The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Histopathologic Analysis
2.2. Immunohistochemical Analysis
2.3. Statistical Analyses
3. Results
3.1. Expression of Death Receptors DR4, DR5, and FAS in Relation to Clinicopathologic Characteristics
3.2. Expression of TGF-β1 in Relation to Clinicopathologic Characteristics
3.3. Association of Death Receptors DR4, DR5, and FAS, and TGF-β1 Expression
3.4. Association of Death Receptors DR4, DR5, and FAS and TGF-β1 and Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenis, A.T.; Lec, P.M.; Chamie, K. Bladder cancer: A review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Wołącewicz, M.; Hrynkiewicz, R.; Grywalska, E.; Suchojad, T.; Leksowski, T.; Roliński, J.; Niedźwiedzka-Rystwej, P. Immunotherapy in bladder cancer: Current methods and future perspectives. Cancers 2020, 12, 1181. [Google Scholar] [CrossRef] [PubMed]
- Koren, E.; Fuchs, Y. Modes of regulated cell death in cancer. Cancer. Discov. 2021, 11, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; Vaux, D.L. Cell death in the origin and treatment of cancer. Mol. Cell. 2020, 78, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Cullen, S.P.; Martin, S.J. Fas and TRAIL ‘death receptors’ as initiators of inflammation: Implications for cancer. Semin. Cell. Dev. Biol. 2015, 39, 26–34. [Google Scholar] [CrossRef]
- Guicciardi, M.E.; Gores, G.J. Life and death by death receptors. FASEB J. 2009, 23, 1625. [Google Scholar] [CrossRef]
- Green, D.R. The death receptor pathway of apoptosis. Cold. Spring. Harb. Perspect. Biol. 2022, 14, a041053. [Google Scholar] [CrossRef]
- Oh, Y.T.; Sun, S.Y. Regulation of cancer metastasis by TRAIL/death receptor signaling. Biomolecules 2021, 11, 499. [Google Scholar] [CrossRef] [PubMed]
- Pennarun, B.; Meijer, A.; de Vries, E.G.; Kleibeuker, J.H.; Kruyt, F.; de Jong, S. Playing the DISC: Turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim. Biophys. Acta 2010, 1805, 123–140. [Google Scholar] [CrossRef]
- Wang, S.; El-Deiry, W.S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 2003, 22, 8628–8633. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Venera, R.; Kapanova, G.; Tanbayeva, G.; Akhmetova, G.; Kudabayev, Y.; Turgambayeva, A. TRAIL-mediated signaling in bladder cancer: Realization of clinical efficacy of TRAIL-based therapeutics in medical oncology. Med. Oncol. 2023, 40, 236. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.W.; Punnoose, E.A.; Januario, T.; Lawrence, D.A.; Pitti, R.M.; Lancaster, K.; Lee, D.; von Goetz, M.; Yee, S.F.; Totpal, K.; et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 2007, 13, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Verma, A.; Singh, A.; Arya, R.K.; Maheshwari, S.; Chaturvedi, P.; Nengroo, M.A.; Saini, K.K.; Vishwakarma, A.L.; Singh, K.; et al. Salinomycin inhibits epigenetic modulator EZH2 to enhance death receptors in colon cancer stem cells. Epigenetics 2021, 16, 144–161. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Emi, M.; Tanabe, K.; Uchida, Y.; Toge, T. The role of Fas ligand and transforming growth factor β in tumor progression: Molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy. Cancer 2004, 100, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Y.; Li, Q.; Zhang, J.; Sun, W.; Dai, C.; Shan, Y. Expression of Fas/FasL and c-myc in bladder cancer and their correlation with tumor immune function. Int. J. Clin. Exp. Pathol. 2016, 9, 6357–6363. [Google Scholar]
