Structure–Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process
Abstract
:1. Introduction
2. Structure–Activity of Natural and Synthetic Retinoids
3. Therapeutic Applications and Drug Repurposing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yurdakok-Dikmen, B.; Filazi, A.; Ince, S. Chapter 27—Retinoids. In Reproductive and Developmental Toxicology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 481–492. [Google Scholar] [CrossRef]
- Thorne-Lyman, A.L.; Fawzi, W.W. Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: A systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. S1), 36–54. [Google Scholar] [CrossRef]
- O’Byrne, S.M.; Blaner, W.S. Retinol and retinyl esters: Biochemistry and physiology: Thematic review series: Fat-soluble vitamins: Vitamin A. J. Lipid Res. 2013, 54, 1731–1743. [Google Scholar] [CrossRef]
- De Oliveira, M.R. Vitamin A and retinoids as mitochondrial toxicants. Oxid. Med. Cell. Longev. 2015, 2015, 140267. [Google Scholar] [CrossRef]
- IARC. Handbook 1. All-trans-retinoic acid. In Handbook of Cancer Prevention Volume 4; The International Agency for Research on Cancer: Lyon, France, 1999; pp. 95–144. [Google Scholar]
- Rudrapal, M.; Shubham, J.; Khairnar, S.J.; Jadhav, A.G. Drug Repurposing (DR): An Emerging Approach in Drug Discovery. In Drug Repurposing—Hypothesis, Molecular Aspects and Therapeutic Applications; Badria, F.A., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug. Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Roessler, H.I.; Knoers, N.V.A.M.; van Haelst, M.M.; van Haaften, G. Drug Repurposing for Rare Diseases. Trends Pharmacol. Sci. 2021, 42, 255–267. [Google Scholar] [CrossRef]
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, H.; Yu, Y.; Yuan, X.; Xiao, L. Informatics on Drug Repurposing for Breast Cancer. Drug Des. Dev. Ther. 2023, 17, 1933–1943. [Google Scholar] [CrossRef]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef]
- Mullins, J.G.L. Drug repurposing in silico screening platforms. Biochem. Soc. Trans. 2022, 50, 747–758. [Google Scholar] [CrossRef]
- Schipper, L.J.; Zeverijn, L.J.; Garnett, M.J.; Voest, E.E. Can Drug Repurposing Accelerate Precision Oncology? Cancer Discov. 2022, 12, 1634–1641. [Google Scholar] [CrossRef]
- Singhal, S.; Maheshwari, P.; Krishnamurthy, P.T.; Patil, V.M. Drug Repurposing Strategies for Non-cancer to Cancer Therapeutics. Anticancer Agents Med. Chem. 2022, 22, 2726–2756. [Google Scholar] [CrossRef]
- Fetro, C.; Scherman, D. Drug repurposing in rare diseases: Myths and reality. Therapie 2020, 75, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, M.; Chehade, A.; Sanghera, R.; Grewal, P. A Clinician’s Guide to Topical Retinoids. J. Cutan. Med. Surg. 2022, 26, 71–78. [Google Scholar] [CrossRef] [PubMed]
- DiKun, K.M.; Gudas, L.J. Vitamin A and retinoid signaling in the kidneys. Pharmacol. Ther. 2023, 248, 108481. [Google Scholar] [CrossRef] [PubMed]
- Honarbakhsh, M.; Ericsson, A.; Zhong, G.; Isoherranen, N.; Zhu, C.; Bromberg, Y.; Van Buiten, C.; Malta, K.; Joseph, L.; Sampath, H.; et al. Impact of vitamin A transport and storage on intestinal retinoid homeostasis and functions. J. Lipid. Res. 2021, 62, 100046. [Google Scholar] [CrossRef] [PubMed]
- Napoli, J.R. Vitamins|Vitamin A (Retinoids). In Encyclopedia of Biological Chemistry III, 3rd ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 2, pp. 1088–1096. [Google Scholar] [CrossRef]
