Predictive Models for the Transition from Mild Neurocognitive Disorder to Major Neurocognitive Disorder: Insights from Clinical, Demographic, and Neuropsychological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Inclusion/Exclusion Criteria
2.3. Conversion to Major NCD
2.4. Neuropsychological Predictive Factors
2.5. Demographic and Clinical Predictive Factors
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Strenghts and Limitations of the Study
4.2. Potential Clinical Implications and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.-O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild Cognitive Impairment–beyond Controversies, towards a Consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Levy, R. Aging-Associated Cognitive Decline. Working Party of the International Psychogeriatric Association in Collaboration with the World Health Organization. Int. Psychogeriatr. 1994, 6, 63–68. [Google Scholar] [PubMed]
- Hughes, C.P.; Berg, L.; Danziger, W.L.; Coben, L.A.; Martin, R.L. A New Clinical Scale for the Staging of Dementia. Br. J. Psychiatry 1982, 140, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Stokin, G.B.; Krell-Roesch, J.; Petersen, R.C.; Geda, Y.E. Mild Neurocognitive Disorder: An Old Wine in a New Bottle. Harv. Rev. Psychiatry 2015, 23, 368–376. [Google Scholar] [CrossRef] [PubMed]
- McDonald, W.M. Overview of Neurocognitive Disorders. Focus 2017, 15, 4–12. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 978-0-89042-554-1. [Google Scholar]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, L.G.; Thompson, P.M. Mapping Progressive Brain Structural Changes in Early Alzheimer’s Disease and Mild Cognitive Impairment. Neuropsychologia 2008, 46, 1597–1612. [Google Scholar] [CrossRef]
- Gagnon, G.; Masson, M. Cognitive Intervention for Patients with Neurocognitive Impairments. In Primary Care Mental Health in Older People: A Global Perspective; de Mendonça Lima, C.A., Ivbijaro, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 363–373. ISBN 978-3-030-10814-4. [Google Scholar]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild Cognitive Impairment: A Concept in Evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of Progression of Mild Cognitive Impairment to Dementia–Meta-Analysis of 41 Robust Inception Cohort Studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakis, F.; Kokkorakis, M.; Walker, K.A.; Davatzikos, C. Signatures and Discriminative Abilities of Multi-Omics between States of Cognitive Decline. Biomedicines 2024, 12, 941. [Google Scholar] [CrossRef] [PubMed]
- Javeed, A.; Dallora, A.L.; Berglund, J.S.; Idrisoglu, A.; Ali, L.; Rauf, H.T.; Anderberg, P. Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification. Biomedicines 2023, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Ravienna, K.; Salobrar-Garcia, E. Editorial: Early Indicators of Cognitive Decline, Alzheimer’s Disease, and Related Dementias Captured by Neurophysiological Tools. Front. Psychol. 2024, 15, 1393724. [Google Scholar] [CrossRef] [PubMed]
- Gomar, J.J.; Bobes-Bascaran, M.T.; Conejero-Goldberg, C.; Davies, P.; Goldberg, T.E.; Alzheimer’s Disease Neuroimaging Initiative. Utility of Combinations of Biomarkers, Cognitive Markers, and Risk Factors to Predict Conversion From Mild Cognitive Impairment to Alzheimer Disease in Patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch. Gen. Psychiatry 2011, 68, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Cho, S.-K.; Kim, H.J.; Kim, Y.J.; Park, K.-C.; Lockhart, S.N.; Na, D.L.; Kim, C.; Seo, S.W. Prediction Models of Cognitive Trajectories in Patients with Nonamnestic Mild Cognitive Impairment. Sci. Rep. 2018, 8, 10468. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Mhaolain, A.N.; Coen, R.; Walsh, C.; Kilroy, D.; Belinski, K.; Bruce, I.; Coakley, D.; Walsh, J.B.; Cunningham, C.; et al. Detecting Prodromal Alzheimer’s Disease in Mild Cognitive Impairment: Utility of the CAMCOG and Other Neuropsychological Predictors. Int. J. Geriatr. Psychiatry 2010, 25, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Lemos, L.; Cardoso, S.; Silva, D.; Rodrigues, A.; Santana, I.; de Mendonça, A.; Guerreiro, M.; Madeira, S.C. Predicting Progression of Mild Cognitive Impairment to Dementia Using Neuropsychological Data: A Supervised Learning Approach Using Time Windows. BMC Med. Inform. Decis. Mak. 2017, 17, 110. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Hertze, J.; Minthon, L.; Wattmo, C.; Zetterberg, H.; Blennow, K.; Londos, E.; Hansson, O. Comparison of Brief Cognitive Tests and CSF Biomarkers in Predicting Alzheimer’s Disease in Mild Cognitive Impairment: Six-Year Follow-Up Study. PLoS ONE 2012, 7, e38639. [Google Scholar] [CrossRef]
