Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Artificial Intelligence and Subfields
- Volume: the continuous and exponentially incremental flow of data spanning from personal medical records up to 3D imaging, genomics, and biometric sensor readings ought to be carefully managed [13]. Innovations in data management, such as virtualization and cloud computing, are enabling healthcare organizations to store and manipulate large amounts of data more efficiently and cost-effectively [15];
- Velocity: the prompt and rapid transmission of data are a pivotal item nowadays, especially in scenarios like trauma monitoring, anesthesia in operating rooms, and bedside heart monitoring, where timely data analysis can be life-saving [13]. Besides, future applications, such as early infection detection and targeted treatments based upon real-time data, have the potential to notably decrease morbidity, mortality, and ultimately impact the outcome [15,16];
- Variety: the ability to analyze large datasets, including multimedia and unstructured formats, represents an innovation in healthcare [13]. The wide range of structured, unstructured, and semi-structured data analyzed, stands as a revolutionary change that adds complexity to healthcare data management [17]. Structured data can be easily stored, recalled, elaborated and manipulated by machinery. They come from a variety of sources, including diagnoses, medications, instrument readings, and lab values, and can be sorted into numeric or categorical fields for easy analysis [13,18]. Unstructured data are commonly generated at the point of care, including free-form text such as medical notes or discharge summaries and multimedia content such as imaging [13,18]. The main challenge is to transform this data to make it suitable for AI analysis, but this process faces some obstacles. First, adding structure to unstructured data entails healthcare providers to manually review charts or images, sort the information out and enter it into the system [19]. This makes the process slow, inefficient, and prone to bias. New powerful tools such as Natural Language Processing can speed up and streamline the information extraction process [18]. Secondly, healthcare professionals’ preference for the natural language simplicity of handwritten notes remains a major barrier to a widespread adoption of electronic health records, which require field coding at the point of care to provide structured inputs [13].
- Veracity: ensuring that big data are accurate and trustworthy is critical in healthcare, where accurate information can mean the difference between life and death [13]. Nevertheless, achieving veracity faces challenges, including variable quality and difficulties in ensuring accuracy, especially with handwritten prescriptions.
- Value consists of the worth of information to various stakeholders or decision makers [21].
4. Current Research and Applications
4.1. AI for Triage Optimization
4.2. AI-Enhanced Socially Assistive Robots for Stress Management
4.3. AI for Traumatic Brain Injury Assessment
4.4. AI for Pediatric Sepsis Prediction
4.5. Challenges and Future Perspectives
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Ramgopal, S.; Sanchez-Pinto, L.N.; Horvat, C.M.; Carroll, M.S.; Luo, Y.; Florin, T.A. Artificial Intelligence-Based Clinical Decision Support in Pediatrics. Pediatr. Res. 2023, 93, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Turing, A.M. Computing Machinery and Intelligence. Mind 1950, 59, 433–460. [Google Scholar] [CrossRef]
- Vishwanathaiah, S.; Fageeh, H.N.; Khanagar, S.B.; Maganur, P.C. Artificial Intelligence Its Uses and Application in Pediatric Dentistry: A Review. Biomedicines 2023, 11, 788. [Google Scholar] [CrossRef]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, D.; Valencia, A. Big Data Analytics for Personalized Medicine. Curr. Opin. Biotechnol. 2019, 58, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Mesko, B. The Role of Artificial Intelligence in Precision Medicine. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 239–241. [Google Scholar] [CrossRef]
- Nijman, J.; Zoodsma, R.S.; Koomen, E. A Strategy for Artificial Intelligence with Clinical Impact—Eyes on the Prize. JAMA Pediatr. 2024, 178, 219. [Google Scholar] [CrossRef] [PubMed]
- Hossain, E.; Rana, R.; Higgins, N.; Soar, J.; Barua, P.D.; Pisani, A.R.; Turner, K. Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-Making: A Systematic Review. Comput. Biol. Med. 2023, 155, 106649. [Google Scholar] [CrossRef]
- Benke, K.; Benke, G. Artificial Intelligence and Big Data in Public Health. Int. J. Environ. Res. Public Health 2018, 15, 2796. [Google Scholar] [CrossRef] [PubMed]
- Mallappallil, M.; Sabu, J.; Gruessner, A.; Salifu, M. A Review of Big Data and Medical Research. SAGE Open Med. 2020, 8, 205031212093483. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, W.; Raghupathi, V. Big Data Analytics in Healthcare: Promise and Potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Frost; Sullivan Drowning in Big Data? Reducing Information Technology Complexities and Costs for Healthcare Organizations. Available online: https://www.researchgate.net/publication/310416741_Healthcare_Big_Data_and_Cloud_Computing (accessed on 12 February 2024).
- Feldman, B.; Martin, E.; Skotnes, T. Big Data in Healthcare: Hype and Hope. Available online: https://www.yumpu.com/en/document/view/29226285/big-data-in-healthcare-hype-and-hope (accessed on 13 February 2024).
