Unraveling TAFRO Syndrome: An In-Depth Look at the Pathophysiology, Management, and Future Perspectives
Abstract
:1. Introduction
1.1. Pathophysiology and Biology of TAFRO
1.2. JAK-STAT Pathway
1.3. NF-kB Pathway
1.4. IL-6 and VEGF
1.5. Autoimmune Dysfunction
2. Diagnosis
2.1. Masaki’s Criteria
2.2. Histology
2.3. Other Diagnostic Features
2.4. Role of Infections
iMCD-NOS | iMCD-TAFRO | KSICS | |
---|---|---|---|
Age | Fifth to sixth decade | Fifth decade | Fourth to fifth decade |
Clinical presentation | B symptoms and occasional PN | B symptoms and anasarca | Fever, anasarca, multiorgan failure |
Lymphadenopathy | Very frequent | Very frequent | May be present (reactive) |
Organomegaly | May be present | Very frequent Supports diagnosis | May be present |
Body effusion | Infrequent | Must be present | Very frequent |
Abnormal inflammatory markers | Release of pro-inflammatory cytokines | Release of pro-inflammatory cytokines | Release of pro-inflammatory cytokines Evidence of HHV-8 viral activity |
Cytopenia | May be present Sometimes thrombocytosis | Thrombocytopenia must be present | May be present |
Renal dysfunction | Frequent | Very frequent | May be present |
Autoimmune phenomena | Very frequent: AIHA, PNP, ITP, interstitial lung disease | Infrequent | Infrequent |
Pathologic features (lymph node) | Usually, PC variant | Usually mixed or hypervascular type | Exclusion of MCD. Reactive plasmacytosis and node hyperplasia. KSHV-infected plasma cells. KSHV-LANA may be present |
Therapy | IL-6-targeted therapy; rituximab; systemic therapies | Same as iMCD, but also calcineurin inhibitors | Rituximab, doxorrubicin, HAART, and support. Valganciclovir and Zidovudine may be useful |
Clinical course | Variable | Very aggressive | Very aggressive 60% mortality |
Risk for lymphoma | High | Mild | Very high risk of KSHV-related LPS, (PEL, PBL…) |
2.5. Mutations
3. Treatment Strategy
3.1. Corticosteroids
3.2. Anti-IL-6 Therapies
3.3. Thalidomide
3.4. Rituximab
3.5. Chemotherapy
3.6. Additional Treatments
4. Prognosis
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kawabata, H.; Takai, K.; Kojima, M.; Nakamura, N.; Aoki, S.; Nakamura, S.; Kinoshita, T.; Masaki, Y. Castleman-Kojima disease (TAFRO syndrome): A novel systemic inflammatory disease characterized by a constellation of symptoms, namely, thrombocytopenia, ascites (anasarca), microcytic anemia, myelofibrosis, renal dysfunction, and organomegaly: A status report and summary of Fukushima (6 June, 2012) and Nagoya meetings (22 September, 2012). J. Clin. Exp. Hematop. JCEH 2013, 53, 57–61. [Google Scholar] [CrossRef]
- Masaki, Y.; Arita, K.; Sakai, T.; Takai, K.; Aoki, S.; Kawabata, H. Castleman disease and TAFRO syndrome. Ann. Hematol. 2022, 101, 485–490. [Google Scholar] [CrossRef]
- Castleman, B.; Towne, V.W. Case records of the Massachusetts General Hospital: Case No. 40231. N. Engl. J. Med. 1954, 250, 1001–1005. [Google Scholar] [CrossRef]
- Igawa, T.; Sato, Y. TAFRO Syndrome. Hematol. Oncol. Clin. N. Am. 2018, 32, 107–118. [Google Scholar] [CrossRef]