- Yamana, K.; Bilim, V.; Hara, N.; Kasahara, T.; Itoi, T.; Maruyama, R.; Nishiyama, T.; Takahashi, K. Prognostic impact of FAS/CD95/APO-1 in urothelial cancers: Decreased expression of Fas is associated with disease progression. Br. J. Cancer 2005, 93, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Vallo, S.; Stege, H.; Berg, M.; Michaelis, M.; Winkelmann, R.; Rothweiler, F.; Cinatl, J. Tumor necrosis factor related apoptosis inducing ligand as a therapeutic option in urothelial cancer cells with acquired resistance against first line chemotherapy. Oncol. Rep. 2020, 43, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, J.J. The dual role of TGFβ in human cancer: From tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012, 2012, 381428. [Google Scholar]
- Song, J.; Shi, W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta. Biochim. Biophys. Sin. (Shanghai) 2018, 50, 91–97. [Google Scholar] [CrossRef]
- Herzer, K.; Ganten, T.M.; Schulze-Bergkamen, H.; Grosse-Wilde, A.; Koschny, R.; Krammer, P.H.; Walczak, H. Transforming growth factor β can mediate apoptosis via the expression of TRAIL in human hepatoma cells. Hepatology 2005, 42, 183–192. [Google Scholar] [CrossRef]
- Herzer, K.; Grosse-Wilde, A.; Krammer, P.H.; Galle, P.R.; Kanzler, S. Transforming growth factor-beta-mediated tumor necrosis factor-related apoptosis-inducing ligand expression and apoptosis in hepatoma cells requires functional cooperation between Smad proteins and activator protein-1. Mol. Cancer Res. 2008, 6, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Jong, H.S.; Kim, T.Y.; Lee, J.W.; Kim, N.K.; Hong, S.H.; Bang, Y.J. Transforming growth factor-β1 induces apoptosis through Fas ligand-independent activation of the Fas death pathway in human gastric SNU-620 carcinoma cells. Mol. Biol. Cell. 2004, 15, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Board WCoTE. WHO Classification of Tumours Urinary and Male Genital Tumours; International Agency for Research on Cancer: Lyon, France, 2022. [Google Scholar]
- Brierly, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: Chichester, UK, 2017. [Google Scholar]
- Chamie, K.; Litwin, M.S.; Bassett, J.C.; Daskivich, T.J.; Lai, J.; Hanley, J.M.; Konety, B.R.; Saigal, C.S. Urologic Diseases in America Project. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer 2013, 119, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bosch, S.; Witjes, J.A. Long-term cancer-specific survival in patients with high-risk, non–muscle-invasive bladder cancer and tumour progression: A systematic review. Eur. Urol. 2011, 60, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Cumberbatch, M.G.; Cox, A.; Teare, D.; Catto, J.W. Contemporary occupational carcinogen exposure and bladder cancer: A systematic review and meta-analysis. JAMA Oncol. 2015, 1, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Freedman, N.D.; Silverman, D.T.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C.C. Association between smoking and risk of bladder cancer among men and women. JAMA 2011, 306, 737–745. [Google Scholar] [CrossRef]