- Hoover, W. Transforming Health Care through Big Data: Strategies for Leveraging Big Data in the Health Care Industry; Institute for Health Technology Transformation: New York, NY, USA, 2013. [Google Scholar]
- Ristevski, B.; Chen, M. Big Data Analytics in Medicine and Healthcare. J. Integr. Bioinform. 2018, 15, 20170030. [Google Scholar] [CrossRef] [PubMed]
- Li, I.; Pan, J.; Goldwasser, J.; Verma, N.; Wong, W.P.; Nuzumlalı, M.Y.; Rosand, B.; Li, Y.; Zhang, M.; Chang, D.; et al. Neural Natural Language Processing for Unstructured Data in Electronic Health Records: A Review. Comput. Sci. Rev. 2022, 46, 100511. [Google Scholar] [CrossRef]
- Kamran, S. Natural Language Processing in Healthcare Explained. Available online: https://www.consensus.com/blog/natural-language-processing-in-healthcare/ (accessed on 15 February 2024).
- SAS. Big Data—What It Is and Why It Matters. Available online: https://www.sas.com/en_us/insights/big-data/what-is-big-data.html (accessed on 21 February 2024).
- Hermon, R.; Williams, P.A.H. Big Data in Healthcare: What Is It Used For? In Proceedings of the Australian Ehealth Informatics and Security Conference, Perth, WA, Australia, 1–3 December 2014; SRI Security Research Institute, Edith Cowan University: Perth, WA, Australia, 2014; pp. 40–49. [Google Scholar]
- Wang, Y.; Kung, L.; Byrd, T.A. Big Data Analytics: Understanding Its Capabilities and Potential Benefits for Healthcare Organizations. Technol. Forecast. Soc. Chang. 2018, 126, 3–13. [Google Scholar] [CrossRef]
- Elgendy, N.; Elragal, A. Big Data Analytics: A Literature Review Paper. In Advances in Data Mining. Applications and Theoretical Aspects; ICDM 2014. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; pp. 214–227. [Google Scholar]
- Hasselgren, A.; Kralevska, K.; Gligoroski, D.; Pedersen, S.A.; Faxvaag, A. Blockchain in Healthcare and Health Sciences—A Scoping Review. Int. J. Med. Inform. 2020, 134, 104040. [Google Scholar] [CrossRef] [PubMed]
- Lax, G.; Russo, A. Blockchain-Based Access Control Supporting Anonymity and Accountability. J. Adv. Inf. Technol. 2020, 11, 186–191. [Google Scholar] [CrossRef]
- Tagde, P.; Tagde, S.; Bhattacharya, T.; Tagde, P.; Chopra, H.; Akter, R.; Kaushik, D.; Rahman, M.H. Blockchain and Artificial Intelligence Technology in E-Health. Environ. Sci. Pollut. Res. 2021, 28, 52810–52831. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017; pp. 557–564. [Google Scholar]
- Ali, S.; Abdullah; Armand, T.P.T.; Athar, A.; Hussain, A.; Ali, M.; Yaseen, M.; Joo, M.-I.; Kim, H.-C. Metaverse in Healthcare Integrated with Explainable AI and Blockchain: Enabling Immersiveness, Ensuring Trust, and Providing Patient Data Security. Sensors 2023, 23, 565. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; Sprivulis, P.; Dwivedi, G. Artificial Intelligence and Machine Learning in Emergency Medicine. Emerg. Med. Australas. 2018, 30, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, A.A.; Read, R.C. Artificial Intelligence, Machine Learning and Deep Learning: Potential Resources for the Infection Clinician. J. Infect. 2023, 87, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Maghami, M.; Sattari, S.A.; Tahmasbi, M.; Panahi, P.; Mozafari, J.; Shirbandi, K. Diagnostic Test Accuracy of Machine Learning Algorithms for the Detection Intracranial Hemorrhage: A Systematic Review and Meta-Analysis Study. Biomed. Eng. Online 2023, 22, 114. [Google Scholar] [CrossRef] [PubMed]
- Schaffter, T.; Buist, D.S.M.; Lee, C.I.; Nikulin, Y.; Ribli, D.; Guan, Y.; Lotter, W.; Jie, Z.; Du, H.; Wang, S.; et al. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Netw. Open 2020, 3, e200265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F. Application of Machine Learning in CT Images and X-Rays of COVID-19 Pneumonia. Medicine 2021, 100, e26855. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.; Kinoshita, T.; Peebles, A.; Graber, M.A.; Lee, S. Artificial Intelligence and Machine Learning in Emergency Medicine: A Narrative Review. Acute Med. Surg. 2022, 9, e740. [Google Scholar] [CrossRef]
- Hernán, M.A.; Hsu, J.; Healy, B. A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. Chance 2019, 32, 42–49. [Google Scholar] [CrossRef]
- Bertsimas, D.; Dunn, J. Optimal Classification Trees. Mach. Learn. 2017, 106, 1039–1082. [Google Scholar] [CrossRef]
- Decision Trees. Available online: https://www.ibm.com/topics/decision-trees (accessed on 23 February 2024).