- Yue, L.; Hu, D.; Zhang, H.; Wen, J.; Wu, Y.; Li, W.; Sun, L.; Li, X.; Wang, J.; Li, G.; et al. Prediction of 7-Year’s Conversion from Subjective Cognitive Decline to Mild Cognitive Impairment. Hum. Brain Mapp. 2021, 42, 192–203. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, W.; Deng, J.; Shi, Y.; Nie, W.; Luo, S.; Zhang, H. Exploring Dysconnectivity of the Large-Scale Neurocognitive Network across Psychiatric Disorders Using Spatiotemporal Constrained Nonnegative Matrix Factorization Method. Cereb. Cortex 2022, 32, 4576–4591. [Google Scholar] [CrossRef] [PubMed]
- Benkirane, H.; Pradat, Y.; Michiels, S.; Cournède, P.-H. CustOmics: A Versatile Deep-Learning Based Strategy for Multi-Omics Integration. PLoS Comput. Biol. 2023, 19, e1010921. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Cui, C.; Su, Y.; Jing, D.; Wu, L.; Liang, P.; Liang, Z. Evaluating the Association between Brain Atrophy, Hypometabolism, and Cognitive Decline in Alzheimer’s Disease: A PET/MRI Study. Aging 2021, 13, 7228–7246. [Google Scholar] [CrossRef]
- Hohenfeld, C.; Werner, C.J.; Reetz, K. Resting-State Connectivity in Neurodegenerative Disorders: Is There Potential for an Imaging Biomarker? NeuroImage Clin. 2018, 18, 849–870. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.; Thirion, B.; Comtat, C.; Varoquaux, G. Transmodal Learning of Functional Networks for Alzheimer’s Disease Prediction. IEEE J. Sel. Top. Signal Process. 2016, 10, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Belleville, S.; Gauthier, S.; Lepage, É.; Kergoat, M.-J.; Gilbert, B. Predicting Decline in Mild Cognitive Impairment: A Prospective Cognitive Study. Neuropsychology 2014, 28, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Mayo, N.; Koski, L. Predictors of Future Cognitive Decline in Persons with Mild Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2012, 32, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Bucholc, M.; Titarenko, S.; Ding, X.; Canavan, C.; Chen, T. A Hybrid Machine Learning Approach for Prediction of Conversion from Mild Cognitive Impairment to Dementia. Expert Syst. Appl. 2023, 217, 119541. [Google Scholar] [CrossRef]
- Stocker, H.; Möllers, T.; Perna, L.; Brenner, H. The Genetic Risk of Alzheimer’s Disease beyond APOE Ε4: Systematic Review of Alzheimer’s Genetic Risk Scores. Transl. Psychiatry 2018, 8, 166. [Google Scholar] [CrossRef]
- Park, J.-H.; Park, I.; Youm, E.M.; Lee, S.; Park, J.-H.; Lee, J.; Lee, D.Y.; Byun, M.S.; Lee, J.H.; Yi, D.; et al. Novel Alzheimer’s Disease Risk Variants Identified Based on Whole-Genome Sequencing of APOE Ε4 Carriers. Transl. Psychiatry 2021, 11, 296. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, L.; Halliday, G.; Dobson-Stone, C.; Wang, Y.; Tang, H.-D.; Cao, L.; Deng, Y.-L.; Wang, G.; Zhang, Y.-M.; et al. Genetic Polymorphisms in Sigma-1 Receptor and Apolipoprotein E Interact to Influence the Severity of Alzheimers Disease. Curr. Alzheimer Res. 2011, 8, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; MacDonald, S.W.S.; Dekhtyar, S.; Fratiglioni, L. Association of Lifelong Exposure to Cognitive Reserve-Enhancing Factors with Dementia Risk: A Community-Based Cohort Study. PLoS Med. 2017, 14, e1002251. [Google Scholar] [CrossRef]
- Li, J.-Q.; Tan, L.; Wang, H.-F.; Tan, M.-S.; Tan, L.; Xu, W.; Zhao, Q.-F.; Wang, J.; Jiang, T.; Yu, J.-T. Risk Factors for Predicting Progression from Mild Cognitive Impairment to Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Cohort Studies. J. Neurol. Neurosurg. Psychiatry 2016, 87, 476–484. [Google Scholar] [CrossRef]
- Hersi, M.; Irvine, B.; Gupta, P.; Gomes, J.; Birkett, N.; Krewski, D. Risk Factors Associated with the Onset and Progression of Alzheimer’s Disease: A Systematic Review of the Evidence. NeuroToxicology 2017, 61, 143–187. [Google Scholar] [CrossRef] [PubMed]
- Harnessing Cognitive Trajectory Clusterings to Examine Subclinical Decline Risk Factors|Brain Communications|Oxford Academic. Available online: https://academic.oup.com/braincomms/article/5/6/fcad333/7458118 (accessed on 25 May 2024).