- El-Osta, H.E.; Kurzrock, R. Castleman’s disease: From basic mechanisms to molecular therapeutics. Oncologist 2011, 16, 497–511. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; van Rhee, F.; Nabel, C.S. HHV-8-negative, idiopathic multicentric Castleman disease: Novel insights into biology, pathogenesis, and therapy. Blood 2014, 123, 2924–2933. [Google Scholar] [CrossRef]
- Srkalovic, G.; Marijanovic, I.; Srkalovic, M.B.; Fajgenbaum, D.C. TAFRO syndrome: New subtype of idiopathic multicentric Castleman disease. Biomol. Biomed. 2017, 17, 81–84. [Google Scholar] [CrossRef]
- Iwaki, N.; Fajgenbaum, D.C.; Nabel, C.S.; Gion, Y.; Kondo, E.; Kawano, M.; Masunari, T.; Yoshida, I.; Moro, H.; Nikkuni, K.; et al. Clinicopathologic analysis of TAFRO syndrome demonstrates a distinct subtype of HHV-8-negative multicentric Castleman disease. Am. J. Hematol. 2016, 91, 220–226. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; Langan, R.-A.; Japp, A.S.; Partridge, H.L.; Pierson, S.K.; Singh, A.; Arenas, D.J.; Ruth, J.R.; Nabel, C.S.; Stone, K.; et al. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6-blockade-refractory idiopathic multicentric Castleman disease. J. Clin. Investig. 2019, 129, 4451–4463. [Google Scholar] [CrossRef]
- Chen, T.; Feng, C.; Zhang, X.; Zhou, J. TAFRO syndrome: A disease that known is half cured. Hematol. Oncol. 2023, 41, 310–322. [Google Scholar] [CrossRef]
- Sumiyoshi, R.; Koga, T.; Fukui, S.; Furukawa, K.; Momoki, M.; Ichinose, K.; Yano, S.; Kawakami, A. Exploring the role of insulin-like growth factor binding protein-1 in identifying idiopathic multicentric Castleman’s disease types: Implications for the mTOR signaling pathway. Clin. Immunol. 2023, 256, 109798. [Google Scholar] [CrossRef]
- Sumiyoshi, R.; Koga, T.; Kawakami, A. Pos1353 Serum Proteomics Reveals Insulin-Like Growth Factor Binding Proteins-1 as Biomarkers for Idiopathic Multicentric Castleman’s Disease. Ann. Rheum. Dis. 2021, 80, 959. [Google Scholar] [CrossRef]
- Paydas, S. Tafro syndrome: Critical review for clinicians and pathologists. Crit. Rev. Oncol. Hematol. 2018, 128, 88–95. [Google Scholar] [CrossRef]
- Grange, L.; Chalayer, E.; Boutboul, D.; Paul, S.; Galicier, L.; Gramont, B.; Killian, M. TAFRO syndrome: A severe manifestation of Sjogren’s syndrome? A systematic review. Autoimmun. Rev. 2022, 21, 103137. [Google Scholar] [CrossRef]
- Masaki, Y.; Kawabata, H.; Takai, K.; Kojima, M.; Tsukamoto, N.; Ishigaki, Y.; Kurose, N.; Ide, M.; Murakami, J.; Nara, K.; et al. Proposed diagnostic criteria, disease severity classification and treatment strategy for TAFRO syndrome, 2015 version. Int. J. Hematol. 2016, 103, 686–692. [Google Scholar] [CrossRef]
- Masaki, Y.; Kawabata, H.; Takai, K.; Tsukamoto, N.; Fujimoto, S.; Ishigaki, Y.; Kurose, N.; Miura, K.; Nakamura, S.; Aoki, S. 2019 Updated diagnostic criteria and disease severity classification for TAFRO syndrome. Int. J. Hematol. 2020, 111, 155–158. [Google Scholar] [CrossRef]