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision Trees: An Overview and Their Use in Medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; LeCun, Y.; Sahani, M.; Precup, D.; Silver, D.; Sugiyama, M.; Uchibe, E.; Morimoto, J. Deep Learning, Reinforcement Learning, and World Models. Neural Netw. 2022, 152, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Bothe, M.K.; Dickens, L.; Reichel, K.; Tellmann, A.; Ellger, B.; Westphal, M.; Faisal, A.A. The Use of Reinforcement Learning Algorithms to Meet the Challenges of an Artificial Pancreas. Expert Rev. Med. Devices 2013, 10, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine Learning in Medicine: A Practical Introduction to Natural Language Processing. BMC Med. Res. Methodol. 2021, 21, 158. [Google Scholar]
- Stafie, C.S.; Sufaru, I.-G.; Ghiciuc, C.M.; Stafie, I.-I.; Sufaru, E.-C.; Solomon, S.M.; Hancianu, M. Exploring the Intersection of Artificial Intelligence and Clinical Healthcare: A Multidisciplinary Review. Diagnostics 2023, 13, 1995. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, C.; Winker, M.; Aggarwal, R.; Ferris, L.; Habibzadeh, F. Chatbots, Generative AI, and Scholarly Manuscripts. WAME Recommendations on Chatbots and Generative Artificial Intelligence in Relation to Scholarly Publications. Available online: https://wame.org/page3.php?id=106 (accessed on 16 February 2024).
- Stokel-Walker, C.; Van Noorden, R. What ChatGPT and Generative AI Mean for Science. Nature 2023, 614, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Birhane, A.; Kasirzadeh, A.; Leslie, D.; Wachter, S. Science in the Age of Large Language Models. Nat. Rev. Phys. 2023, 5, 277–280. [Google Scholar] [CrossRef]
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef] [PubMed]
- Liverpool, L. AI Intensifies Fight against ‘Paper Mills’ That Churn out Fake Research. Nature 2023, 618, 222–223. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, X.; Li, C.; Zhao, J.; Fu, W.; Liang, G.; Qiu, J. AI-Enabled Image Fraud in Scientific Publications. Patterns 2022, 3, 100511. [Google Scholar] [CrossRef]
- Májovský, M.; Černý, M.; Kasal, M.; Komarc, M.; Netuka, D. Artificial Intelligence Can Generate Fraudulent but Authentic-Looking Scientific Medical Articles: Pandora’s Box Has Been Opened. J. Med. Internet Res. 2023, 25, e46924. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Nitish, S.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 1929–1958. [Google Scholar]
- Si, T.; Bagchi, J.; Miranda, P.B.C. Artificial Neural Network Training Using Metaheuristics for Medical Data Classification: An Experimental Study. Expert Syst. Appl. 2022, 193, 116423. [Google Scholar] [CrossRef]
- Sze, V.; Chen, Y.-H.; Yang, T.-J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017, 105, 2295–2329. [Google Scholar] [CrossRef]
- Masegosa, A.R.; Cabañas, R.; Langseth, H.; Nielsen, T.D.; Salmerón, A. Probabilistic Models with Deep Neural Networks. Entropy 2021, 23, 117. [Google Scholar] [CrossRef] [PubMed]
- Grossberg, S. Recurrent Neural Networks. Scholarpedia 2013, 8, 1888. [Google Scholar] [CrossRef]
- Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent Advances in Recurrent Neural Networks. arXiv 2017, arXiv:1801.01078. [Google Scholar]
- Choi, B.W.; Kang, S.; Kim, H.W.; Kwon, O.D.; Vu, H.D.; Youn, S.W. Faster Region-Based Convolutional Neural Network in the Classification of Different Parkinsonism Patterns of the Striatum on Maximum Intensity Projection Images of [18F]FP-CIT Positron Emission Tomography. Diagnostics 2021, 11, 1557. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.C.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer Perceptron and Neural Networks. WSEAS Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Spiegelhalter, D.; Rice, K. Bayesian Statistics. Scholarpedia 2009, 4, 5230. [Google Scholar] [CrossRef]
- Raita, Y.; Camargo, C.A.; Liang, L.; Hasegawa, K. Big Data, Data Science, and Causal Inference: A Primer for Clinicians. Front. Med. 2021, 8, 678047. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Chang, W.; Zhang, Y.; Liu, H.; Chen, B.; Xiao, Y.; Zhou, S. Prediction Model of Hypertension Complications Based on GBDT and LightGBM. J. Phys. Conf. Ser. 2021, 1813, 012008. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. Xgboost: Extreme Gradient Boosting. In R Package Version 0.4-2; R Core Team: Vienna, Austria, 2015; Volume 1, pp. 1–4. [Google Scholar]
