The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Search Results and Quality of Included Studies
3.2. Study Characteristics
3.3. Mechanism of Injury
3.4. Treatment Modalities
3.5. Mechanism of Delivery
3.6. Outcome of Treatments for Achilles Tendon Injuries
4. Discussion
4.1. Cytokine Modulation
4.2. Macrophage Polarization
4.3. Tenocyte Proliferation and Collagen Deposition
4.4. Matrix Metalloproteinases
4.5. MicroRNAs
4.6. Mechanism of Delivery
4.7. Clinical Relevance of EVs
4.8. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Järvinen, T.A.; Kannus, P.; Maffulli, N.; Khan, K.M. Achilles tendon disorders: Etiology and epidemiology. Foot Ankle Clin. 2005, 10, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Winnicki, K.; Ochała-Kłos, A.; Rutowicz, B.; Pękala, P.A.; Tomaszewski, K.A. Functional anatomy, histology and biomechanics of the human Achilles tendon—A comprehensive review. Ann. Anat. 2020, 229, 151461. [Google Scholar] [CrossRef] [PubMed]
- Claessen, F.M.A.P.; Vos, R.J.; Reijman, M. Predictors of Primary Achilles Tendon Ruptures. Sports Med. 2014, 44, 1241–1259. [Google Scholar] [CrossRef] [PubMed]
- Raikin, S.M.; Garras, D.N.; Krapchev, P.V. Achilles Tendon Injuries in a United States Population. Foot Ankle Int. 2013, 34, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Owens, B.D.; Wolf, J.M.; Seelig, A.D. Risk Factors for Lower Extremity Tendinopathies in Military Personnel. Orthop. J. Sports Med. 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Doral, M.N.; Alam, M.; Bozkurt, M. Functional anatomy of the Achilles tendon. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Patch, D.A.; Andrews, N.A.; Scheinberg, M. Achilles tendon disorders: An overview of diagnosis and conservative treatment. JAAPA 2023, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, C.N.; Van Sterkenburg, M.N.; Wiegerinck, J.I.; Karlsson, J.; Maffulli, N. Terminology for Achilles tendon related disorders. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 835–841. [Google Scholar] [CrossRef]
- Chen, S.H.; Chen, Z.Y.; Lin, Y.H. Extracellular Vesicles of Adipose-Derived Stem Cells Promote the Healing of Traumatized Achilles Tendons. Int. J. Mol. Sci. 2021, 22, 12373. [Google Scholar] [CrossRef]
- Reddy, S.S.; Pedowitz, D.I.; Parekh, S.G.; Omar, I.M.; Wapner, K.L. Surgical treatment for chronic disease and disorders of the achilles tendon. J. Am. Acad. Orthop. Surg. 2009, 17, 3–14. [Google Scholar] [CrossRef]
- McClinton, S.; Luedke, L.; Clewley, D. Nonsurgical Management of Midsubstance Achilles Tendinopathy. Clin. Podiatr. Med. Surg. 2017, 34, 137–160. [Google Scholar] [CrossRef] [PubMed]
- Holm, C.; Kjaer, M.; Eliasson, P. Achilles tendon rupture–treatment and complications: A systematic review. Scand. J. Med. Sci. Sports 2015, 25, e1–e10. [Google Scholar] [CrossRef]
- Blanco, I.; Krähenbühl, S.; Schlienger, R.G. Corticosteroid-associated tendinopathies: An analysis of the published literature and spontaneous pharmacovigilance data. Drug Saf. 2005, 28, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Kirchgesner, T.; Larbi, A.; Omoumi, P. Drug-induced tendinopathy: From physiology to clinical applications. Jt. Bone Spine 2014, 81, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.J.; Best, T.M. Common overuse tendon problems: A review and recommendations for treatment. Am. Fam. Physician 2005, 72, 811–818. [Google Scholar] [PubMed]
- Jones, M.P.; Khan, R.J.; Carey Smith, R.L. Surgical interventions for treating acute achilles tendon rupture: Key findings from a recent cochrane review. J. Bone Jt. Surg. Am. 2012, 94, e88. [Google Scholar] [CrossRef]
- Reda, Y.; Farouk, A.; Abdelmonem, I.; El Shazly, O.A. Surgical versus non-surgical treatment for acute Achilles’ tendon rupture. A systematic review of literature and meta-analysis. Foot Ankle Surg. 2020, 26, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.R.; Gordon, J.A.; Soslowsky, L.J. The Achilles tendon: Fundamental properties and mechanisms governing healing. Muscles Ligaments Tendons J. 2014, 4, 245–255. [Google Scholar] [CrossRef]
- Gil-Melgosa, L.; Grasa, J.; Urbiola, A. Muscular and Tendon Degeneration after Achilles Rupture: New Insights into Future Repair Strategies. Biomedicines 2021, 10, 19. [Google Scholar] [CrossRef]
- Vieira, M.H.; Oliveira, R.J.; Eça, L.P. Therapeutic potential of mesenchymal stem cells to treat Achilles tendon injuries. Genet. Mol. Res. 2014, 13, 10434–10449. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, Y.; Li, X. Small extracellular vesicles derived from tendon stem cells promote the healing of injured Achilles tendons by regulating miR-145-3p. Acta Biomater. 2023, 172, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, C.S.; Clements, A.E.B.; Kink, J.A. Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. Stem Cells 2019, 37, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Lane, R.A. Extracellular Vesicles From Primed Adipose-Derived Stem Cells Enhance Achilles Tendon Repair by Reducing Inflammation and Promoting Intrinsic Healing. Stem Cells 2023, 41, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Li, J.; Xiong, H. MicroRNA engineered umbilical cord stem cell-derived exosomes direct tendon regeneration by mTOR signaling. J. Nanobiotechnology 2021, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Sidhom, K.; Obi, P.O.; Saleem, A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020, 21, 6466. [Google Scholar] [CrossRef] [PubMed]
- Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef]
- Luo, R.; Liu, M.; Tan, T. Emerging Significance and Therapeutic Potential of Extracellular vesicles. Int. J. Biol. Sci. 2021, 17, 2476–2486. [Google Scholar] [CrossRef]
- Lynch, C.; Panagopoulou, M.; Gregory, C.D. Extracellular Vesicles Arising from Apoptotic Cells in Tumors: Roles in Cancer Pathogenesis and Potential Clinical Applications. Front. Immunol. 2017, 8, 1174. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Tanzil, G.G.; Delgado-Calcares, M.; Stange, R.; Wildemann, B.; Docheva, D. Tendon healing: A concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon. Bone Jt. Res. 2022, 11, 561–574. [Google Scholar] [CrossRef]
- Wellings, E.P.; Huang, T.C.-T.; Li, J. Intrinsic Tendon Regeneration After Application of Purified Exosome Product: An In Vivo Study. Orthop. J. Sports Med. 2021, 9. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Wang, X. MicroRNA-21-3p Engineered Umbilical Cord Stem Cell-Derived Exosomes Inhibit Tendon Adhesion. J. Inflamm. Res. 2020, 13, 303–316. [Google Scholar] [CrossRef]
- Wang, Y.; He, G.; Guo, Y. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J. Cell Mol. Med. 2019, 23, 5475–5485. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Yimiti, D.; Sanada, Y. The therapeutic capacity of bone marrow MSC-derived extracellular vesicles in Achilles tendon healing is passage-dependent and indicated by specific glycans. FEBS Lett. 2022, 596, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhu, Y.; Hsiao, A.W. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. Biomaterials 2023, 294, 121998. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wang, S.; Chen, D.; Gan, D.; Wang, T. Exosomes derived from human umbilical cord mesenchymal stem cells reduce tendon injuries via the miR-27b-3p/ARHGAP5/RhoA signaling pathway. Acta Biochim. Biophys. Sin. Shanghai 2022, 54, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Kang, X.; Wang, Y. Exosomes Derived from Bone Marrow Stromal Cells (BMSCs) Enhance Tendon-Bone Healing by Regulating Macrophage Polarization. Med. Sci. Monit. 2020, 26, e923328. [Google Scholar] [CrossRef]
- Li, J.; Yao, Z.; Xiong, H. Extracellular vesicles from hydroxycamptothecin primed umbilical cord stem cells enhance anti-adhesion potential for treatment of tendon injury. Stem Cell Res. Ther. 2020, 11, 500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, H.; Cui, Q. Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res. Ther. 2020, 11, 402. [Google Scholar] [CrossRef]
- Xu, T.; Lin, Y.; Yu, X. Comparative Effects of Exosomes and Ectosomes Isolated From Adipose-Derived Mesenchymal Stem Cells on Achilles Tendinopathy in a Rat Model. Am. J. Sports Med. 2022, 50, 2740–2752. [Google Scholar] [CrossRef]
- Shen, H.; Yoneda, S.; Abu-Amer, Y.; Guilak, F.; Gelberman, R.H. Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. J. Orthop. Res. 2020, 38, 117–127. [Google Scholar] [CrossRef]
- Liu, A.; Wang, Q.; Zhao, Z. Nitric Oxide Nanomotor Driving Exosomes-Loaded Microneedles for Achilles Tendinopathy Healing. ACS Nano 2021, 15, 13339–13350. [Google Scholar] [CrossRef] [PubMed]
- Gissi, C.; Radeghieri, A.; Antonetti Lamorgese Passeri, C. Extracellular vesicles from rat-bone-marrow mesenchymal stromal/stem cells improve tendon repair in rat Achilles tendon injury model in dose-dependent manner: A pilot study. PLoS ONE 2020, 15, e0229914. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Tang, Y.; Cao, S. An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation. ACS Nano 2023, 17, 16501–16516. [Google Scholar] [CrossRef] [PubMed]
- Chartier, C.; ElHawary, H.; Baradaran, A.; Vorstenbosch, J.; Xu, L.; Efanov, J.I. Tendon: Principles of Healing and Repair. Semin. Plast. Surg. 2021, 35, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Yang, Q.Q.; Zhou, Y.L. Basic Research on Tendon Repair: Strategies, Evaluation, and Development. Front. Med. 2021, 8, 664909. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Kirsner, R. Pathophysiology of acute wound healing. Clin. Dermatol. 2007, 25, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Thomopoulos, S.; Parks, W.C.; Rifkin, D.B.; Derwin, K.A. Mechanisms of tendon injury and repair. J. Orthop. Res. 2015, 33, 832–839. [Google Scholar] [CrossRef]
- El Kahi, C.G.; Atiyeh, B.S.; Abdallah Hajj Hussein, I.; Jurjus, R.; Dibo, S.A.; Jurjus, A.; Jurjus, A. Modulation of wound contracture alpha-smooth muscle actin and multispecific vitronectin receptor integrin alphavbeta3 in the rabbit’s experimental model. Int. Wound J. 2009, 6, 214–224. [Google Scholar] [CrossRef]
- Harrell, C.R.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells 2019, 8, 1605. [Google Scholar] [CrossRef]