- Darby, D.; Brodtmann, A.; Woodward, M. 17.: The Trajectory-Related Early Alzheimer’s Database (TREAD) Study: Primed for Prodromal Alzheimer’s Disease Intervention Trials. J. Clin. Neurosci. 2014, 21, 2038. [Google Scholar] [CrossRef]
- Venugopalan, J.; Tong, L.; Hassanzadeh, H.R.; Wang, M.D. Multimodal Deep Learning Models for Early Detection of Alzheimer’s Disease Stage. Sci. Rep. 2021, 11, 3254. [Google Scholar] [CrossRef]
- Bhagwat, N.; Viviano, J.D.; Voineskos, A.N.; Chakravarty, M.M.; Initiative, A.D.N. Modeling and Prediction of Clinical Symptom Trajectories in Alzheimer’s Disease Using Longitudinal Data. PLoS Comput. Biol. 2018, 14, e1006376. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Villanueva, M.; Maestú, F.; Fernández-Blázquez, M.A. Internal Consistency Over Time of Subjective Cognitive Decline: Drawing Preclinical Alzheimer’s Disease Trajectories. J. Alzheimer’s Dis. 2018, 66, 173–183. [Google Scholar] [CrossRef]
- Roth, M.; Tym, E.; Mountjoy, C.Q.; Huppert, F.A.; Hendrie, H.; Verma, S.; Goddard, R. CAMDEX. A Standardised Instrument for the Diagnosis of Mental Disorder in the Elderly with Special Reference to the Early Detection of Dementia. Br. J. Psychiatry 1986, 149, 698–709. [Google Scholar] [CrossRef]
- Sheikh, J.I.; Yesavage, J.A. Geriatric Depression Scale (GDS): Recent Evidence and Development of a Shorter Version. Clin. Gerontol. J. Aging Ment. Health 1986, 5, 165–173. [Google Scholar] [CrossRef]
- Westgate, P.M. Improving the Correlation Structure Selection Approach for Generalized Estimating Equations and Balanced Longitudinal Data. Stat. Med. 2014, 33, 2222–2237. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Lipi, N.; Jaman, A. A Caution in the Use of Multiple Criteria for Selecting Working Correlation Structure in Generalized Estimating Equations. Commun. Stat. Simul. Comput. 2023, 52, 980–992. [Google Scholar] [CrossRef]
- Westgate, P.M.; West, B.T. Tools for Selecting Working Correlation Structures When Using Weighted GEE to Model Longitudinal Survey Data. J. Surv. Stat. Methodol. 2021, 9, 141–158. [Google Scholar] [CrossRef]
- Muth, C.; Bales, K.L.; Hinde, K.; Maninger, N.; Mendoza, S.P.; Ferrer, E. Alternative Models for Small Samples in Psychological Research. Educ. Psychol. Meas. 2016, 76, 64–87. [Google Scholar] [CrossRef]
- Hansen, S.N.; Andersen, P.K.; Parner, E.T. Events per Variable for Risk Differences and Relative Risks Using Pseudo-Observations. Lifetime Data Anal. 2014, 20, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.H.; Kording, K.P.; Parvizi, J.; Fox, M.D. Causal Mapping of Human Brain Function. Nat. Rev. Neurosci. 2022, 23, 361–375. [Google Scholar] [CrossRef]
- Sarikhani, Y.; Ostovar, T.; Rossi-Fedele, G.; Edirippulige, S.; Bastani, P. A Protocol for Developing a Discrete Choice Experiment to Elicit Preferences of General Practitioners for the Choice of Specialty. Value Health Reg. Issues 2021, 25, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.R. DSM-5 and Neurocognitive Disorders. J. Am. Acad. Psychiatry Law 2014, 42, 159–164. [Google Scholar]