- Montes-Moreno, S.; Climent, F.; Fraga, M.; Luis Patier, J.; Robles-Marhuenda, Á.; García-Sanz, R.; Ocio, E.M.; González García, A.; Navarro, J.-T. Expert consensus on the integrated diagnosis of idiopathic multicentric Castleman disease. Rev. Esp. Patol. 2023, 56, 158–167. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; Uldrick, T.S.; Bagg, A.; Frank, D.; Wu, D.; Srkalovic, G.; Simpson, D.; Liu, A.Y.; Menke, D.; Chandrakasan, S.; et al. International, evidence-based consensus diagnostic criteria for HHV-8–negative/idiopathic multicentric Castleman disease. Blood 2017, 129, 1646–1657. [Google Scholar] [CrossRef]
- Nishimura, Y.; Fajgenbaum, D.C.; Pierson, S.K.; Iwaki, N.; Nishikori, A.; Kawano, M.; Nakamura, N.; Izutsu, K.; Takeuchi, K.; Nishimura, M.F.; et al. Validated international definition of the thrombocytopenia, anasarca, fever, reticulin fibrosis, renal insufficiency, and organomegaly clinical subtype (TAFRO) of idiopathic multicentric Castleman disease. Am. J. Hematol. 2021, 96, 1241–1252. [Google Scholar] [CrossRef]
- Ozeki, T.; Tsuji, M.; Yamamoto, J.; Shigematsu, C.; Maruyama, S. Thrombotic microangiopathy on kidney biopsy in a patient with TAFRO syndrome. CEN Case Rep. 2018, 7, 243–247. [Google Scholar] [CrossRef]
- Mizuno, H.; Sawa, N.; Watanabe, S.; Ikuma, D.; Sekine, A.; Kawada, M.; Yamanouchi, M.; Hasegawa, E.; Suwabe, T.; Hoshino, J.; et al. The Clinical and Histopathological Feature of Renal Manifestation of TAFRO Syndrome. Kidney Int. Rep. 2020, 5, 1172–1179. [Google Scholar] [CrossRef]
- Kurose, N.; Mizutani, K.; Kumagai, M.; Shioya, A.; Guo, X.; Nakada, S.; Fujimoto, S.; Kawabata, H.; Masaki, Y.; Takai, K.; et al. An extranodal histopathological analysis of idiopathic multicentric Castleman disease with and without TAFRO syndrome. Pathol.—Res. Pract. 2019, 215, 410–413. [Google Scholar] [CrossRef]
- Audia, S.; Mahévas, M.; Samson, M.; Godeau, B.; Bonnotte, B. Pathogenesis of immune thrombocytopenia. Autoimmun. Rev. 2017, 16, 620–632. [Google Scholar] [CrossRef]
- Fujiwara, S.; Mochinaga, H.; Nakata, H.; Ohshima, K.; Matsumoto, M.; Uchiba, M.; Mikami, Y.; Hata, H.; Okuno, Y.; Mitsuya, H.; et al. Successful treatment of TAFRO syndrome, a variant type of multicentric Castleman disease with thrombotic microangiopathy, with anti-IL-6 receptor antibody and steroids. Int. J. Hematol. 2016, 103, 718–723. [Google Scholar] [CrossRef]
- Morita, K.; Fujiwara, S.-I.; Ikeda, T.; Kawaguchi, S.-I.; Toda, Y.; Ito, S.; Ochi, S.-I.; Nagayama, T.; Mashima, K.; Umino, K.; et al. TAFRO Syndrome with an Anterior Mediastinal Mass and Lethal Autoantibody-Mediated Thrombocytopenia: An Autopsy Case Report. Acta Haematol. 2019, 141, 158–163. [Google Scholar] [CrossRef]
- Dumic, I.; Radovanovic, M.; Igandan, O.; Savic, I.; Nordstrom, C.W.; Jevtic, D.; Subramanian, A.; Ramanan, P. A Fatal Case of Kaposi Sarcoma Immune Reconstitution Syndrome (KS-IRIS) Complicated by Kaposi Sarcoma Inflammatory Cytokine Syndrome (KICS) or Multicentric Castleman Disease (MCD): A Case Report and Review. Am. J. Case Rep. 2020, 21, e926433-1–e926433-7. [Google Scholar] [CrossRef]