- Kotwal, G.J.; Chien, S. Macrophage Differentiation in Normal and Accelerated Wound Healing. Results Probl. Cell Differ. 2017, 62, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ding, J.; Ma, Z.; Iwashina, T.; Tredget, E.E. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair. Regen. 2016, 24, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Kapellos, T.S.; Iqbal, A.J. Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation. Mediat. Inflamm. 2016, 2016, 6591703. [Google Scholar] [CrossRef] [PubMed]
- Chiang, B.; Essick, E.; Ehringer, W. Enhancing skin wound healing by direct delivery of intracellular adenosine triphosphate. Am. J. Surg. 2008, 193, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wan, R.; Mo, Y.; Li, M.; Zhang, Q.; Chien, S. Intracellular delivery of adenosine triphosphate enhanced healing process in full-thickness skin wounds in diabetic rabbits. Am. J. Surg. 2010, 199, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Horiba, S.; Kawamoto, M.; Tobita, R.; Kami, R.; Ogura, Y.; Hosoi, J. M1/M2 Macrophage Skewing is Related to Reduction in Types I, V, and VI Collagens with Aging in Sun-Exposed Human Skin. JID Innov. 2023, 3, 100222. [Google Scholar] [CrossRef]
- Milz, S.; Ockert, B.; Putz, R. Tenozyten und extrazelluläre Matrix: Eine wechselseitige Beziehung [Tenocytes and the extracellular matrix: A reciprocal relationship. Orthopade 2009, 38, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, E.; Ruggeri, M.; Rossi, S.; Vigani, B.; Miele, D.; Bonferoni, M.C.; Sandri, G.; Ferrari, F. Innovative Strategies in Tendon Tissue Engineering. Pharmaceutics 2021, 13, 89. [Google Scholar] [CrossRef]
- Güngörmüş, C.; Kolankaya, D. Characterization of type I, III and V collagens in high-density cultured tenocytes by triple-immunofluorescence technique. Cytotechnology 2008, 58, 145–152. [Google Scholar] [CrossRef]
- Lin, D.; Alberton, P.; Delgado Caceres, M. Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration. Aging Cell 2020, 19, e13091. [Google Scholar] [CrossRef]
- Dex, S.; Alberton, P.; Willkomm, L. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load. EBioMedicine 2017, 20, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, J.; Lan, Y.; Lim, H.W.; Jiang, R. The Scleraxis Transcription Factor Directly Regulates Multiple Distinct Molecular and Cellular Processes During Early Tendon Cell Differentiation. Front. Cell Dev. Biol. 2021, 9, 654397. [Google Scholar] [CrossRef] [PubMed]
- Shukunami, C.; Takimoto, A.; Nishizaki, Y. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci. Rep. 2018, 8, 3155. [Google Scholar] [CrossRef] [PubMed]
- Murchison, N.D.; Price, B.A.; Conner, D.A. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 2007, 134, 2697–2708. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Jiang, R. Mkx-Deficient Mice Exhibit Hedgehog Signaling-Dependent Ectopic Ossification in the Achilles Tendons. J. Bone Min. Res. 2019, 34, 557–569. [Google Scholar] [CrossRef] [PubMed]
- McCarrel, T.M. Superficial Digital Flexor Tendon Injury. In Robinson’s Current Therapy in Equine Medicine; Elsevier: Amsterdam, The Netherlands, 2015; pp. 813–817. [Google Scholar] [CrossRef]
- Buckley, M.R.; Evans, E.B.; Matuszewski, P.E. Distributions of types I, II and III collagen by region in the human supraspinatus tendon. Connect. Tissue Res. 2013, 54, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Bächinger, H.P.; Mizuno, K.; Vranka, J.A.; Boudko, S.P. 5.16—Collagen formation and structure. Compr. Nat. Prod. II 2010, 5, 469–530. [Google Scholar] [CrossRef]
- Wagermaier, W.; Collagen, F.P. Polymer Science: A Comprehensive Reference; Published online June; Elsevier: Amsterdam, The Netherlands, 2012; pp. 35–55. [Google Scholar] [CrossRef]
- Dutov, P.; Antipova, O.; Varma, S.; Orgel, J.P.; Schieber, J.D. Measurement of Elastic Modulus of Collagen Type I Single Fiber. PLoS ONE 2016, 11, e0145711. [Google Scholar] [CrossRef] [PubMed]
- Gutsmann, T.; Fantner, G.E.; Kindt, J.H.; Venturoni, M.; Danielsen, S.; Hansma, P.K. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophys. J. 2004, 86, 3186–3193. [Google Scholar] [CrossRef]
- de Aro, A.A.; de Campos Vidal, B.; Pimentel, E.R. Biochemical and anisotropical properties of tendons. Micron 2012, 43, 205–214. [Google Scholar] [CrossRef]
- Kumar, L.; Bisen, M.; Khan, A.; Kumar, P.; Patel, S.K.S. Role of Matrix Metalloproteinases in Musculoskeletal Diseases. Biomedicines 2022, 10, 2477. [Google Scholar] [CrossRef] [PubMed]
- Elkington, P.T.; O’Kane, C.M.; Friedland, J.S. The paradox of matrix metalloproteinases in infectious disease. Clin. Exp. Immunol. 2005, 142, 12–20. [Google Scholar] [CrossRef]
- Chang, S.-W.; Buehler, M.J. Molecular biomechanics of collagen molecules. Mater. Today 2014, 17, 70–76. [Google Scholar] [CrossRef]
- Pasternak, B.; Aspenberg, P. Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthop. 2009, 80, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, B.; Schepull, T.; Eliasson, P.; Aspenberg, P. Elevation of systemic matrix metalloproteinases 2 and 7 and tissue inhibitor of metalloproteinase 2 in patients with a history of Achilles tendon rupture: Pilot study. Br. J. Sports Med. 2010, 44, 669–672. [Google Scholar] [CrossRef]