- Biyong, E.F.; Tremblay, C.; Leclerc, M.; Caron, V.; Alfos, S.; Helbling, J.-C.; Rodriguez, L.; Pernet, V.; Bennett, D.A.; Pallet, V.; et al. Role of Retinoid X Receptors (RXRs) and dietary vitamin A in Alzheimer’s disease: Evidence from clinicopathological and preclinical studies. Neurobiol. Dis. 2021, 161, 105542. [Google Scholar] [CrossRef] [PubMed]
- Gudas, L.J. Synthetic Retinoids Beyond Cancer Therapy. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 155–175. [Google Scholar] [CrossRef]
- Everts, H.B.; Akuailou, E.N. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients 2021, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Jan, N.; Sofi, S.; Qayoom, H.; Haq, B.U.; Shabir, A.; Mir, M.A. Targeting breast cancer stem cells through retinoids: A new hope for treatment. Crit. Rev. Oncol. Hematol. 2023, 192, 104156. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, S.; Zhu, W.; Wu, L.; Chen, X. Retinoids as an Immunity-modulator in Dermatology Disorders. Arch. Immunol. Ther. Exp. 2019, 67, 355–365. [Google Scholar] [CrossRef]
- Hunsu, V.O.; Facey, C.O.B.; Fields, J.Z.; Boman, B.M. Retinoids as Chemo-Preventive and Molecular-Targeted Anti-Cancer Therapies. Int. J. Mol. Sci. 2021, 22, 7731. [Google Scholar] [CrossRef] [PubMed]
- Tratnjek, L.; Jeruc, J.; Romih, R.; Zupančič, D. Vitamin A and Retinoids in Bladder Cancer Chemoprevention and Treatment: A Narrative Review of Current Evidence, Challenges and Future Prospects. Int. J. Mol. Sci. 2021, 22, 3510. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Gibert, Y. Retinoids in Embryonic Development. Biomolecules 2020, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.; Tang, X.-H.; Trasino, S.E.; Gudas, L.J. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022, 14, 1456. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Formulation approaches for improved retinoids delivery in the treatment of several pathologies. Eur. J. Pharm. Biopharm. 2019, 143, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Reay, W.R.; Cairns, M.J. The role of the retinoids in schizophrenia: Genomic and clinical perspectives. Mol. Psychiatry 2020, 25, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Barnard, J.H.; Collings, J.C.; Whiting, A.; Przyborski, S.A.; Marder, T.B. Synthetic Retinoids: Structure–Activity Relationships. Chemistry 2009, 15, 11430–11442. [Google Scholar] [CrossRef] [PubMed]
- Frickel, F. Chemistry and physical properties of retinoids. In The Retinoids, 2nd ed.; Sporn, M.B., Roberts, A.B., Goodman, D.S., Eds.; Academic Press: Orlando, FL, USA, 1984; pp. 8–145. [Google Scholar] [CrossRef]
- Ross, S.A.; McCaffery, P.J.; Drager, U.C.; De Luca, L.M. Retinoids in Embryonal Development. Physiol. Rev. 2000, 80, 1021–1054. [Google Scholar] [CrossRef]
- Napoli, J.L. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin. Immunol. Immunopathol. 1996, 80, S52–S62. [Google Scholar] [CrossRef]
- Lowe, N.; Marks, R. Retinoids: A Clinicians Guide, 2nd ed.; Informa Health Care: London, UK, 1998; p. 6. [Google Scholar]
- Soprano, D.R.; Qin, P.; Soprano, K.J. Retinoic acid receptors and cancers. Annu. Rev. Nutr. 2004, 24, 201–221. [Google Scholar] [CrossRef]
- Vahlquist, A.; Rollman, O. Clinical pharmacology of 3 generations of retinoids. Dermatologica 1987, 175 (Suppl. S1), 20–27. [Google Scholar] [CrossRef] [PubMed]