- Singh, D.; Prasad, C.B.; Biswas, D.; Tewari, M.; Kar, A.G.; Ansari, M.A.; Singh, S.; Narayan, G. TRAIL receptors are differentially regulated and clinically significant in gallbladder cancer. Pathology 2020, 52, 348–358. [Google Scholar] [CrossRef]
- Szliszka, E.; Mazur, B.; Zydowicz, G.; Czuba, Z.P.; Król, W. TRAIL-induced apoptosis and expression of death receptor TRAIL-R1 and TRAIL-R2 in bladder cancer cells. Folia Histochem. Cytobiol. 2009, 47, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, X.; Li, J.; Jin, X.; Yu, J.; Sun, X.; Chu, Y.; Xu, C.; Li, X.; Wang, X.; et al. Expression of TRAIL, DR4, and DR5 in bladder cancer: Correlation with response to adjuvant therapy and implications of prognosis. Urology 2012, 79, 968-e7. [Google Scholar] [CrossRef]
- Groeneveld, C.S.; Sanchez-Quiles, V.; Dufour, F.; Shi, M.; Dingli, F.; Nicolle, R.; Chapeaublanc, E.; Poullet, P.; Jeffery, D.; Krucker, C.; et al. Proteogenomic Characterization of Bladder Cancer Reveals Sensitivity to Apoptosis Induced by Tumor Necrosis Factor–related Apoptosis-inducing Ligand in FGFR3-mutated Tumors. Eur. Urol. 2024, 85, 483–494. [Google Scholar] [CrossRef]
- Farahani, M.K. Down-Regulation of Death Receptor-5 in Metastatic Cascade of Triple-Negative Breast Cancer. Turk. J. Oncol. 2020, 35, 320–326. [Google Scholar] [CrossRef]
- Ceylan, C.; Yahşi, S.; Doğan, S.; ÖztÜrk, E.; Ceylan, G. Emphasis of FAS/FASL gene polymorphism in patients with non-muscle invasive bladder cancer. Ir. J. Med. Sci. 2018, 187, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Strand, S.; Hofmann, W.J.; Hug, H.; Müller, M.; Otto, G.; Strand, D.; Mariani, S.M.; Stremmel, W.; Krammer, P.H. Lymphocyte apoptosis induced by CD95 (APO–1/Fas) ligand–expressing tumor cells—A mechanism of immune evasion? Nat. Med. 1996, 2, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Turley, S.J.; Akhurst, R.J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Neuzillet, C.; Tijeras-Raballand, A.; Cohen, R.; Cros, J.; Faivre, S.; Raymond, E.; de Gramont, A. Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 2015, 147, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, S.; Zeng, J. TGF β signaling: A complex role in tumorigenesis. Mol. Med. Rep. 2018, 17, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, K.; Manolova, I.; Ignatova, M.M.; Gulubova, M. Immunohistochemical expression of TGF-Β1, SMAD4, SMAD7, TGFβRII and CD68-positive TAM densities in papillary thyroid cancer. Open Access Maced. J. Med. Sci. 2018, 6, 435. [Google Scholar] [CrossRef]
- Stojnev, S.; Krstic, M.; Cukuranovic Kokoris, J.; Conic, I.; Petkovic, I.; Ilic, S.; Milosevic-Stevanovic, J.; Jankovic Velickovic, L. Prognostic impact of canonical TGF-β signaling in urothelial bladder cancer. Medicina 2019, 55, 302. [Google Scholar] [CrossRef]
DR4 | DR5 | FAS | TGF-β1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Expression | (High) | p | (High) | p | (High) | p | (High) | p | |
total N (%) | 647 (100) | 454 (70.2) | 452 (69.9) | 354 (54.7) | 430 (66.5) | ||||
Gender | |||||||||
Female | 148 (22.9) | 109 (24.0) | 0.171 | 106 (23.5) | 0.336 | 77 (21.8) | 0.256 | 106 (24.7) | 0.078 |