- Orchard, J.; Massey, A.; Brown, R.; Cardon-Dunbar, A.; Hofmann, J. Successful management of tendinopathy with injections of the MMP-inhibitor aprotinin. Clin. Orthop. Relat. Res. 2008, 466, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.W.; Barr, J.; Greenwald, R. Enhancement of Achilles tendon repair mediated by matrix metalloproteinase inhibition via systemic administration of doxycycline. J. Orthop. Res. 2014, 32, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.J.; Melrose, J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020, 10, 1244. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, G.; Li, X. Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in the Pathogenesis of Disease and Cell Differentiation. Front. Physiol. 2021, 12, 663978. [Google Scholar] [CrossRef]
- Oh, M.; Lee, J.; Kim, Y.J.; Rhee, W.J.; Park, J.H. Exosomes Derived from Human Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts. Int. J. Mol. Sci. 2018, 19, 1715. [Google Scholar] [CrossRef]
- Shen, T.; Zheng, Q.Q.; Shen, J. Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis. Chin. Med. J. 2018, 131, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Nastase, M.V.; Young, M.F.; Schaefer, L. Biglycan: A multivalent proteoglycan providing structure and signals. J. Histochem. Cytochem. 2012, 60, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Hiramatsu, A.; Fukushima, D.; Pierschbacher, M.D.; Okada, Y. Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem. J. 1997, 322 Pt 3, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xu, X.; Xu, L. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 2022, 12, 4866–4878. [Google Scholar] [CrossRef] [PubMed]
- Lui, P.P.Y. Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Promotion of Tendon Repair—An Update of Literature. Stem Cell Rev. Rep. 2021, 17, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, K.; MicroRNAs, S.V. Biology and clinical applications. J. Oral. Maxillofac. Pathol. 2014, 18, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Cannell, I.G.; Kong, Y.W.; Bushell, M. How do microRNAs regulate gene expression? Biochem. Soc. Trans. 2008, 36, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.B.; Liu, X.Q.; Zhang, W. Evidence for the association of chromatin and microRNA regulation in the human genome. Oncotarget 2017, 8, 70958–70966. [Google Scholar] [CrossRef]
- Lopez-Camarillo, C.; Marchat, L.A.; Arechaga-Ocampo, E.; Perez-Plasencia, C.; Od, M.-H.; Castaneda-Ortiz, E.J.; MetastamiRs, R.-C.S. Non-Coding MicroRNAs Driving Cancer Invasion and Metastasis. Int. J. Mol. Sci. 2012, 13, 1347–1379. [Google Scholar] [CrossRef] [PubMed]
- Cavarretta, E.; Condorelli, G. miR-21 and cardiac fibrosis: Another brick in the wall? Eur. Heart J. 2015, 36, 2139–2141. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Friggeri, A.; Yang, Y. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010, 207, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- McClelland, A.D.; Herman-Edelstein, M.; Komers, R. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin. Sci. 2015, 129, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xuefeng, Y.; Shandong, W.; Jianhua, X. COX-2 in liver fibrosis. Clin. Chim. Acta 2020, 506, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, E.; Dong, R.; Chen, W.; Hu, Y. Nuclear factor (NF)-κB p65 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-β. Life Sci. 2015, 122, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Thankam, F.G.; Boosani, C.S.; Dilisio, M.F.; Dietz, N.E.; Agrawal, D.K. MicroRNAs Associated with Shoulder Tendon Matrisome Disorganization in Glenohumeral Arthritis. PLoS ONE 2016, 11, e0168077. [Google Scholar] [CrossRef]
- Cui, H.; He, Y.; Chen, S.; Zhang, D.; Yu, Y.; Fan, C. Macrophage-Derived miRNA-Containing Exosomes Induce Peritendinous Fibrosis after Tendon Injury through the miR-21-5p/Smad7 Pathway. Mol. Ther. Nucleic Acids 2019, 14, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.E.; Millar, N.L.; Platt, J. MicroRNA29a Treatment Improves Early Tendon Injury. Mol. Ther. 2017, 25, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Millar, N.L.; Gilchrist, D.S.; Akbar, M. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease. Nat. Commun. 2015, 6, 6774. [Google Scholar] [CrossRef]
- Hall, K.; Sarkissian, E.; Sharpe, O.; Robinson, W.; Abrams, G. Identification of Differentially Expressed micro-RNA in Rotator Cuff Tendinopathy. Muscles Ligaments Tendons J. 2018, 8, 8–14. Available online: https://www.mltj.online/wp-content/uploads/2019/02/Identification-of-differentially-expressed-micro-RNA-in-rotator-cuff-tendinopathy-v8i1.pdf (accessed on 25 November 2023). [CrossRef]
- Wang, H.; Wang, B.; Zhang, A. Exosome-Mediated miR-29 Transfer Reduces Muscle Atrophy and Kidney Fibrosis in Mice. Mol. Ther. 2019, 27, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Horita, M.; Farquharson, C.; Stephen, L.A. The role of miR-29 family in disease. J. Cell Biochem. 2021, 122, 696–715. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Li, H.; He, W. P311 Accelerates Skin Wound Reepithelialization by Promoting Epidermal Stem Cell Migration Through RhoA and Rac1 Activation. Stem Cells Dev. 2017, 26, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Horii, Y.; Uchiyama, K.; Toyokawa, Y. Partially hydrolyzed guar gum enhances colonic epithelial wound healing via activation of RhoA and ERK1/2. Food Funct. 2016, 7, 3176–3183. [Google Scholar] [CrossRef]