- Stadler, R. Three generations of retinoids: Basic pharmacologicdata, mode of action, and effect on keratinocyte proliferation and differentiation. In Pharmacology of the Skin II; Greaves, M.W., Shuster, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 329–358. [Google Scholar] [CrossRef]
- Murayama, A.; Suzuki, T.; Matsui, M. Photoisomerization of retinoic acids under room light: A warning for cell biological study of geometrical isomers of retinoids. J. Nutr. Sci. Vitaminol. 1997, 43, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kunchala, S.R.; Matsui, M.; Murayama, A. Molecular Flexibility of Retinoic Acid under White Fluorescent Ligh. J. Nutr. Sci. Vitaminol. 1998, 44, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Christie, V.B.; Barnard, J.H.; Batsanov, A.S.; Bridgens, C.E.; Cartmell, E.B.; Collings, J.C.; Maltman, D.J.; Redfern, C.P.F.; Marder, T.B.; Przyborski, S.A.; et al. Synthesis and evaluation of synthetic retinoid derivatives as inducers of stem cell differentiation. Org. Biomol. Chem. 2008, 6, 3497–3507. [Google Scholar] [CrossRef]
- Maltman, D.J.; Christie, V.B.; Collings, J.C.; Barnard, J.H.; Fenyk, S.; Marder, T.B.; Whiting, A.; Przyborski, S.A. Proteomic profiling of the stem cellresponse to retinoic acid and synthetic retinoid analogues: Identification of major retinoid-inducible proteins. Mol. BioSyst. 2009, 5, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Quadro, L.; Hamberger, L.; Colantuoni, V.; Gottesman, M.E.; Blaner, W.S. Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol. Asp. Med. 2003, 24, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Blaner, W.S.; Olson, J.A. Retinol and retinoic acid metabolism. In The Retinoids, Biology, Chemistry and Medicine; Sporn, M.B., Roberts, A.B., Goodman, D.S., Eds.; Raven: New York, NY, USA, 1994; pp. 229–256. [Google Scholar] [CrossRef]
- Chen, H.; Howald, W.N.; Juchau, M.R. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: Catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab. Dispos. 2000, 28, 315–322. [Google Scholar] [PubMed]
- Dong, D.; Ruuska, S.E.; Levinthal, D.J.; Noy, N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J. Biol. Chem. 1999, 274, 23695–23698. [Google Scholar] [CrossRef] [PubMed]
- Marill, J.; Capron, C.C.; Idres, N.; Chabot, G.G. Human cytochrome P450s involved in the metabolism of 9-cis- and 13-cis-retinoic acids. Biochem. Pharmacol. 2002, 63, 933–943. [Google Scholar] [CrossRef]
- Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schtz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; et al. The nuclear receptor superfamily: The second decade. Cell 1995, 83, 835–839. [Google Scholar] [CrossRef]
- Clamon, G.H.; Sporn, M.B.; Smith, J.M.; Saffiotti, U. α- and β retinyl acetate reverese metaplasia of vitamin A deficiency in hamster tracheal cell culture. Nature 1974, 250, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Sporn, M.B.; Clamon, G.H.; Dunlop, N.M.; Newton, D.L.; Smith, J.M.; Saffiotti, U. Activity of vitamin A analogues in cell cultures of mouse epidermidis and organ cultures of hamster trachea. Nature 1975, 253, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Sporn, M.B.; Dunlop, N.M.; Newton, D.L.; Henderson, W.R. Relationships between structure and activity of retinoids. Nature 1976, 263, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Sussman, F.; de Lera, A.R. Ligand recognition by RAR and RXR receptors: Binding and selectivity. J. Med. Chem. 2005, 48, 6212–6219. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.T.; Klein, E.S.; Gillett, S.J.; Wang, L.; Song, T.K.; Pino, M.E.; Chandraratna, R.A.S. Synthesis and characterization of a highly potent and effective antagonist of retinoic acid receptors. J. Med. Chem. 1995, 38, 4764–4767. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.T.; Wang, L.; Gillett, S.J.; Chandraratna, R.A.S. High affinity retinoic acid receptor antagonists: Analogs of AGN 193109. Bioorg. Med. Chem. Lett. 1999, 9, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.S.; Pino, M.E.; Johnson, A.T.; Davies, P.J.A.; Nagpal, S.; Thacher, S.M.; Krasinski, G.; Chandraratna, R.A.S. Identification and functional separation of retinoic acid receptor neutral antagonists and inverse agonists. J. Biol. Chem. 1996, 271, 22692–22696. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.C.-K.; Cooney, A.J. Retinoid Receptors. In The Nuclear Receptors and Genetic Disease; Burris, T.P., McCabe, E.R.B., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 245–295. [Google Scholar]
- Chambon, P. The retinoid signaling pathway: Molecular and genetic analyses. Semin. Cell Biol. 1994, 5, 115–125. [Google Scholar] [CrossRef]
- Peck, G.L.; Olsen, T.G.; Yoder, F.W.; Strauss, J.S.; Downing, D.T. Prolonged Remissions of Cystic and Conglobate Acne with 13-cis-Retinoic Acid. N. Engl. J. Med. 1979, 300, 329–333. [Google Scholar] [CrossRef]
- Sardana, K.; Garg, V.; Sehgal, V.; Mahajan, S.; Bhushan, P. Efficacy of Fixed low-dose Isotretinoin (20 mg, Alternate days) with Topical Clindamycin Gel in Moderately Severe Acne Vulgaris. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 556–560. [Google Scholar] [CrossRef]
- Bagatin, E.; Costa, C.S. The Use of Isotretinoin for Acne—An Update on Optimal dosing, surveillance, and Adverse Effects. Expert Rev. Clin. Pharmacol. 2020, 13, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Sanjel, K.; Zhang, X.M. Progress of different treatment modalities to limit the use of antibiotics in the treatment of acne. Our Dermatol. Online 2022, 13, 92–97. [Google Scholar] [CrossRef]
- van Zuuren, E.J.; Fedorowicz, Z. Low-Dose Isotretinoin: An Option for Difficult-to-Treat Papulopustular Rosacea. J. Investig. Dermatol. 2016, 136, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Y.; Luo, Q.; Li, X.-M.; Zhang, X.-B. Off-label uses of retinoids in dermatology. Our Dermatol. Online 2012, 3 (Suppl. S1), 259–278. [Google Scholar]
- Boer, J. Oral Retinoids for Hidradenitis Suppurativa; Springer eBooks: Berlin/Heidelberg, Germany, 2006; pp. 128–135. [Google Scholar] [CrossRef]
- Al Soufi, L.; Fawal, H.; Kassam, L.; Al-Shehabi, Z. PAPASH syndrome: The first case report from Syria. Our Dermatol. Online 2023, 14, 201–203. [Google Scholar] [CrossRef]
- Zaenglein, A.L.; Levy, M.L.; Stefanko, N.S.; Benjamin, L.T.; Bruckner, A.L. Consensus Recommendations for the Use of Retinoids in Ichthyosis and Other Disorders of Cornification in Children and Adolescents. Pediatr. Dermatol. 2021, 38, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Paichitrojjana, A.; Paichitrojjana, A. Oral Isotretinoin and Its Uses in Dermatology: A Review. Drug Des. Dev. Ther. 2023, 17, 2573–2591. [Google Scholar] [CrossRef] [PubMed]
