Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C., Jr.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; Grimm, R.H., Jr.; et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Shakiba, M.; Nazemipour, M.; Mansournia, N.; Mansournia, M.A. Protective effect of intensive glucose lowering therapy on all-cause mortality, adjusted for treatment switching using G-estimation method, the ACCORD trial. Sci. Rep. 2023, 13, 5833. [Google Scholar] [CrossRef] [PubMed]
- Kahal, H.; Aburima, A.; Spurgeon, B.; Wraith, K.S.; Rigby, A.S.; Sathyapalan, T.; Kilpatrick, E.S.; Naseem, K.M.; Atkin, S.L. Platelet function following induced hypoglycaemia in type 2 diabetes. Diabetes Metab. 2018, 44, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Newby, D.E.; Stirling, D.; Ludlam, C.A.; Macdonald, I.A.; Frier, B.M. Effects of acute insulin-induced hypoglycemia on indices of inflammation: Putative mechanism for aggravating vascular disease in diabetes. Diabetes Care 2010, 33, 1591–1597. [Google Scholar] [CrossRef]
- Chow, E.; Iqbal, A.; Walkinshaw, E.; Phoenix, F.; Macdonald, I.A.; Storey, R.F.; Ajjan, R.; Heller, S.R. Prolonged Prothrombotic Effects of Antecedent Hypoglycemia in Individuals With Type 2 Diabetes. Diabetes Care 2018, 41, 2625–2633. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. The severity and duration of Hypoglycemia affect platelet-derived protein responses in Caucasians. Cardiovasc. Diabetol. 2022, 21, 202. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ito, T.; Nagasato, T.; Shinnakasu, A.; Kurano, M.; Arimura, A.; Arimura, H.; Hashiguchi, H.; Deguchi, T.; Maruyama, I.; et al. Effects of glycemic control and hypoglycemia on Thrombus formation assessed using automated microchip flow chamber system: An exploratory observational study. Thromb. J. 2019, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Kahal, H.; Halama, A.; Aburima, A.; Bhagwat, A.M.; Butler, A.E.; Graumann, J.; Suhre, K.; Sathyapalan, T.; Atkin, S.L. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci. Rep. 2020, 10, 4750. [Google Scholar] [CrossRef] [PubMed]
- Halama, A.; Kahal, H.; Bhagwat, A.M.; Zierer, J.; Sathyapalan, T.; Graumann, J.; Suhre, K.; Atkin, S.L. Metabolic and proteomic signatures of hypoglycaemia in type 2 diabetes. Diabetes Obes. Metab. 2018, 21, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Monnier, L.; Colette, C.; Owens, D.R. The application of simple metrics in the assessment of glycaemic variability. Diabetes Metab. 2018, 44, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D.L.; Chyun, D.A.; Di Palo, K.E.; Golden, S.H.; Sperling, L.S. Comprehensive Management of Cardiovascular Risk Factors for Adults With Type 2 Diabetes: A Scientific Statement From the American Heart Association. Circulation 2022, 145, e722–e759. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Bellia, A.; Sergi, D.; Barone, L.; Lauro, D.; Barillà, F. Glucose variability: A new risk factor for cardiovascular disease. Acta Diabetol. 2023, 60, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 7489795. [Google Scholar] [CrossRef] [PubMed]
- Alatawi, Z.; Mirghani, H. The Association Between Glycemic Variability and Myocardial Infarction: A Review and Meta-Analysis of Prospective Studies and Randomized Trials. Cureus 2020, 12, e11556. [Google Scholar] [CrossRef] [PubMed]
- Feldbauer, R.; Heinzl, M.W.; Klammer, C.; Resl, M.; Pohlhammer, J.; Rosenberger, K.; Almesberger, V.; Obendorf, F.; Schinagl, L.; Wagner, T.; et al. Effect of repeated bolus and continuous glucose infusion on a panel of circulating biomarkers in healthy volunteers. PLoS ONE 2022, 17, e0279308. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Al-Qaissi, A.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Hypoglycaemia in type 2 diabetes exacerbates amyloid-related proteins associated with dementia. Diabetes Obes. Metab. 2020, 23, 338–349. [Google Scholar] [CrossRef]