Male | 499 (77.1) | 345 (76.0) | 346 (76.5) | 277 (78.2) | 324 (75.3) | ||||
Age | |||||||||
<66 | 279 (43.1) | 195 (43.0) | 0.480 | 195 (43.1) | 0.529 | 146 (41.2) | 0.163 | 171 (39.8) | 0.010 |
≥66 | 368 (56.9) | 259 (57.0) | 257 (56.9) | 208 (58.8) | 259 (60.2) | ||||
Cigarette Smoking | |||||||||
Yes | 402 (62.1) | 274 (60.4) | 0.089 | 275 (60.8) | 0.173 | 212 (59.8) | 0.112 | 254 (59.1) | 0.014 |
No | 245 (37.9) | 180 (39.6) | 177 (39.2) | 142 (40.2) | 176 (40.9) | ||||
Exposition to known carcinogens | |||||||||
Yes | 48 (7.4) | 40 (8.9) | 0.024 | 33 (7.3) | 0.488 | 30 (8.5) | 0.165 | 41 (6.7) | 0.221 |
No | 599 (92.6) | 414 (91.2) | 419 (92.7) | 324 (91.5) | 401 (93.3) |
DR4 | DR5 | FAS | TGF-β1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Expression | (High) | p | (High) | p | (high) | p | (High) | p | |
total N (%) | 647 (100) | 454 (70.2) | 452 (69.9) | 354 (54.7) | 430 (66.5) | ||||
Tumor grade | |||||||||
Low | 260 (40.2) | 204 (44.9) | <0.001 | 189 (41.8) | 0.115 | 173 (48.9) | 0.388 | 137 (31.9) | <0.001 |
High | 387 (59.8) | 250 (55.1) | 263 (58.2) | 213 (60.1) | 293 (68.1) | ||||
Pathologic stage | |||||||||
pTa | 201 (31.1) | 167 (36.8) | <0.001 | 136 (30.1) | 0.467 | 120 (33.9) | 0.089 | 96 (22.3) | <0.001 |
pT1 | 296 (45.7) | 201 (44.3) | 0.483 | 222 (49.1) | 0.005 | 164 (46.3) | 0.752 | 218 (45.7) | <0.001 |
≥pT2 | 150 (23.2) | 86 (18.9) | <0.001 | 94 (20.8) | 0.033 | 70 (19.8) | 0.025 | 116 (27.0) | <0.001 |
Carcinoma in situ | |||||||||
Yes | 47 (7.3) | 30 (6.6) | 0.204 | 31 (6.9) | 0.324 | 32 (9.1) | 0.038 | 36 (8.4) | 0.083 |
No | 600 (92.7) | 424 (93.4) | 421 (93.1) | 322 (90.9) | 394 (91.6) | ||||
Divergent differentiation/Variant tumor morphology | |||||||||
Negative | 560 (86.6) | 400 (88.1) | 0.051 | 389 (86.1) | 0.337 | 310 (87.6) | 0.236 | 369 (85.8) | 0.258 |
Positive | 87 (13.4) | 54 (11.9) | 63 (13.9) | 44 (12.4) | 61 (14.2) | ||||
Cystitis | |||||||||
Yes | 106 (16.4) | 69 (15.2) | 0.129 | 69 (15.3) | 0.146 | 62 (17.5) | 0.228 | 63 (14.7) | 0.060 |
No | 541 (83.6) | 385 (84.8) | 383 (84.7) | 292 (82.5) | 367 (85.3) | ||||
Extensive lymphocytic inflammatory infiltrate | |||||||||
Present | 45 (7.0) | 31 (6.8) | 0.482 | 29 (6.4) | 0.254 | 31 (8.8) | 0.033 | 35 (8.1) | 0.063 |
Absent | 602 (93.0) | 423 (93.2) | 423 (93.6) | 323 (91.2) | 395 (91.9) | ||||
Extensive polymorphonuclear inflammatory infiltrate | |||||||||
Present | 13 (2.0) | 11 (2.4) | 0.203 | 12 (2.7) | 0.061 | 4 (1.1) | 0.071 | 10 (2.3) | 0.315 |
Absent | 634 (98.0) | 443 (97.6) | 440 (97.3) | 350 (98.9) | 420 (97.7) |
DR4 | DR5 | FAS | TGF-β1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Expression | (High) | p | (High) | p | (High) | p | (High) | p | |
total N (%) | 647 (100) | 454 (70.2) | 452 (69.9) | 354 (54.7) | 430 (66.5) | ||||
Clinical presentation | |||||||||
Hematuria | 543 (83.9) | 348 (84.6) | 0.279 | 386 (85.4) | 0.077 | 295 (83.3) | 0.366 | 360 (83.7) | 0.469 |
Other | 104 (16.1) | 70 (15.4) | 66 (14.6) | 59 (16.7) | 70 (16.3) | ||||
Recurrence | |||||||||
Yes | 244 (37.7) | 172 (37.9) | 0.481 | 178 (39.4) | 0.106 | 141 (39.8) | 0.127 | 160 (37.2) | 0.387 |
No | 403 (62.3) | 282 (62.1) | 274 (60.6) | 213 (60.2) | 270 (62.8) | ||||
Cancer specific death | |||||||||