- Gopal Anoop, D.S.; Samayam, A.; Bijina, K.D. Ichthyoses: Case series. Our Dermatol. Online 2018, 9, 190–193. [Google Scholar] [CrossRef]
- Levine, N.; Moon, T.E.; Cartmel, B.; Bangert, J.L. Trial of Retinol and Isotretinoin in Skin Cancer prevention: A randomized, double-blind, Controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol. Biomarkers Prev. 1997, 6, 957–961. [Google Scholar]
- Lippman, S.M.; Parkinson, D.; Itri, L.M.; Weber, R.S.; Schantz, S.P. 13-cis-Retinoic Acid and Interferon -2a: Effective Combination. Therapy for Advanced Squamous Cell Carcinoma of the Skin. J. Natl. Cancer Inst. 1992, 84, 235–241. [Google Scholar] [CrossRef]
- Wong, W.Y.; Kolbusz, R.V.; Goldberg, L.H.; Guana, A. Treatment of a recurrent keratoacanthoma with oral isotretinoin. Int. J. Dermatol. 1994, 33, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.C.; White, C.R. Treatment of Multiple Keratoacanthomas with Oral Isotretinoin. J. Am. Acad. Dermatol. 1986, 15, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, H.; Khezri, S.; Hosseini, H.; Khezri, F.; Vasigh, M. A Single Blind Randomized Clinical study: The Efficacy of Isotretinoin plus Narrow Band Ultraviolet B in the Treatment of Psoriasis Vulgaris. Photodermatol. Photoimmunol. Photomed. 2011, 27, 159–161. [Google Scholar] [CrossRef]
- Sofen, H.L.; Moy, R.L.; Lowe, N.J. Treatment of generalised pustular psoriasis with isotretinoin. Lancet 1984, 323, 40. [Google Scholar] [CrossRef] [PubMed]
- Topal, I.O.; Otunctemur, A. An investigation of the effects of acitretin on erectile function. Our Dermatol. Online 2020, 11 (Suppl. S3), 1–5. [Google Scholar] [CrossRef]
- Scarisbrick, J.J.; Kim, Y.H.; Whittaker, S.J.; Wood, G.S.; Vermeer, M.H.; Prince, H.M.; Quaglino, P. Prognostic factors, prognostic indices and staging in mycosis fungoides and Sézary syndrome: Where are we now? Br. J. Dermatol. 2014, 170, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.A.; Whittaker, S.J.; Morris, S.L.; Russell-Jones, R.; Hung, T.; Bashir, S.J.; Scarisbrick, J.J. Bexarotene therapy for mycosis fungoides and Sézary syndrome. Br. J. Dermatol. 2009, 160, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Cisoń, H.; Wożniak, Z.; Białynicki-Birula, R. Usefulness of ultrasonography in the assessment of skin lesions of cutaneous t-cell lymphoma. Our Dermatol. Online 2024, 15, 150–153. [Google Scholar]
- Su, M.; Alonso, S.; Jones, J.W.; Yu, J.; Kane, M.A.; Jones, R.J.; Ghiaur, G. All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment. PLoS ONE 2015, 10, e0127790. [Google Scholar] [CrossRef]
- Estey, E.; Dohner, H. Acute myeloid leukaemia. Lancet 2006, 368, 1894–1907. [Google Scholar]
- Dos Santos, G.A.; Kats, L.; Pandolfi, P.P. Synergy against PML-RARa: Targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J. Exp. Med. 2013, 210, 2793–2802. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, M.; Laudet, V.; Schubert, M. From carrot to clinic: An overview of the retinoic acid signaling pathway. Cell. Mol. Life Sci. 2010, 67, 1423–1445. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.J.; Bain, G.; Yao, M.; Gottlieb, D.I. CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J. Biol. Chem. 1997, 272, 18702–18708. [Google Scholar] [CrossRef] [PubMed]