- Piñeiro, F.; Climent, F.; Imaz, A.; Gudiol, C.; Niubó, J.; Palomar-Muñoz, A.; Serrano, T.; Saumoy, M.; Podzamczer, D. Clinical and pathological features of Kaposi sarcoma herpesvirus-associated inflammatory cytokine syndrome. AIDS Lond. Engl. 2020, 34, 2097–2101. [Google Scholar] [CrossRef]
- Polizzotto, M.N.; Uldrick, T.S.; Wyvill, K.M.; Aleman, K.; Marshall, V.; Wang, V.; Whitby, D.; Pittaluga, S.; Jaffe, E.S.; Millo, C.; et al. Clinical Features and Outcomes of Patients With Symptomatic Kaposi Sarcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV Inflammatory Cytokine Syndrome (KICS). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, 730–738. [Google Scholar] [CrossRef]
- Yokoi, T.; Miyawaki, T.; Yachie, A.; Kato, K.; Kasahara, Y.; Taniguchi, N. Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology 1990, 70, 100–105. [Google Scholar]
- Chen, C.-H.; Liu, H.-C.; Hung, T.-T.; Liu, T.-P. Possible roles of Epstein-Barr virus in Castleman disease. J. Cardiothorac. Surg. 2009, 4, 31. [Google Scholar] [CrossRef]
- Kageyama, C.; Igawa, T.; Gion, Y.; Iwaki, N.; Tabata, T.; Tanaka, T.; Kondo, E.; Sakai, H.; Tsuneyama, K.; Nomoto, K.; et al. Hepatic Campylobacter jejuni infection in patients with Castleman-Kojima disease (idiopathic multicentric Castleman disease with thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO) syndrome). Pathol. Int. 2019, 69, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Fajgenbaum, D.C. Overview of Castleman disease. Blood 2020, 135, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, A.; Trippett, T.M.; Zhang, N.; Chen, X.; Penson, A.V.; Arcila, M.E.; Pichardo, J.; Baik, J.; Sigler, A.; Harada, H.; et al. Genetic basis for iMCD-TAFRO. Oncogene 2020, 39, 3218–3225. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Shimizu, T.; Toyama, T.; Abe, R.; Okamoto, S. Successful treatment of tafro syndrome with tocilizumab, prednisone, and cyclophosphamide. Intern. Med. 2017, 56, 2205–2211. [Google Scholar] [CrossRef] [PubMed]
- Sakashita, K.; Murata, K.; Takamori, M. TAFRO syndrome: Current perspectives. J. Blood Med. 2018, 9, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, N.; Kanakura, Y.; Aozasa, K.; Johkoh, T.; Nakamura, M.; Nakano, S.; Nakano, N.; Ikeda, Y.; Sasaki, T.; Nishioka, K.; et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 2005, 106, 2627–2632. [Google Scholar] [CrossRef] [PubMed]
- Cordero, L.; Aguilar-Rodríguez, F.; Sandino, J.; Alonso, M.; Gutiérrez, E. Siltuximab Monotherapy in Tafro Syndrome: A Case Report and Review of the Literature. J. Nephrol. 2023, 36, 1181–1185. [Google Scholar] [CrossRef]
- van Rhee, F.; Voorhees, P.; Dispenzieri, A.; Fosså, A.; Srkalovic, G.; Ide, M.; Munshi, N.; Schey, S.; Streetly, M.; Pierson, S.K.; et al. International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease. Blood 2018, 132, 2115–2124. [Google Scholar] [CrossRef]