- Rigatti, S.J. Random Forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Berner, E.S.; La Lande, T.J. Overview of Clinical Decision Support Systems. In Clinical Decision Support Systems; Springer: Cham, Switzerland, 2007; pp. 3–22. [Google Scholar]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. npj Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Green, N.A.; Durani, Y.; Brecher, D.; DePiero, A.; Loiselle, J.; Attia, M. Emergency Severity Index Version 4. Pediatr. Emerg. Care 2012, 28, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Kircher, J.; Plint, A.C.; Fitzpatrick, E.; Newton, A.S.; Rosychuk, R.J.; Grewal, S.; Ali, S. Pediatric Pain Management in the Emergency Department: The Triage Nurses’ Perspective. J. Emerg. Nurs. 2015, 41, 407–413. [Google Scholar] [CrossRef]
- Di Sarno, L.; Gatto, A.; Korn, D.; Pansini, V.; Curatola, A.; Ferretti, S.; Capossela, L.; Graglia, B.; Chiaretti, A. Pain Management in Pediatric Age. An Update. Acta Biomed. 2023, 94, e2023174. [Google Scholar]
- Hwang, S.; Lee, B. Machine Learning-Based Prediction of Critical Illness in Children Visiting the Emergency Department. PLoS ONE 2022, 17, e0264184. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.; Toerper, M.; Hamrock, E.; Hinson, J.S.; Barnes, S.; Gardner, H.; Dugas, A.; Linton, B.; Kirsch, T.; Kelen, G. Machine-Learning-Based Electronic Triage More Accurately Differentiates Patients With Respect to Clinical Outcomes Compared with the Emergency Severity Index. Ann. Emerg. Med. 2018, 71, 565–574.e2. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Jeon, K.-H.; Lee, M.; Kim, K.-H.; Park, J.; Oh, B.-H. Deep Learning Algorithm to Predict Need for Critical Care in Pediatric Emergency Departments. Pediatr. Emerg. Care 2021, 37, e988–e994. [Google Scholar] [CrossRef]
- Goto, T.; Camargo, C.A.; Faridi, M.K.; Freishtat, R.J.; Hasegawa, K. Machine Learning–Based Prediction of Clinical Outcomes for Children During Emergency Department Triage. JAMA Netw. Open 2019, 2, e186937. [Google Scholar] [CrossRef]
- Sarty, J.; Fitzpatrick, E.A.; Taghavi, M.; VanBerkel, P.T.; Hurley, K.F. Machine Learning to Identify Attributes That Predict Patients Who Leave without Being Seen in a Pediatric Emergency Department. CJEM 2023, 25, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Trost, M.J.; Ford, A.R.; Kysh, L.; Gold, J.I.; Matarić, M. Socially Assistive Robots for Helping Pediatric Distress and Pain. Clin. J. Pain 2019, 35, 451–458. [Google Scholar] [CrossRef]
- Sanchez Cristal, N.; Staab, J.; Chatham, R.; Ryan, S.; Mcnair, B.; Grubenhoff, J.A. Child Life Reduces Distress and Pain and Improves Family Satisfaction in the Pediatric Emergency Department. Clin. Pediatr. 2018, 57, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Trost, M.J.; Chrysilla, G.; Gold, J.I.; Matarić, M. Socially-Assistive Robots Using Empathy to Reduce Pain and Distress during Peripheral IV Placement in Children. Pain Res. Manag. 2020, 2020, 7935215. [Google Scholar] [CrossRef]
- Chita-Tegmark, M.; Scheutz, M. Assistive Robots for the Social Management of Health: A Framework for Robot Design and Human–Robot Interaction Research. Int. J. Soc. Robot. 2021, 13, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Nishat, F.; Hudson, S.; Panesar, P.; Ali, S.; Litwin, S.; Zeller, F.; Candelaria, P.; Foster, M.E.; Stinson, J. Exploring the Needs of Children and Caregivers to Inform Design of an Artificial Intelligence-Enhanced Social Robot in the Pediatric Emergency Department. J. Clin. Transl. Sci. 2023, 7, e191. [Google Scholar] [CrossRef]
- Hudson, S.; Nishat, F.; Stinson, J.; Litwin, S.; Zeller, F.; Wiles, B.; Foster, M.E.; Ali, S. Perspectives of Healthcare Providers to Inform the Design of an AI-Enhanced Social Robot in the Pediatric Emergency Department. Children 2023, 10, 1511. [Google Scholar] [CrossRef]
- Mastrangelo, M.; Midulla, F. Minor Head Trauma in the Pediatric Emergency Department: Decision Making Nodes. Curr. Pediatr. Rev. 2018, 13, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Schutzman, S.A.; Greenes, D.S. Pediatric Minor Head Trauma. Ann. Emerg. Med. 2001, 37, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Da Dalt, L.; Parri, N.; Amigoni, A.; Nocerino, A.; Selmin, F.; Manara, R.; Perretta, P.; Vardeu, M.P.; Bressan, S. Italian Guidelines on the Assessment and Management of Pediatric Head Injury in the Emergency Department. Ital. J. Pediatr. 2018, 44, 7. [Google Scholar] [CrossRef] [PubMed]