- Desai, L.P.; Aryal, A.M.; Ceacareanu, B.; Hassid, A.; Waters, C.M. RhoA and Rac1 are both required for efficient wound closure of airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2004, 287, L1134–L1144. [Google Scholar] [CrossRef]
- McBeath, R.; Edwards, R.W.; O’Hara, B.J. Tendinosis develops from age- and oxygen tension-dependent modulation of Rac1 activity. Aging Cell 2019, 18, e12934. [Google Scholar] [CrossRef]
- Duan, J.; Wang, L.; Shang, L. miR-152/TNS1 axis inhibits non-small cell lung cancer progression through Akt/mTOR/RhoA pathway. Biosci. Rep. 2021, 41, BSR20201539. [Google Scholar] [CrossRef]
- Ge, H.; Shrestha, A.; Liu, C.; Wu, P.; Cheng, B. MicroRNA 148a-3p promotes Thrombospondin-4 expression and enhances angiogenesis during tendinopathy development by inhibiting Krüppel-like factor 6. Biochem. Biophys. Res. Commun. 2018, 502, 276–282. [Google Scholar] [CrossRef]
- Lyu, K.; Liu, X.; Liu, T.; Lu, J.; Jiang, L.; Chen, Y.; Long, L.; Wang, X.; Shi, H.; Wang, F.; et al. miRNAs contributing to the repair of tendon injury. Cell Tissue Res. 2023, 393, 201–215. [Google Scholar] [CrossRef]
- Vergadi, E.; Vaporidi, K.; Theodorakis, E.E. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J. Immunol. 2014, 192, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; He, F.; Mao, Y. miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. J. Mol. Endocrinol. 2022, 69, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.S.; Kim, S. Human adipose mesenchymal stem cells modulate inflammation and angiogenesis through exosomes. Sci. Rep. 2022, 12, 2776. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yang, R.; Vuong, I.; Li, F.; Kong, J.; Mao, H.Q. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater. 2021, 130, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Qazi, T.H.; Mooney, D.J.; Duda, G.N.; Geissler, S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials 2017, 140, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Chang, J.; Li, H. Bioglass promotes wound healing through modulating the paracrine effects between macrophages and repairing cells. J. Mater. Chem. B 2017, 5, 5240–5250. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Peng, J.; Dong, X.; Xu, Y.; Li, H.; Chang, J. Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration. Acta Biomater. 2017, 55, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.; Meunier, B. How to Define a Nanozyme. ACS Nano 2022, 16, 6956–6959. [Google Scholar] [CrossRef] [PubMed]
- Nice, C.H.U. Study of Molecular Mechanisms Implicated in the Pathogenesis of Melanoma. In Role of Exosomes; ClinicalTrials.gov Identifier: NCT02310451; Centre Hospitalier Universitaire de Nice: Nice, France, 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT02310451?term=exosomes&draw=2&rank=1 (accessed on 14 December 2023).
- Hong Kong, C.U. Exosomal microRNA in Predicting the Aggressiveness of Prostate Cancer in Chinese Patients; ClinicalTrials.gov Identifier: NCT03911999; Chinese University of Hong Kong: Hong Kong, China, 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT03911999?term=exosomes&draw=2&rank=78 (accessed on 14 December 2023).
- Hospital, K.U.G. Multicenter Clinical Research for Early Diagnosis of Lung Cancer Using Blood Plasma Derived Exosome; ClinicalTrials.gov Identifier: NCT04529915; Korea University Guro Hospital: Seoul, Republic of Korea, 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04529915?term=exosomes&draw=2&rank=9 (accessed on 14 December 2023).
- Hospital, R. Circulating Exosome RNA in Lung Metastases of Primary High-Grade Osteosarcoma; ClinicalTrials.gov Identifier: NCT03108677; Ruijin Hospital: Shanghai, China, 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT03108677?term=exosomes&draw=2&rank=25 (accessed on 14 December 2023).
- University, C. microRNAs Role in Pre-Eclampsia Diagnosis; ClinicalTrials.gov Identifier: NCT03562715; Cairo University: Giza, Egypt, 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT03562715?term=exosomes&draw=2&rank=32 (accessed on 14 December 2023).
- Liu, Y.; Hospital, Q. Expression Analysis of Urinary Exosome in Type 2 Diabetic Kidney Disease and Evaluation of Its Clinical Diagnostic Value; ClinicalTrials.gov Identifier: NCT06123871; Qianfoshan Hospital: Jinan, China, 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT06123871?term=exosomes&draw=2&rank=35 (accessed on 14 December 2023).
- Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University. Pilot Study of Human Adipose Tissue Derived Exosomes Promoting Wound Healing; ClinicalTrials.gov Identifier: NCT05475418; Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University: Shanghai, China, 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT05475418?term=exosomes&draw=2&rank=12 (accessed on 14 December 2023).
- Foundation, D.H.B. Intra-Discal Injection of Platelet-Rich Plasma (PRP) Enriched with Exosomes in Chronic Low Back Pain; ClinicalTrials.gov Identifier: NCT04849429; Dr. Himanshu Bansal Foundation: Gurgaon, India, 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04849429?term=exosomes&draw=2&rank=27 (accessed on 14 December 2023).