- Yasuda, S.; Tanaka, K.; Ichikawa, A.; Watanabe, K.; Uchida, E.; Yamamoto, M.; Yamamoto, K.; Mizuchi, D.; Miura, O.; Fukuda, T. Aggressive TAFRO syndrome with reversible cardiomyopathy successfully treated with combination chemotherapy. Int. J. Hematol. 2016, 104, 512–518. [Google Scholar] [CrossRef]
- Shirai, T.; Onishi, A.; Waki, D.; Saegusa, J.; Morinobu, A. Successful treatment with tacrolimus in TAFRO syndrome: Two case reports and literature review. Medicine 2018, 97, e11045. [Google Scholar] [CrossRef]
- Matsuhisa, T.; Takahashi, N.; Nakaguro, M.; Sato, M.; Inoue, E.; Teshigawara, S.; Ozawa, Y.; Kondo, T.; Nakamura, S.; Sato, J.; et al. Fatal case of TAFRO syndrome associated with over-immunosuppression: A case report and review of the literature. Nagoya J. Med. Sci. 2019, 81, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Shirakashi, M.; Nishida, Y.; Nakashima, R.; Fujimoto, M.; Hiwa, R.; Tsuji, H.; Kitagori, K.; Akizuki, S.; Morinobu, A.; Yoshifuji, H. TAFRO syndrome is associated with anti-SSA/Ro60 antibodies, in contrast to idiopathic castleman disease. Sci. Rep. 2024, 14, 2889. [Google Scholar] [CrossRef] [PubMed]
Severity Score (Points) | Anasarca | Thrombocytopenia | Fever and/or Inflammation | Renal Insufficiency |
---|---|---|---|---|
1 | Pleural effusion, ascites, or pitting edema on PE | Platelet counts < 100,000/μL | Fever ≥ 37.5 °C but <38.0 °C or CRP ≥ 2 mg/dL but <10 mg/dL | GFR < 60 mL/min/1.73 m2 |
2 | Two of the above | Platelet counts < 50,000/μL | Fever ≥ 38.0 °C but <39.0 °C or CRP ≥ 10 mg/dL but <20 mg/dL | GFR < 30 mL/min/1.73 m2 |
3 | Three of the above | Platelet counts < 10,000/μL | Fever ≥ 39.0 °C or CRP ≥ 20 mg/dL | GFR < 15 mL/min/1.73 m2 or hemodialysis |
Relationship between Score and Disease Severity | ||||
0–4 points | Mild | Grade 1 | ||
5–6 points | Moderate | Grade 2 | ||
7–8 points | Slightly severe | Grade 3 | ||
9–10 points | Severe | Grade 4 | ||
11–12 points | Very severe | Grade 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, J.C.; Conejero, N.; Solan, L.; Diaz de la Pinta, F.J.; Cordoba, R.; Lopez-Garcia, A. Unraveling TAFRO Syndrome: An In-Depth Look at the Pathophysiology, Management, and Future Perspectives. Biomedicines 2024, 12, 1076. https://doi.org/10.3390/biomedicines12051076
Caballero JC, Conejero N, Solan L, Diaz de la Pinta FJ, Cordoba R, Lopez-Garcia A. Unraveling TAFRO Syndrome: An In-Depth Look at the Pathophysiology, Management, and Future Perspectives. Biomedicines. 2024; 12(5):1076. https://doi.org/10.3390/biomedicines12051076
Chicago/Turabian StyleCaballero, Juan Carlos, Nazaret Conejero, Laura Solan, Francisco Javier Diaz de la Pinta, Raul Cordoba, and Alberto Lopez-Garcia. 2024. "Unraveling TAFRO Syndrome: An In-Depth Look at the Pathophysiology, Management, and Future Perspectives" Biomedicines 12, no. 5: 1076. https://doi.org/10.3390/biomedicines12051076
APA StyleCaballero, J. C., Conejero, N., Solan, L., Diaz de la Pinta, F. J., Cordoba, R., & Lopez-Garcia, A. (2024). Unraveling TAFRO Syndrome: An In-Depth Look at the Pathophysiology, Management, and Future Perspectives. Biomedicines, 12(5), 1076. https://doi.org/10.3390/biomedicines12051076