- Kuppermann, N.; Holmes, J.F.; Dayan, P.S.; Hoyle, J.D.; Atabaki, S.M.; Holubkov, R.; Nadel, F.M.; Monroe, D.; Stanley, R.M.; Borgialli, D.A.; et al. Identification of Children at Very Low Risk of Clinically-Important Brain Injuries after Head Trauma: A Prospective Cohort Study. Lancet 2009, 374, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Tunthanathip, T.; Oearsakul, T. Application of Machine Learning to Predict the Outcome of Pediatric Traumatic Brain Injury. Chin. J. Traumatol. = Zhonghua Chuang Shang Za Zhi 2021, 24, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Ellethy, H.; Chandra, S.S.; Nasrallah, F.A. The Detection of Mild Traumatic Brain Injury in Paediatrics Using Artificial Neural Networks. Comput. Biol. Med. 2021, 135, 104614. [Google Scholar] [CrossRef] [PubMed]
- Dayan, P.S.; Ballard, D.W.; Tham, E.; Hoffman, J.M.; Swietlik, M.; Deakyne, S.J.; Alessandrini, E.A.; Tzimenatos, L.; Bajaj, L.; Vinson, D.R.; et al. Use of Traumatic Brain Injury Prediction Rules with Clinical Decision Support. Pediatrics 2017, 139. [Google Scholar] [CrossRef] [PubMed]
- Hale, A.T.; Stonko, D.P.; Lim, J.; Guillamondegui, O.D.; Shannon, C.N.; Patel, M.B. Using an Artificial Neural Network to Predict Traumatic Brain Injury. J. Neurosurg. Pediatr. 2019, 23, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Bertsimas, D.; Dunn, J.; Steele, D.W.; Trikalinos, T.A.; Wang, Y. Comparison of Machine Learning Optimal Classification Trees with the Pediatric Emergency Care Applied Research Network Head Trauma Decision Rules. JAMA Pediatr. 2019, 173, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, T.; Saga, M.; Sasaki, M.; Shimizu, M.; Yamaura, A. Statistical and Machine Learning Approaches to Predict the Necessity for Computed Tomography in Children with Mild Traumatic Brain Injury. PLoS ONE 2023, 18, e0278562. [Google Scholar] [CrossRef] [PubMed]
- Ellethy, H.; Chandra, S.S.; Nasrallah, F.A. Deep Neural Networks Predict the Need for CT in Pediatric Mild Traumatic Brain Injury: A Corroboration of the PECARN Rule. J. Am. Coll. Radiol. 2022, 19, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Otles, E.; Donnelly, J.P.; Krumm, A.; McCullough, J.; DeTroyer-Cooley, O.; Pestrue, J.; Phillips, M.; Konye, J.; Penoza, C.; et al. External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA Intern. Med. 2021, 181, 1065. [Google Scholar] [CrossRef] [PubMed]
- Eierud, C.; Craddock, R.C.; Fletcher, S.; Aulakh, M.; King-Casas, B.; Kuehl, D.; LaConte, S.M. Neuroimaging after Mild Traumatic Brain Injury: Review and Meta-Analysis. NeuroImage Clin. 2014, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.A.; Mehta, N.H.; Saleem, M.I.; D’Amico, R.S. Connecting the Connectome: A Bibliometric Investigation of the 50 Most Cited Articles. Clin. Neurol. Neurosurg. 2022, 223, 107481. [Google Scholar] [CrossRef] [PubMed]
- Payabvash, S.; Palacios, E.M.; Owen, J.P.; Wang, M.B.; Tavassoli, T.; Gerdes, M.; Brandes-Aitken, A.; Cuneo, D.; Marco, E.J.; Mukherjee, P. White Matter Connectome Edge Density in Children with Autism Spectrum Disorders: Potential Imaging Biomarkers Using Machine-Learning Models. Brain Connect. 2019, 9, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Raji, C.A.; Wang, M.B.; Nguyen, N.; Owen, J.P.; Palacios, E.M.; Yuh, E.L.; Mukherjee, P. Connectome Mapping with Edge Density Imaging Differentiates Pediatric Mild Traumatic Brain Injury from Typically Developing Controls: Proof of Concept. Pediatr. Radiol. 2020, 50, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Ben-Hur, A.; Weston, J. A User’s Guide to Support Vector Machines. In Data Mining Techniques for the Life Sciences; Carugo, O., Eisenhaber, F., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2010; Volume 609, pp. 223–239. [Google Scholar]
- Ruth, A.; McCracken, C.E.; Fortenberry, J.D.; Hall, M.; Simon, H.K.; Hebbar, K.B. Pediatric Severe Sepsis. Pediatr. Crit. Care Med. 2014, 15, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Watson, R.S.; Sorce, L.R.; Argent, A.C.; Menon, K.; Hall, M.W.; Akech, S.; Albers, D.J.; Alpern, E.R.; Balamuth, F.; et al. International Consensus Criteria for Pediatric Sepsis and Septic Shock. JAMA 2024, 331, 665. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.C.; Shivakumar, N.; Betthauser, K.; Gupta, A.; Lai, A.M.; Kollef, M.H.; Payne, P.R.O.; Michelson, A.P. Comparison of Early Warning Scores for Sepsis Early Identification and Prediction in the General Ward Setting. JAMIA Open 2021, 4, ooab062. [Google Scholar] [CrossRef] [PubMed]
- Uffen, J.W.; Oosterheert, J.J.; Schweitzer, V.A.; Thursky, K.; Kaasjager, H.A.H.; Ekkelenkamp, M.B. Interventions for Rapid Recognition and Treatment of Sepsis in the Emergency Department: A Narrative Review. Clin. Microbiol. Infect. 2021, 27, 192–203. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A. International Pediatric Sepsis Consensus Conference: Definitions for Sepsis and Organ Dysfunction in Pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef]