- Louisville, U. Plant Exosomes +/− Curcumin to Abrogate Symptoms of Inflammatory Bowel Disease; ClinicalTrials.gov Identifier: NCT04879810; University of Louisville: Louisville, KY, USA, 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04879810?term=exosomes&draw=2&rank=17 (accessed on 14 December 2023).
- Louisville, U. Edible Plant Exosome Ability to Prevent Oral Mucositis Associated with Chemoradiation Treatment of Head and Neck Cancer; ClinicalTrials.gov Identifier: NCT01668849; University of Louisville: Louisville, KY, USA, 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT01668849?term=exosomes&draw=2&rank=40 (accessed on 14 December 2023).
- Direct Biologics, L.L.C. Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS (EXIT-COVID19); ClinicalTrials.gov Identifier: NCT04493242; Direct Biologics, LLC: Austin, TX, USA, 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT04493242?term=exosomes&draw=2&rank=54 (accessed on 14 December 2023).
- Hospital, R. A Pilot Clinical Study on Inhalation of Mesenchymal Stem Cells Exosomes Treating Severe Novel Coronavirus Pneumonia; Ruijin Hospital: Shanghai, China, 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04276987?term=exosomes&draw=2&rank=5 (accessed on 14 December 2023).
- Zhu, Y.G.; Shi, M.M.; Monsel, A. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: A pilot study. Stem Cell Res. Ther. 2022, 13, 220. [Google Scholar] [CrossRef]
- Lee, A.H.; Elliott, D.M. Comparative multi-scale hierarchical structure of the tail, plantaris, and Achilles tendons in the rat. J. Anat. 2019, 234, 252–262. [Google Scholar] [CrossRef]
- Oreff, G.L.; Fenu, M.; Vogl, C.; Ribitsch, I.; Jenner, F. Species variations in tenocytes’ response to inflammation require careful selection of animal models for tendon research. Sci. Rep. 2021, 11, 12451. [Google Scholar] [CrossRef] [PubMed]
Study (Year) | Journal | Country | Risk Assessment | In Vivo Model |
---|---|---|---|---|
Yao et al. (2020) [31] | Journal of Intrinsic Inflammation | China | Low | Rat |
Wellings et al. (2021) [30] | Orthopedic Journal of Sports Medicine | USA | Low | Rabbit |
Wang et al. (2019) [32] | Journal of Cellular and Molecular Medicine | China | Medium | Rat |
Hayashi et al. (2022) [33] | FEBS Journal | Japan | Low | Mouse |
Yao et al. (2021) [24] | Journal of Nanotechnoloft | China | Low | Rat |
Xu et al. (2023) [34] | Biomaterials | China | Low | Rat |
Chamberlain et al. (2019) [22] | Stem Cells | USA | Medium | Mouse |
Han et al. (2022) [35] | Acta Biochimica et Biophysica Sinica (ABBS) | China | Low | Rat |
Shen et al. (2023) [23] | Stem Cells | USA | Low | Mouse |
Shi et al. (2020) [36] | Medical Science Monitor | China | Medium | Mouse |
Li et al. (2020) [37] | Stem Cell Research & Therapy | China | Medium | Rat |
Zhang et al. (2020) [38] | Stem Cell Research & Therapy | China | Low | Rat |
Xu et al. (2022) [39] | The American Journal of Sports Medicine | China | Low | Rat |
Shen et al. (2020) [40] | Journal of Orthopedic Research | USA | Low | Mouse |
Liu et al. (2021) [41] | ACS Nanotechnology | China | Medium | Rat |
Gissi et al. (2020) [42] | PLOS ONE | Italy | Low | Rat |
Rong et al. (2023) [43] | ACS Nanotechnology | China | Medium | Rat |
Chen et al. (2021) [9] | International Journal of Molecular Sciences | Taiwan | Low | Rabbit |
Study Type | EV Type | Cell Origin | Tendon Injury Mechanism | Method of Delivery | Experimental Group | Positive Control | Negative Control |
---|---|---|---|---|---|---|---|
Yao et al. (2020) [31] | Exosomes | Human UCSCs | Incision made in middle and deep Achilles tendon | EVs were injected subcutaneously around injury site. | hUMSC-Exos group (n = 20) | - | 1. PBS-only group (n = 20); 2. surgical repair-only group (n = 20) |
Wellings et al. (2021) [30] | Exosomes | Activated platelets | Achilles tendon tenotomy proximal to calcaneal tubercle | Total of 0.2 mL of scaffold was placed topically at tenotomy site followed by tightening of suture. | Type 1 collagen scaffold loaded with 20% PEP group (n = 15) | Type 1 collagen scaffold-only group (n = 15) | Surgical repair-only group (n = 15) |
Wang et al. (2019) [32] | Exosomes | Rat TSCs | Collagenase injections of Achilles tendons (micro-damaged model) | Both injury groups were injected with exosomes or TSCs into L tendon while PBS was injected into R tendon. | Injury group with exosomes treatment (n = 6) | Injury group with TSCs treatment (n = 6) | PBS-only group (n = 6) |