- Bowles, J.; Knight, D.; Smith, C.; Wilhelm, D.; Richman, J.; Mamiya, S.; Yashiro, K.; Chawengsaksophak, K.; Wilson, M.J.; Rossant, J.; et al. Retinoid signaling determines germ cell fate in mice. Science 2006, 312, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Kantarjian, H.; O’Brien, S.; Beran, M.; Estey, E.; Keating, M.; Talpaz, M. A pilot study of all-trans retinoic acid in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. Leukemia 1997, 11, 929–932. [Google Scholar] [CrossRef] [PubMed]
- Hoting, E.; Paul, E.; Plewig, G. Treatment of rosacea with isotretinoin. Int. J. Dermatol. 1986, 25, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Baden, H.P.; Buxman, M.M.; Weinstein, G.D.; Yoder, F.W. Treatment of ichthyosis with isotretinoin. J. Am. Acad. Dermatol. 1982, 6, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, B.; Hapa, A.; Mutlu, E. Isotretinoin treatment for folliculitis decalvans: A retrospective case–series study. Int. J. Dermatol. 2018, 57, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Badaoui, A.; Reygagne, P.; Cavelier-Balloy, B.; Pinquier, L.; Deschamps, L.; Crickx, B.; Descamps, V. Dissecting cellulitis of the scalp: A retrospective study of 51 patients and review of literature. Br. J. Dermatol. 2016, 174, 421–423. [Google Scholar] [CrossRef]
- Vena, G.A.; Coviello, C.; Angelini, G. Use of oral isotretinoin in the treatment of cutaneous lupus erythematosus. G. Ital. Dermatol. Venereol. 1989, 124, 311–315. [Google Scholar]
- Muthu, S.K.; Narang, T.; Saikia, U.N.; Kanwar, A.J.; Parsad, D.; Dogra, S. Low–dose oral isotretinoin therapy in lichen planus pigmentosus: An open–label non–randomized prospective pilot study. Int. J. Dermatol. 2016, 55, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.C.; Hogan, D.J. Improvement of Chronic Generalized Granuloma Annulare with Isotretinoin. Arch. Dermatol. 2002, 138, 1518–1519. [Google Scholar] [CrossRef] [PubMed]
- Lippman, S.M.; Batsakis, J.G.; Toth, B.B.; Weber, R.S.; Lee, J.J.; Martin, J.W.; Hays, G.L.; Goepfert, H.; Hong, W.K. Comparison of low–dose isotretinoin with beta carotene to prevent oral carcinogenesis. N. Engl. J. Med. 1993, 328, 15–20. [Google Scholar] [CrossRef]
- Sherman, C.; Michelle, L.; Ekelem, C.; Sung, C.T.; Rojek, N.; Mesinkovska, N.A. Oral isotretinoin for the treatment of dermatologic conditions other than acne: A systematic review and discussion of future directions. Arch. Dermatol. Res. 2021, 313, 391–430. [Google Scholar] [CrossRef]
- Khalil, S.; Bardawil, T.; Stephan, C.; Darwiche, N.; Abbas, O.; Kibbi, A.-G.; Nemer, G.; Kurban, M. Retinoids: A journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J. Dermatol. Treat. 2017, 28, 684–696. [Google Scholar] [CrossRef] [PubMed]
Helices | RARα | RARβ | RARγ |
---|---|---|---|
H3 | Ser232 | Arg225 | Arg234 |
H5 | Ile270 | Ile263 | Met272 |
H11 | Val395 | Val388 | Ala397 |
Disease Unit | Medication | Dosage | Results | Ref. |
---|---|---|---|---|
Acne Vulgaris | Isotretinoin | 0.5–1.0 mg/kg/day; mean of 38.4 mg/kg cumulative dose | n = 305; remission: 87.64% (267), no effect: 12.46% (38) | [59] |
Rosacea | Isotretinoin | 0.5–1.0 mg/kg/day; mean of 33.3 mg/kg cumulative dose | n= 70 patients; full effect 34% (24), partial effect 57% (40) | [86] |
Hidradenitis Suppurativa | Isotretinoin | 0.45 ± 0.20 mg/kg/day (range: 0.14–0.95) | n = 25; 36% (9/25) complete responses; 32% (8/26) partial responses; 32% (8/25) no responses | [63] |