- Balamuth, F.; Alpern, E.R.; Grundmeier, R.W.; Chilutti, M.; Weiss, S.L.; Fitzgerald, J.C.; Hayes, K.; Bilker, W.; Lautenbach, E. Comparison of Two Sepsis Recognition Methods in a Pediatric Emergency Department. Acad. Emerg. Med. 2015, 22, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Kamaleswaran, R.; Akbilgic, O.; Hallman, M.A.; West, A.N.; Davis, R.L.; Shah, S.H. Applying Artificial Intelligence to Identify Physiomarkers Predicting Severe Sepsis in the PICU. Pediatr. Crit. Care Med. 2018, 19, e495–e503. [Google Scholar] [CrossRef] [PubMed]
- Le, S.; Hoffman, J.; Barton, C.; Fitzgerald, J.C.; Allen, A.; Pellegrini, E.; Calvert, J.; Das, R. Pediatric Severe Sepsis Prediction Using Machine Learning. Front. Pediatr. 2019, 7, 413. [Google Scholar] [CrossRef] [PubMed]
- Stella, P.; Haines, E.; Aphinyanaphongs, Y. Prediction of Resuscitation for Pediatric Sepsis from Data Available at Triage. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2021; Volume 2021, pp. 1129–1138. [Google Scholar]
- Mercurio, L.; Pou, S.; Duffy, S.; Eickhoff, C. Risk Factors for Pediatric Sepsis in the Emergency Department. Pediatr. Emerg. Care 2023, 39, e48–e56. [Google Scholar] [CrossRef] [PubMed]
- Moulaei, K.; Yadegari, A.; Baharestani, M.; Farzanbakhsh, S.; Sabet, B.; Reza Afrash, M. Generative Artificial Intelligence in Healthcare: A Scoping Review on Benefits, Challenges and Applications. Int. J. Med. Inform. 2024, 188, 105474. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimian, M.; Behnam, B.; Ghayebi, N.; Sobhrakhshankhah, E. ChatGPT in Iranian Medical Licensing Examination: Evaluating the Diagnostic Accuracy and Decision-Making Capabilities of an AI-Based Model. BMJ Health Care Inform. 2023, 30, e100815. [Google Scholar] [CrossRef] [PubMed]
- Sisk, B.A.; Antes, A.L.; Burrous, S.; DuBois, J.M. Parental Attitudes toward Artificial Intelligence-Driven Precision Medicine Technologies in Pediatric Healthcare. Children 2020, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Astromskė, K.; Peičius, E.; Astromskis, P. Ethical and Legal Challenges of Informed Consent Applying Artificial Intelligence in Medical Diagnostic Consultations. AI Soc. 2021, 36, 509–520. [Google Scholar] [CrossRef]
- Bjerring, J.C.; Busch, J. Artificial Intelligence and Patient-Centered Decision-Making. Philos. Technol. 2021, 34, 349–371. [Google Scholar] [CrossRef]
- Gray, E.A.; Thorpe, J.H. Comparative Effectiveness Research and Big Data: Balancing Potential with Legal and Ethical Considerations. J. Comp. Eff. Res. 2015, 4, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Omiye, J.A.; Lester, J.C.; Spichak, S.; Rotemberg, V.; Daneshjou, R. Large Language Models Propagate Race-Based Medicine. npj Digit. Med. 2023, 6, 195. [Google Scholar] [CrossRef] [PubMed]
- Trocin, C.; Mikalef, P.; Papamitsiou, Z.; Conboy, K. Responsible AI for Digital Health: A Synthesis and a Research Agenda. Inf. Syst. Front. 2023, 25, 2139–2157. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Delsoz, M.; Madadi, Y.; Raja, H.; Munir, W.M.; Tamm, B.; Mehravaran, S.; Soleimani, M.; Djalilian, A.; Yousefi, S. Performance of ChatGPT in Diagnosis of Corneal Eye Diseases. Cornea 2024, 43, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.E.H.; Lee Ng, C.H.; Goh, K.; Liu, N.; Koh, Z.; Shahidah, N.; Zhang, T.; Fook-Chong, S.; Lin, Z. Prediction of Cardiac Arrest in Critically Ill Patients Presenting to the Emergency Department Using a Machine Learning Score Incorporating Heart Rate Variability Compared with the Modified Early Warning Score. Crit. Care 2012, 16, R108. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.A.; Pare, J.R.; Venkatesh, A.K.; Mowafi, H.; Melnick, E.R.; Fleischman, W.; Hall, M.K. Prediction of In-hospital Mortality in Emergency Department Patients with Sepsis: A Local Big Data–Driven, Machine Learning Approach. Acad. Emerg. Med. 2016, 23, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Elhaj, H.; Achour, N.; Tania, M.H.; Aciksari, K. A Comparative Study of Supervised Machine Learning Approaches to Predict Patient Triage Outcomes in Hospital Emergency Departments. Array 2023, 17, 100281. [Google Scholar] [CrossRef]