- Mougias, A.; Christidi, F.; Kaldi, M.; Kerossi, M.-I.; Athanasouli, P.; Politis, A. Mini-Mental State Examination: Greek Normative Data Stratified by Age and Education in a Large Sample of 925 Community-Dwelling Healthy Participants. Adv. Exp. Med. Biol. 2020, 1196, 93–102. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Vadikolias, K.; Tripsianis, G.; Vlotinou, P.; Serdari, A.; Terzoudi, A.; Heliopoulos, I. Influence of Social and Demographic Factors on the Montreal Cognitive Assessment (MoCA) Test in Rural Population of North-Eastern Greece. Geriatrics 2021, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Poptsi, E.; Moraitou, D.; Eleftheriou, M.; Kounti-Zafeiropoulou, F.; Papasozomenou, C.; Agogiatou, C.; Bakoglidou, E.; Batsila, G.; Liapi, D.; Markou, N. Normative Data for the Montreal Cognitive Assessment in Greek Older Adults With Subjective Cognitive Decline, Mild Cognitive Impairment and Dementia. J. Geriatr. Psychiatry Neurol. 2019, 32, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; Mohan, A.; Taylor, L.; Jeste, D.V. DSM-5 and Mental Disorders in Older Individuals: An Overview. Harv. Rev. Psychiatry 2015, 23, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, M.; Fountoulakis, K.N.; Chantzi, H.; Kazis, A. The Cambridge Cognitive Examination (CAMCOG): A Validation Study in Outpatients Suffering from Dementia and Non-Demented Elderly Subjects (Including Age Associated Cognitive Decline Patients) in Greece. Am. J. Alzheimer’s Dis. Other Dementiasr 2000, 15, 269–276. [Google Scholar] [CrossRef]
- Roth, C. Boston Naming Test. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011; pp. 430–433. ISBN 978-0-387-79948-3. [Google Scholar]
- Kounti, F.; Tsolaki, M.; Kiosseoglou, G. Functional Cognitive Assessment Scale (FUCAS): A New Scale to Assess Executive Cognitive Function in Daily Life Activities in Patients with Dementia and Mild Cognitive Impairment. Hum. Psychopharmacol. 2006, 21, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Tsolaki, M.; Iacovides, A.; Yesavage, J.; O’Hara, R.; Kazis, A.; Ierodiakonou, C. The Validation of the Short Form of the Geriatric Depression Scale (GDS) in Greece. Aging 1999, 11, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L. The Neuropsychiatric Inventory: Assessing Psychopathology in Dementia Patients. Neurology 1997, 48, S10–S16. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Classification Percentile And Cut Off Points. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hanley, J.A.; Negassa, A.; Edwardes, M.D.D.; Forrester, J.E. Statistical Analysis of Correlated Data Using Generalized Estimating Equations: An Orientation. Am. J. Epidemiol. 2003, 157, 364–375. [Google Scholar] [CrossRef]
- Zorn, C.J.W. Generalized Estimating Equation Models for Correlated Data: A Review with Applications. Am. J. Political Sci. 2001, 45, 470–490. [Google Scholar] [CrossRef]
- Bible, J.; Albert, P.S.; Simons-Morton, B.G.; Liu, D. Practical Issues in Using Generalized Estimating Equations for Inference on Transitions in Longitudinal Data: What Is Being Estimated? Stat. Med. 2019, 38, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Choi, Y.-G.; Park, T.; Ziegler, A.; Paik, M.C. Generalized Estimating Equations with Stabilized Working Correlation Structure. Comput. Stat. Data Anal. 2017, 106, 1–11. [Google Scholar] [CrossRef]