- Kraemer, S.; Vaught, J.D.; Bock, C.; Gold, L.; Katilius, E.; Keeney, T.R.; Kim, N.; Saccomano, N.A.; Wilcox, S.K.; Zichi, D.; et al. From SOMAmer-based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay. PLoS ONE 2011, 6, e26332. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; Arnold, M.; Bhagwat, A.M.; Cotton, R.J.; Engelke, R.; Raffler, J.; Sarwath, H.; Thareja, G.; Wahl, A.; DeLisle, R.K.; et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 2017, 8, 14357. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Vanderman, K.S.; Tremblay, M.; Zhu, W.; Shimojo, M.; Mienaltowski, M.J.; Coleman, S.J.; MacLeod, J.N. Brother of CDO (BOC) expression in equine articular cartilage. Osteoarthr. Cartil. 2011, 19, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Benchoula, K.; Parhar, I.S.; Wong, E.H. The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch. Biochem. Biophys. 2021, 698, 108743. [Google Scholar] [CrossRef]
- Chapouly, C.; Yao, Q.; Vandierdonck, S.; Larrieu-Lahargue, F.; Mariani, J.N.; Gadeau, A.P.; Renault, M.A. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: Implication in diabetes. Cardiovasc. Res. 2016, 109, 217–227. [Google Scholar] [CrossRef]
Study 1 Ctrl (n = 7) | Study 2 Ctrl (n = 23) | p-Value | Study 1 T2D (n = 10) | Study 2 T2D (n = 23) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 47 ± 6 | 60 ± 10 | 0.003 | 46 ± 6 | 64 ± 8 | <0.0001 |
Sex (M/F) | 4M/3F | 11M/12F | 7M/3F | 12M/11F | ||
BMI (kg/m2) | 29 ± 4 | 28 ± 3 | 0.640 | 36 ± 7 | 32 ± 4 | 0.03 |
Systolic BP (mmHg) | 126 ± 15 | 122 ± 8 | 0.280 | 127 ± 20 | 132 ± 8 | 0.31 |
Diastolic BP (mmHg) | 75 ± 13 | 75 ± 6 | 1.000 | 75 ± 11 | 81 ± 7 | 0.08 |
Duration of diabetes (years) | N/A | N/A | 3.3 ± 2.3 | 4.5 ± 2.2 | 0.14 | |
HbA1c (mmol/mol) | 33.6 ± 2.9 | 37.2 ± 2.2 | 0.004 | 49 ± 12 | 51 ± 11 | 0.62 |
HbA1c (%) | 5.2 ± 0.3 | 5.6 ± 0.2 | 0.006 | 6.6 ± 1.0 | 6.8 ± 1.0 | 0.48 |
Total cholesterol (mmol/L) | 5.1 ± 0.8 | 4.8 ± 0.77 | 0.230 | 5.3 ± 0.7 | 4.2 ± 1.0 | 0.36 |
Triglyceride (mmol/L) | 1.2 ± 0.5 | 1.3 ± 0.6 | 0.540 | 1.7 ± 0.8 | 1.7 ± 0.7 | 0.96 |
CRP (mg/L) | 0.8 ± 0.0 | 5.1 ± 10.3 | 0.26 | 2.8 ± 1.8 | 3.1 ± 2.9 | 0.94 |
Protein | Study1—Ctrl | Study2—Ctrl | Study1—T2D | Study2—T2D | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD BL vs. Hypo | p-Value | Mean ± SD BL vs. Hypo | p-Value | Mean ± SD BL vs. Hypo | p-Value | Mean ± SD BL vs. Hypo | p-Value | |
BMP6 | BL: 1916 ± 507 Hypo: 2006 ± 205 | 0.69 | BL: 14187 ± 4475 Hypo: 13753 ± 4286 | 0.73 | BL: 5034 ± 9854 Hypo: 5464 ± 9438 | 0.92 | BL: 13729 ± 5119 Hypo: 13054 ± 5144 | 0.65 |
SLAMF7 | BL: 58124 ± 20707 Hypo: 54791 ± 12294 | 0.73 | BL: 41917 ± 14548 Hypo: 38021 ± 13984 | 0.35 | BL: 73898 ± 26200 Hypo: 70961 ± 27635 | 0.81 | BL: 44153 ± 20302 Hypo: 37646 ± 17153 | 0.24 |
ADAMTS13 | BL: 4500 ± 1065 Hypo: 4988 ± 1230 | 0.98 | BL: 3921 ± 845 Hypo: 3949 ± 1049 | 0.92 | BL: 5231 ± 1164 Hypo: 5194 ± 1047 | 0.94 | BL: 4080 ± 1062 Hypo: 4118 ± 893 | 0.89 |
IL1RA | NA | BL: 5386 ± 3101 Hypo: 5261 ± 3012 | 0.89 | NA | BL: 4971 ± 2477 Hypo: 4490 ± 2118 | 0.47 | ||
BOC | BL: 1541 ± 359 Hypo: 1263 ± 199 | 0.12 | BL: 1618 ± 489 Hypo: 1489 ± 448 | 0.35 | BL: 1565 ± 343 Hypo: 992 ± 311 | 0.001 | BL: 1475.8 ± 355 Hypo: 1216 ± 309 | 0.01 |
ANGPT1 | BL: 942 ± 494 Hypo: 646 ± 99 | 0.17 | BL: 433 ± 156 Hypo: 815 ± 667 | 0.01 | BL: 766 ± 209 Hypo: 932 ± 598 | 0.42 | BL: 752 ± 610 Hypo: 1007.7 ± 695.0 | 0.18 |
DKK1 | BL: 15699 ± 6353 Hypo: 11425 ± 3511 | 0.17 | BL: 18152 ± 8054 Hypo: 27728 ± 16313 | 0.02 | BL: 14757 ± 2338 Hypo: 17166 ± 13612 | 0.59 | BL: 28249 ± 17077 Hypo: 34616 ± 16789 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandakumar, M.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers. Biomedicines 2024, 12, 1137. https://doi.org/10.3390/biomedicines12061137
Nandakumar M, Sathyapalan T, Atkin SL, Butler AE. Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers. Biomedicines. 2024; 12(6):1137. https://doi.org/10.3390/biomedicines12061137
Chicago/Turabian StyleNandakumar, Manjula, Thozhukat Sathyapalan, Stephen L. Atkin, and Alexandra E. Butler. 2024. "Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers" Biomedicines 12, no. 6: 1137. https://doi.org/10.3390/biomedicines12061137
APA StyleNandakumar, M., Sathyapalan, T., Atkin, S. L., & Butler, A. E. (2024). Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers. Biomedicines, 12(6), 1137. https://doi.org/10.3390/biomedicines12061137