- Kellett, J. What Is the Ideal Triage Process and the Resources It Requires? Lancet Reg. Health West. Pac. 2021, 13, 100203. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.; Houston, G.C.; Dippel, D.W.J.; Wielopolski, P.A.; Vernooij, M.W.; Koudstaal, P.J.; Hunink, M.G.M.; van der Lugt, A. Microstructural Brain Injury in Post-Concussion Syndrome after Minor Head Injury. Neuroradiology 2011, 53, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Fleuren, L.M.; Klausch, T.L.T.; Zwager, C.L.; Schoonmade, L.J.; Guo, T.; Roggeveen, L.F.; Swart, E.L.; Girbes, A.R.J.; Thoral, P.; Ercole, A.; et al. Machine Learning for the Prediction of Sepsis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. Intensive Care Med. 2020, 46, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, Z.; Wah Ho, A.F.; Ong, M.E.H. Artificial Intelligence in Emergency Medicine. J. Emerg. Crit. Care Med. 2018, 2, 82. [Google Scholar] [CrossRef]
- Abdullah Alzahrani, S.; Ahmad Alzahrani, A.; Al-Shamrani, A. Artificial Intelligence in Paediatric Emergencies: A Narrative Review. Am. J. Pediatr. 2022, 8, 51. [Google Scholar] [CrossRef]
- Rajkomar, A.; Hardt, M.; Howell, M.D.; Corrado, G.; Chin, M.H. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann. Intern. Med. 2018, 169, 866. [Google Scholar] [CrossRef] [PubMed]
- Amershi, S.; Weld, D.; Vorvoreanu, M.; Fourney, A.; Nushi, B.; Collisson, P.; Suh, J.; Iqbal, S.; Bennett, P.N.; Inkpen, K.; et al. Guidelines for Human-AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; ACM: New York, NY, USA, 2019; pp. 1–13. [Google Scholar]
- Wiens, J.; Saria, S.; Sendak, M.; Ghassemi, M.; Liu, V.X.; Doshi-Velez, F.; Jung, K.; Heller, K.; Kale, D.; Saeed, M.; et al. Do No Harm: A Roadmap for Responsible Machine Learning for Health Care. Nat. Med. 2019, 25, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Ventura, C.A.I.; Denton, E. Artificial Intelligence Chatbots and Emergency Medical Services: Perspectives on the Implications of Generative AI in Prehospital Care. Open Access Emerg. Med. 2023, 15, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, M.F.; Robinson, K.M. Data Quality: “Garbage in—Garbage Out”. Health Inf. Manag. 2018, 47, 103–105. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The Practical Implementation of Artificial Intelligence Technologies in Medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Challen, R.; Denny, J.; Pitt, M.; Gompels, L.; Edwards, T.; Tsaneva-Atanasova, K. Artificial Intelligence, Bias and Clinical Safety. BMJ Qual. Saf. 2019, 28, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T. Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare. AI 2023, 4, 652–666. [Google Scholar] [CrossRef]
- Ramgopal, S.; Adler, M.D.; Horvat, C.M. Application of the Improving Pediatric Sepsis Outcomes Definition for Pediatric Sepsis to Nationally Representative Emergency Department Data. Pediatr. Qual. Saf. 2021, 6, e468. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Kim, K.; Hwang, H.; Kim, Y.S.; Chung, E.H.; Yoon, J.-S.; Cho, H.J.; Park, J.D. Development of a Machine Learning Model for Predicting Pediatric Mortality in the Early Stages of Intensive Care Unit Admission. Sci. Rep. 2021, 11, 1263. [Google Scholar] [CrossRef] [PubMed]
- Padash, S.; Mohebbian, M.R.; Adams, S.J.; Henderson, R.D.E.; Babyn, P. Pediatric Chest Radiograph Interpretation: How Far Has Artificial Intelligence Come? A Systematic Literature Review. Pediatr. Radiol. 2022, 52, 1568–1580. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.L.; Rinke, M.L.; Olson, A.P.J.; Brady, P.W. Diagnostic Error in Pediatrics: A Narrative Review. Pediatrics 2022, 149, e2020045948D. [Google Scholar] [CrossRef] [PubMed]
- Di Sarno, L.; Cammisa, I.; Curatola, A.; Pansini, V.; Eftimiadi, G.; Gatto, A.; Chiaretti, A. A Scoping Review of the Management of Acute Mastoiditis in Children: What Is the Best Approach? Turk. J. Pediatr. 2023, 65, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Musolino, A.M.; Di Sarno, L.; Buonsenso, D.; Murciano, M.; Chiaretti, A.; Boccuzzi, E.; Mesturino, M.A.; Villani, A. Use of POCUS for the Assessment of Dehydration in Pediatric Patients—A Narrative Review. Eur. J. Pediatr. 2023, 183, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Causio, F.A.; Beccia, F.; Hoxhaj, I.; Huang, H.-Y.; Wang, L.; Wang, W.; Farina, S.; Osti, T.; Savoia, C.; Cadeddu, C.; et al. Integrating China in the International Consortium for Personalized Medicine: A Position Paper on Personalized Medicine in Sustainable Healthcare. Public Health Genom. 2024, 27, 1–11. [Google Scholar] [CrossRef]
- Paranjape, K.; Schinkel, M.; Nannan Panday, R.; Car, J.; Nanayakkara, P. Introducing Artificial Intelligence Training in Medical Education. JMIR Med. Educ. 2019, 5, e16048. [Google Scholar] [CrossRef]
- Proposal for A Regulation of The European Parliament and of the Council Laying down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206 (accessed on 17 April 2024).