Ichthyosis | Isotretinoin | 1.83–2.05 mg/kg/day | n = 18; visible improvement: 60% (11/18) | [87] |
SCC | IFNα–2a + Isotretinoin | mean of 1.0 mg/kg/day | n = 32; overall response rate: 68%, complete response rate: 25% | [70] |
Keratoacanthoma | Isotretinoin | mean of 1.0 mg/kg/day | n = 1 CASE REPORT | [71] |
Psorasis | narrow band ultraviolet B (NBUVB) + Isotretinoin | 0.5 mg/kg/day | n = 17; 82% (n = 14) complete clearing of psorasis plaques | [73] |
Mycosis Fungoides and Sézary syndrome | Bexarotene | 150–300 mg/day | n = 66; 9% (n = 6) complete response, 35% (n = 23) partial response, 23% (n = 15) stabilized disease | [77] |
Folliculitis Decalvans | Isotretinoin | 0.1–1.02 mg/kg/day | n = 39; 82% full remission, 66% never relapsed | [88] |
Dissecting Cellulitis | Isotretinoin | 0.5–0.8 mg/kg/day | n = 51; 92% temporary remissions | [89] |
Cutaneous Lupus Erythematosus | Isotretinoin | 0.15–0.5 mg/kg/day | n = 24; 86.9% major clinical improvement or full clearing of lesions | [90] |
Lichen Planus | Isotretinoin | 20 mg/day | n = 27; 21.8% (n = 7) good response, 55.7% (n = 15), moderate improvement | [91] |
Granuloma Annulare | Isotretinoin | 40–80 mg/day (for 1 year) | n = 1 CASE REPORT | [92] |
Leucoplakia | Isotretinoin | 0.5 mg/kg/day | n = 53; 92% (n = 22) clinical response or stabilization of lesions | [93] |
Darier’s Disease | Isotretinoin | 0.5–4 mg/kg/day | n = 119 (metanalysis); 75–100% lesionclearance at 1st week, 80–100%lesion relapse within 7 days to 6 months post-treatment | [94] |
Topical | Adverse Effects |
---|---|
Skin | irritation, dryness, peeling, erythema and pruritus |
System | Adverse Effects |
Mucocutaneous | cheilitis, dryness of the oral mucosa, epistaxis, xerophthalmia, xerosis, fingertip fissuring, hair loss, nail fragility, periungual granuloma, paronychia |
Musculoskeletal | myalgias, arthralgias, bony pain, premature fusion of the epiphyses, skeletal hyperostosis, calcification of tendons and ligaments |
Neurologic | headaches, pseudotumor cerebri |
Ophthalmologic | nyctalopia |
Gastrointestinal/Metabolic | nausea, abdominal pain, diarrhea, elevation in liver function tests, elevation in serum triglycerides and cholesterol |
Teratogenicity | abnormalities of the central nervous system, face, heart, and thymus |
Psychiatric | depression, irritability/aggression, suicidality, sleep disturbances, mania, psychosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawczak, P.; Feszak, I.; Brzeziński, P.; Bączek, T. Structure–Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process. Biomedicines 2024, 12, 1059. https://doi.org/10.3390/biomedicines12051059
Kawczak P, Feszak I, Brzeziński P, Bączek T. Structure–Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process. Biomedicines. 2024; 12(5):1059. https://doi.org/10.3390/biomedicines12051059
Chicago/Turabian StyleKawczak, Piotr, Igor Feszak, Piotr Brzeziński, and Tomasz Bączek. 2024. "Structure–Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process" Biomedicines 12, no. 5: 1059. https://doi.org/10.3390/biomedicines12051059
APA StyleKawczak, P., Feszak, I., Brzeziński, P., & Bączek, T. (2024). Structure–Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process. Biomedicines, 12(5), 1059. https://doi.org/10.3390/biomedicines12051059