Yes | 200 (30.9) | 124 (27.3) | 0.002 | 135 (29.9) | 0.216 | 90 (25.4) | 0.001 | 153 (35.6) | 0.001 |
Other | 85 (13.1) | 58 (12.8) | 56 (12.4) | 48 (13.6) | 54 (12.6) | ||||
Alive | 362 (56.0) | 272 (59.9) | 261 (57.7) | 216 (61.0) | 223 (51.8) | ||||
Treatment | |||||||||
TURBT * | 122 (18.9) | 95 (20.9) | 0.024 | 80 (17.7) | 0.150 | 74 (20.9) | 0.086 | 72 (16.7) | 0.035 |
Intravesical BCG | 303 (46.8) | 218 (48.0) | 0.200 | 221 (48.9) | 0.065 | 175 (49.4) | 0.084 | 188 (43.7) | 0.016 |
Cystectomy | 101 (15.6) | 53 (11.7) | <0.001 | 63 (13.9) | 0.049 | 44 (12.4) | 0.010 | 78 (18.2) | 0.008 |
Chemo/radioth | 121 (18.7) | 88 (19.4) | 0.286 | 88 (19.5) | 0.259 | 61 (17.2) | 0.170 | 92 (21.4) | 0.008 |
TGF-β1 | DR4 | DR5 | FAS | ||||||
---|---|---|---|---|---|---|---|---|---|
Expression | High | p | High | p | High | p | High | p | |
Total (n (%)) | 647 (100) | 430 (66.5) | 454 (70.2) | 452 (69.9) | 354 (54.7) | ||||
TGF-β | |||||||||
High | 430 (66.5) | - | 298 (65.6) | 0.279 | 315 (69.7) | 0.006 | 247 (69.8) | 0.030 | |
Low | 217 (33.5) | - | 156 (34.4) | 137 (30.3) | 107 (30.2) | ||||
DR4 | |||||||||
High | 454 (70.2) | 298 (69.3) | 0.279 | - | 352 (77.9) | <0.001 | 276 (77.9) | <0.001 | |
Low | 193 (29.8) | 132 (30.7) | - | 100 (22.1) | 78 (22.1) | ||||
DR5 | |||||||||
High | 452 (69.9) | 315 (73.3) | 0.006 | 352 (77.5) | <0.001 | - | 264 (74.6) | 0.003 | |
Low | 195 (30.1) | 115 (26.7) | 102 (22.5) | - | 90 (25.4) | ||||
FAS | |||||||||
High | 354 (54.7) | 247 (57.4) | 0.030 | 276 (60.8) | <0.001 | 264 (58.4) | 0.003 | - | |
Low | 293 (45.3) | 183 (42.6) | 178 (39.2) | 188 (41.6) | - |
Overall Survival | |||||
---|---|---|---|---|---|
Parameter | B | HR | 95%CI | p-Value | |
Lower | Upper | ||||
Age (≥66) | 0.713 | 2.039 | 1.546 | 2.690 | <0.001 |
Tumor grade (high) | 0.701 | 2.016 | 1.375 | 2.956 | <0.001 |
Pathologic stage T1 | 0.728 | 2.071 | 1.032 | 3.247 | 0.002 |
Pathologic stage ≥T2 | 1.560 | 4.758 | 2.906 | 7.789 | <0.001 |
TGF-β1 (high) | 0.801 | 2.228 | 1.567 | 3.167 | <0.001 |
DR4 (high) | −0.087 | 0. 916 | 0.707 | 1.189 | 0.511 |
DR5 (high) | −0.060 | 0. 942 | 0.726 | 1.223 | 0.654 |
Fas (high) | −0.299 | 0.741 | 0.581 | 0.946 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojnev, S.; Conic, I.; Ristic Petrovic, A.; Petkovic, I.; Radic, M.; Krstic, M.; Jankovic Velickovic, L. The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance. Biomedicines 2024, 12, 1123. https://doi.org/10.3390/biomedicines12051123
Stojnev S, Conic I, Ristic Petrovic A, Petkovic I, Radic M, Krstic M, Jankovic Velickovic L. The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance. Biomedicines. 2024; 12(5):1123. https://doi.org/10.3390/biomedicines12051123
Chicago/Turabian StyleStojnev, Slavica, Irena Conic, Ana Ristic Petrovic, Ivan Petkovic, Milica Radic, Miljan Krstic, and Ljubinka Jankovic Velickovic. 2024. "The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance" Biomedicines 12, no. 5: 1123. https://doi.org/10.3390/biomedicines12051123
APA StyleStojnev, S., Conic, I., Ristic Petrovic, A., Petkovic, I., Radic, M., Krstic, M., & Jankovic Velickovic, L. (2024). The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance. Biomedicines, 12(5), 1123. https://doi.org/10.3390/biomedicines12051123