- Kuang, J.; Zhang, P.; Cai, T.; Zou, Z.; Li, L.; Wang, N.; Wu, L. Prediction of Transition from Mild Cognitive Impairment to Alzheimer’s Disease Based on a Logistic Regression–Artificial Neural Network–Decision Tree Model. Geriatr. Gerontol. Int. 2021, 21, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Fitzpatrick, A.L.; Rapp, S.R.; Nahin, R.L.; Williamson, J.D.; Lopez, O.L.; DeKosky, S.T.; Kuller, L.H.; Mackey, R.H.; Mukamal, K.J.; et al. Alcohol Consumption and Risk of Dementia and Cognitive Decline Among Older Adults With or Without Mild Cognitive Impairment. JAMA Netw. Open 2019, 2, e1910319. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, X.; Yin, Q.; Zhu, W.; Zhang, R.; Fan, X. Alcohol Consumption and Transition of Mild Cognitive Impairment to Dementia. Psychiatry Clin. Neurosci. 2009, 63, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; D’Introno, A.; Colacicco, A.M.; Capurso, C.; Del Parigi, A.; Baldassarre, G.; Scapicchio, P.; Scafato, E.; Amodio, M.; Capurso, A.; et al. Alcohol Consumption, Mild Cognitive Impairment, and Progression to Dementia. Neurology 2007, 68, 1790–1799. [Google Scholar] [CrossRef]
- Xue, H.; Sun, Q.; Liu, L.; Zhou, L.; Liang, R.; He, R.; Yu, H. Risk Factors of Transition from Mild Cognitive Impairment to Alzheimer’s Disease and Death: A Cohort Study. Compr. Psychiatry 2017, 78, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Hessler, J.B.; Ander, K.-H.; Brönner, M.; Etgen, T.; Förstl, H.; Poppert, H.; Sander, D.; Bickel, H. Predicting Dementia in Primary Care Patients with a Cardiovascular Health Metric: A Prospective Population-Based Study. BMC Neurol. 2016, 16, 116. [Google Scholar] [CrossRef]
- Barnes, L.L.; Dhana, K.; Liu, X.; Carey, V.J.; Ventrelle, J.; Johnson, K.; Hollings, C.S.; Bishop, L.; Laranjo, N.; Stubbs, B.J.; et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. N. Engl. J. Med. 2023, 389, 602–611. [Google Scholar] [CrossRef]
- Mirza, S.S.; Wolters, F.J.; Swanson, S.A.; Koudstaal, P.J.; Hofman, A.; Tiemeier, H.; Ikram, M.A. 10-Year Trajectories of Depressive Symptoms and Risk of Dementia: A Population-Based Study. Lancet Psychiatry 2016, 3, 628–635. [Google Scholar] [CrossRef]
- Hsu, D.C.; Mormino, E.C.; Schultz, A.P.; Amariglio, R.E.; Donovan, N.J.; Rentz, D.M.; Johnson, K.A.; Sperling, R.A.; Marshall, G.A.; Harvard Aging Brain Study. Lower Late-Life Body-Mass Index Is Associated with Higher Cortical Amyloid Burden in Clinically Normal Elderly. J. Alzheimer’s Dis. 2016, 53, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Ye, B.S.; Woo, S.; Kim, S.W.; Chin, J.; Choi, S.H.; Jeong, J.H.; Yoon, S.J.; Yoon, B.; Park, K.W.; et al. Prediction Model of Conversion to Dementia Risk in Subjects with Amnestic Mild Cognitive Impairment: A Longitudinal, Multi-Center Clinic-Based Study. J. Alzheimer’s Dis. 2017, 61, 825. [Google Scholar] [CrossRef] [PubMed]