Hayashi et al. (2022) [33] | Exosomes | Human BMSCs | Complete transverse incision was made at midpoint of Achilles tendon | Amount of 20 µL of P5 and P12 MSC-EV suspension with PBS was injected into gap between transected tendons at 1 and 7 days post-transection. | 1. Early passaged (P5) BMSC-EVs (n = 5); 2. senescent (P12) BMSC-EVs (n = 5) | - | PBS-only group (n = 5) |
Yao et al. (2021) [24] | Exosomes | Human UCSCs | Full-thickness defect of Achilles tendon | Implantation with fibrin glue at tendon injury site. | 50 μL fibrin glue + 100 μg of Human UMSCs with Exosomes (HUMSC-Exos) (n = 30) | 50 μL fibrin-only group (n = 30) | Surgical repair-only group (n = 30) |
Xu et al. (2023) [34] | Exosomes | Human ATSCs | Full-thickness transection near proximal end of calcaneal insertion of Achilles tendon | Prior to completing surgical repair, 20 μL of GelMA hydrogel or EV-laden GelMA hydrogel was implanted between transected tendon margins. | 1. BioGlass-elicited ATSC-EV-laden GelMA hydrogel group (n = 20); 2. naïve ATSC-EV-laden GelMA hydrogel group (n = 20) | GelMA hydrogel-only implantation group (n = 20) | Tendon intact group (n = 20); surgical repair-only group (n = 20) |
Chamberlain et al. (2019) [22] | Exosomes | Human BMSCs | Full-thickness transection was made at midpoint of Achilles tendon | Tendon margins were sutured together, and using muscular layer, surgical pouch was created over injury site. Treatments with 20 μL were administered to injury site using this surgical pouch. | EV/exosome-educated macrophage group (n = 27 among all groups) | 2. MSC-only group | 1. Control macrophage group; 2. daline-only group (n = 27 among all groups) |
Han et al. (2022) [35] | Exosomes | Human UCSCs | Superficial Achilles tendon was removed, and transverse midline cut was made in middle of deep Achilles tendon | Single subcutaneous injection of HUMSC-Exos (100 μg) was administered at injury site. | hUMSC-Exos group (n = 6) | - | Surgical repair-only group (n = 6); model group without injury (n = 6) |
Shen et al. (2023) [23] | Exosomes | Mouse ATSCs | Midline transection of Achilles tendon between calcaneal insertion and myotendinous junction | Collagen sheet was pre-loaded on one side with iEVs, which was applied around repair site with iEV-side facing repaired tendon. | 1. Type 1 collagen sheet loaded with 5 × 109 inflammation-primed ATSC extracellular vesicles (iEVs) (n = 11); 2. type 1 collagen sheet loaded with 1 × 109 iEVs (n = 11) | Type 1 collagen sheet-only group (n = 10) | - |
Shi et al. (2020) [36] | Exosomes | Mouse BMSCs | Cut was induced in Achilles tendon at bone–tendon junction with calcaneus | Hydrogel and hydrogel-BMSC-Exos were implanted at bone–tendon junction injury site. | Hydrogel with exosome group (n = 30) | Hydrogel-only group (n = 30) | Surgical repair-only group (n = 30) |
Li et al. (2020) [37] | Exosomes | Human UCSCs | Thin strand of Achilles tendon was resected via “S incision” and midline transection was inflicted on deep Achilles tendon | Subcutaneous injection with 50 μL of HCPT-EVs or unprimed EVs at injury site after wound closure and suture repair. | Hydroxycamptothecin-primed human UCSCs in EV group (HCPT-EVs) (n = 11) | Unprimed EVs group (n = 11) | PBS-only group (n = 11) |
Zhang et al. (2020) [38] | Exosomes | Rat TSCs | One-third of central part of Achilles tendon was removed | TSC-Exos and GelMA-only groups were placed in Achilles tendon defect and irradiated into gel state via 10–20 s of exposure to blue light source (405 nm) at 3 cm away. | TSC-Exos group with GelMA (n = 18) | TSC-Exos group (n = 18) | GelMA-only group (n = 18) |
Xu et al. (2022) [39] | Exosomes and Microvesicles | Rat ATSCs | Vertical incision was made bilaterally in Achilles tendon | Vertical incision was made in Achilles tendon. One week later, in 24 rats, 1010 exosomes were suspended in 25 µL of saline in L Achilles tendon and 1010 ectosomes were suspended in 25 µL of saline in R Achilles tendon. | 1. ATSC-Exos group (n = 24); 2. ATSC-Ectos group (n = 24) | - | Saline-only group (n = 12) |
Shen et al. (2020) [40] | Exosomes | Mouse ATSCs | Two-thirds transection was inflicted at midpoint level of Achilles tendon | EV-laden collagen sheet was cut into strips and applied around repair site. | Collagen sheet loaded with EVs from IFNγ-primed ASCs (+iEVs) group (n = 10) | Collagen sheet loaded with EVs from naïve ASCs (+EVs) group (n = 11) | Collagen sheet-only group (n = 11) |
