, Eva Ntanasi, Alex Hatzimanolis, Georgios Koutsis, Alfredo Ramirez, Jean-Charles Lambert, and et al. 2024. "Cerebral Amyloidosis in Individuals with Subjective Cognitive Decline: From Genetic Predisposition to Actual Cerebrospinal Fluid Measurements" Biomedicines 12, no. 5: 1053. https://doi.org/10.3390/biomedicines12051053
APA StyleSampatakakis, S. N., Mourtzi, N., Charisis, S., Kalligerou, F., Mamalaki, E., Ntanasi, E., Hatzimanolis, A., Koutsis, G., Ramirez, A., Lambert, J. -C., Yannakoulia, M., Kosmidis, M. H., Dardiotis, E., Hadjigeorgiou, G., Sakka, P., Rouskas, K., Patas, K., & Scarmeas, N. (2024). Cerebral Amyloidosis in Individuals with Subjective Cognitive Decline: From Genetic Predisposition to Actual Cerebrospinal Fluid Measurements. Biomedicines, 12(5), 1053. https://doi.org/10.3390/biomedicines12051053