- Causio, F.A.; Hoxhaj, I.; Beccia, F.; di Marcantonio, M.; Strohäker, T.; Cadeddu, C.; Ricciardi, W.; Boccia, S. Big Data and ICT Solutions in the European Union and in China: A Comparative Analysis of Policies in Personalized Medicine. Digit. Health 2022, 8, 205520762211290. [Google Scholar] [CrossRef] [PubMed]
- Good Machine Learning Practice for Medical Device Development: Guiding Principles. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles (accessed on 15 March 2024).
- Cascini, F.; Beccia, F.; Causio, F.A.; Melnyk, A.; Zaino, A.; Ricciardi, W. Scoping Review of the Current Landscape of AI-Based Applications in Clinical Trials. Front Public Health 2022, 10, 949377. [Google Scholar] [CrossRef] [PubMed]
- Michelson, K.N.; Klugman, C.M.; Kho, A.N.; Gerke, S. Ethical Considerations Related to Using Machine Learning-Based Prediction of Mortality in the Pediatric Intensive Care Unit. J. Pediatr. 2022, 247, 125–128. [Google Scholar] [CrossRef]
System | Description |
---|---|
Artificial Neural Network (ANN) | Nodes, akin to neurons, process information, while connections between layers, termed edges, simulate synapses with weights. Output is computed via mathematical operations on input and hidden layers, with the learning algorithm adjusting weights to minimize errors between predicted and target outputs, forming probability-weighted associations stored within the network’s structure [54]. |
Backpropagation Neural Network | Backpropagation utilizes prediction errors to iteratively tune the weights, enabling the NN to learn patterns within the training data and enhance model accuracy over time [35]. |
Convolutional Neural Network (CNN) | CNNs process data that comes in the form of multiple arrays such as signals, images, audio spectrograms and videos, and is applied in the recognition of objects [52]. |
Deep Neural Network (DNN) | An ANN with numerous layers between the input and output layers which is capable of learning high-level features and requires high computational power [55]. |
Probabilistic Neural Network (PNN) | An application of DNN within probabilistic models, able to capture complex non-linear stochastic relationships between random variables [56]. |
Recurrent Neural Network (RNN) | A recurrent neural network (RNN) is any network whose neurons send feedback signals to each other, and are capable of modeling sequential data for sequence recognition and prediction [57,58]. |
Region-based Convolutional Neural Network (R-CNN) | R-CNN models use region-based networks, which are capable of detecting an object in an image and holds great potential especially in diagnostic imaging [59]. |
Multilayer Perceptron (MLP) | A feedforward type of powerful and dynamic ANN. The signals are transmitted within the network in one direction: from input to output [60]. |
Bayesian Inference | Bayesian statistical methods are applied to algorithms. They start with existing ‘prior’ beliefs, which are then updated using data to give ‘posterior’ beliefs, which may be used as the basis for inferential decisions [61]. |
Causal Associational Network (CASNET) | Three items constitute this model: patient observation, pathophysiological states, and disease classifications. Once documented, the observations are associated with the fitting states [62]. |
Light Gradient Boosting Machine (LightGBM) | LightGBM employs a boosting strategy to combine numerous decision trees, with each tree utilizing the negative gradient of the loss function as the residual approximation for fitting. It is designed for optimal performance, particularly in distributed systems [63]. |
Extreme Gradient Boosting (XGBoost) | XGBoost is a gradient boosting framework that is highly efficient and scalable. It features a proficient linear model solver and a tree learning algorithm. It enables diverse objective functions, such as regression, classification, and ranking. Its design allows for easy extension, enabling users to define custom objectives [64]. |
Natural Language Processing (NLP) | NLP is a subfield of AI and ML used to interpret linguistic data (e.g., clinical note analysis and decision making) [10,42]. |
Random Forest Models | Random forest models use randomization to create multiple decision trees, each contributing to the final output. In classification tasks, the trees’ outputs are combined through voting, while in regression tasks, they are averaged to produce a single output [65]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sarno, L.; Caroselli, A.; Tonin, G.; Graglia, B.; Pansini, V.; Causio, F.A.; Gatto, A.; Chiaretti, A. Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives. Biomedicines 2024, 12, 1220. https://doi.org/10.3390/biomedicines12061220
Di Sarno L, Caroselli A, Tonin G, Graglia B, Pansini V, Causio FA, Gatto A, Chiaretti A. Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives. Biomedicines. 2024; 12(6):1220. https://doi.org/10.3390/biomedicines12061220
Chicago/Turabian StyleDi Sarno, Lorenzo, Anya Caroselli, Giovanna Tonin, Benedetta Graglia, Valeria Pansini, Francesco Andrea Causio, Antonio Gatto, and Antonio Chiaretti. 2024. "Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives" Biomedicines 12, no. 6: 1220. https://doi.org/10.3390/biomedicines12061220
APA StyleDi Sarno, L., Caroselli, A., Tonin, G., Graglia, B., Pansini, V., Causio, F. A., Gatto, A., & Chiaretti, A. (2024). Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives. Biomedicines, 12(6), 1220. https://doi.org/10.3390/biomedicines12061220