Liu et al. (2021) [41] | Exosomes | Rat TSCs | Collagenase I injections performed to establish state of Achilles tendinopathy | Rats in Exos/MBA and Exos groups were given equal injections of Exos/MBA-loaded microneedle arrays and Exos only at site of injury, respectively. | Exosome delivered with nitric oxide nanometer group (n = 5) | Exosome-only (EXO) group (n = 5) | 1. Achilles tendinopathy only group (n = 5); 2. injury-only group (n = 5) |
Gissi et al. (2020) [42] | Extracellular Vesicles (not specified) | Rat BMSCs | Incision in Achilles tendons | Not stated. | 1. High concentration of rat bone marrow MSC group (n = 4); 2. low concentration of rBMSC-EV group (n = 4) | rBMSC-only group (n = 4) | PBS-only group (n = 4) |
Rong et al. (2023) [43] | Exosomes | Rat BMSCs | Midline transection of Achilles tendon | EN, EV, and ENEV groups involved injections at injury site. For ENEV-US group, ENEV was injected at injury site and was immediately followed by ultrasound irradiation of injury site to augment cellular uptake. | EV-cloaked enzymatic nanohybrid (ENEV) group with ultrasound irradiation (ENEV-US) group (n = 10) | 1. EN-only group (n = 10); 2. EV-only group (n = 10); 3. ENEV group (n = 10) | PBS-only group (n = 10) |
Chen et al. (2021) [9] | Extracellular Vesicles (not specified) | Rabbit ATSCs | Achilles tendon transection via longitudinal superficial incision | EV solution was injected into tendon at injury site. | ATSC-EV group (n = 18) | - | PBS-only group (n = 18) |
Study Type | Regulation of Inflammation and Immune Response | MicroRNA Regulation | Macrophage Polarization | Gene Regulation of ECM Components | Cell Proliferation and Migration |
---|---|---|---|---|---|
Yao et al. (2020) [31] | ↓ TGF-β, ↓ α-SMA, ↓ p-65, ↓ COX-2 | ↓ miR-21a-3p | - | ↓ COL III | ↓ fibroblast proliferation |
Wellings et al. (2021) [30] | - | - | - | - | - |
Wang et al. (2019) [32] | - | - | - | ↑ Col1a1, ↑ TIMP-3, ↑ Tenomodulin ↓ MMP-3 | - |
Hayashi et al. (2022) [33] | - | - | - | - | - |
Yao et al. (2021) [24] | - | ↑ miR-29a-3p | - | ↑ Col1a1, ↑ SCXA, ↑ Tenomodulin | ↓ mTOR |
Xu et al. (2023) [34] | - | ↑ miR-199b-3p, ↑ miR-125a-5p | ↑ M2 | - | - |
Chamberlain et al. (2019) [22] | - | - | ↓ M1/M2 ratio | - | ↑ angiogenesis |
Han et al. (2022) [35] | - | ↑ miR-27b-3p | - | - | ↑ RhoA, ↓ ARHGAP5 |
Shen et al. (2023) [23] | ↑ Arg1, ↑ IL-13 ↓ IL-1β, ↓ TLR4/NF-kB | ↑ miR-147-3p | ↓ M1/M2 ratio | - | - |
Shi et al. (2020) [36] | ↑ IL-10, ↑ TGF-β1, ↓ IL-1β, ↓ IL-6 | - | ↑ M2, ↓ M1 | ↑ COL II, ↑ Aggrecan | ↑ TGF-β3, ↑ IGF-1, ↑ IGF-2, ↑ CD146 |
Li et al. (2020) [37] | - | - | - | ↓ COL III, ↓ α-SMA | ↑ Bax, ↑ fibroblast proliferation, ↑ myofibroblast differentiation, ↓ Bcl-2 |
Zhang et al. (2020) [38] | ↑ IL-10, ↓ IL-6, ↓ COX-2 | - | ↑ M2, ↓ M1 | ↑ TIMP-1, ↑ Col1a1/Col3a1 ratio, ↓ α-SMA, ↓ fibronectin, ↓ MMP-9 | ↑ AKT, ↑ ERK1/2 |
Xu et al. (2022) [39] | - | ↑ miR-29a, ↑ miR-21-5p, ↑ miR-148a-3p | - | ↑ COL I, ↓ COL III | ↑ tenocyte proliferation and migration, ↑ angiogenesis |
Shen et al. (2020) [40] | ↓ NF-kB, ↓ IL-1β, ↓ IFN-y | ↑ miR-let-7b, ↑ miR-146a | ↓ M1/M2 ratio | ↑ Col2a1, ↑ Sox9, ↓ Mmp1, ↑ COL I/COL III ratio | - |
Liu et al. (2021) [41] | ↓ IL-1β, ↓ IL-6, ↓ IL-8, ↓ IL-18, ↓ iNOS, ↓ CXCL | - | - | ↑ Col1a, ↓ Col3, ↓ MMP-3, ↓ MMP-13 | ↑ Mkx, ↑ EdU, ↑ PCNA |
Gissi et al. (2020) [42] | - | - | - | ↑ MMP-14, ↑ pro-collagen1A2 | surface proteins ↑, tenocyte proliferation and migration |
Rong et al. (2023) [43] | ↓ IL-1β, ↓ IL-6, ↓ TNF-α | - | ↑ M2 | ↑ COL I | ↑ tenocyte proliferation |
Chen et al. (2021) [9] | - | - | - | ↑ COL I, ↑ tenomodulin, ↑ biglycan, ↑ decorin | ↑ tenomodulin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasula, V.; Padala, V.; Gupta, N.; Doyle, D.; Bagheri, K.; Anastasio, A.; Adams, S.B. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024, 12, 942. https://doi.org/10.3390/biomedicines12050942
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines. 2024; 12(5):942. https://doi.org/10.3390/biomedicines12050942
Chicago/Turabian StyleKasula, Varun, Vikram Padala, Nithin Gupta, David Doyle, Kian Bagheri, Albert Anastasio, and Samuel Bruce Adams. 2024. "The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review" Biomedicines 12, no. 5: 942. https://doi.org/10.3390/biomedicines12050942
APA StyleKasula, V., Padala, V., Gupta, N., Doyle, D., Bagheri, K., Anastasio, A., & Adams, S. B. (2024). The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines, 12(5), 942. https://doi.org/10.3390/biomedicines12050942