- Hogervorst, E.; Temple, S.; O’Donnell, E. Sex Differences in Dementia. Curr. Top. Behav. Neurosci. 2023, 62, 309–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cao, Y.; Ma, Y.; Xu, W.; Zong, G.; Yuan, C. Age- and Sex-Specific Modifiable Risk Factor Profiles of Dementia: Evidence from the UK Biobank. Eur. J. Epidemiol. 2023, 38, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Geraets, A.F.J.; Leist, A.K. Sex/Gender and Socioeconomic Differences in Modifiable Risk Factors for Dementia. Sci. Rep. 2023, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Fages-Masmiquel, E.; Ponjoan, A.; Blanch, J.; Alves-Cabratosa, L.; Martí-Lluch, R.; Comas-Cufí, M.; Garcia-Gil, M.M.; Ramos, R. The effect of age and sex on factors associated with dementia. Rev. Neurol. 2021, 73, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Wolfsgruber, S.; Wagner, M.; Schmidtke, K.; Frölich, L.; Kurz, A.; Schulz, S.; Hampel, H.; Heuser, I.; Peters, O.; Reischies, F.M.; et al. Memory Concerns, Memory Performance and Risk of Dementia in Patients with Mild Cognitive Impairment. PLoS ONE 2014, 9, e100812. [Google Scholar] [CrossRef]
- Nation, D.A.; Ho, J.K.; Dutt, S.; Han, S.D.; Lai, M.H.C.; Alzheimer’s Disease Neuroimaging Initiative. Neuropsychological Decline Improves Prediction of Dementia Beyond Alzheimer’s Disease Biomarker and Mild Cognitive Impairment Diagnoses. J. Alzheimer’s Dis. 2019, 69, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Yoon, B.; Shim, Y.S.; Cho, A.-H.; Lee, E.-S.; Kim, Y.-I.; Yang, D.W. Effect of Literacy and Education on the Visuoconstructional Ability of Non-Demented Elderly Individuals. J. Int. Neuropsychol. Soc. 2011, 17, 934–939. [Google Scholar] [CrossRef]
- Martins-Rodrigues, R.; da Fonsêca, É.K.G.; Lucena-Alves, S.S.; Contador, I.; Trojano, L.; Grossi, D.; Fernández-Calvo, B. Clinical Utility of Two- and Three-Dimensional Visuoconstructional Tasks in Mild Cognitive Impairment and Early Alzheimer’s Disease. Arch. Clin. Neuropsychol. 2021, 36, 177–185. [Google Scholar] [CrossRef]
N | Percent | Mean | Std. | Min. | Max. | |
---|---|---|---|---|---|---|
Age (years) | 132 | - | 70.6 | 7.5 | 44 | 83 |
Sex (M/F) | 39/93 | 29.5/70.5 | ||||
Education (years) | 132 | - | 8.3 | 4.8 | 0 | 18 |
Duration (years) | 132 | - | 1.7 | 1.3 | 0 | 11 |
BMI ≥ 25 (Y/N) | 20/112 | 15.2/84.8 | - | - | - | - |
WML (Y/N) | 41/91 | 31.1/68.9 | - | - | - | - |
Cardiovascular diseases (Y/N) | 34/98 | 25.8/74.2 | - | - | - | - |
Smoking (Y/N) | 16/116 | 12.1/87.9 | - | - | - | - |
Alcohol (Y/N) | 2/130 | 1.5/98.5 | - | - | - | - |
CB (3/2/1/0) | 7/30/40/55 | 5.3/22.7/30.3/41.7 | - | - | - | - |
CAMCOG—praxis | 132 | - | 25.7 | 3.0 | 13 | 30 |
CAMCOG—orientation | 132 | - | 9.8 | 0.6 | 6 | 10 |
CAMCOG—understanding | 132 | - | 6.3 | 0.8 | 4 | 7 |
CAMCOG—language | 132 | - | 23.3 | 2.8 | 15 | 29 |
CAMCOG—memory | 132 | - | 18.9 | 3.8 | 6 | 25 |
CAMCOG—perception | 132 | - | 17.2 | 3.8 | 1 | 24 |
CAMCOG—time perception | 132 | - | 1.9 | 1.2 | 0 | 14 |
BNT | 132 | - | 47.0 | 7.3 | 29 | 60 |
BNT—time completion | 132 | - | 489.5 | 159.6 | 170 | 875 |
FUCAS | 132 | - | 45.9 | 8.8 | 42 | 88 |
GDS | 132 | - | 2.8 | 2.3 | 0 | 9 |
HAM-D | 132 | - | 4.6 | 3.3 | 0 | 21 |
FRSSD | 132 | - | 4.3 | 2.9 | 0 | 14 |
NPI | 132 | - | 2.1 | 2.7 | 0 | 14 |
Parameter | B | Std. Error | Wald Chi-Square | df | Sig. | Exp(B) |
---|---|---|---|---|---|---|
(Intercept) | 6.45 | 2.76 | 5.45 | 1 | 0.02 | 633.70 |
[Sex = F] | −0.66 | 0.23 | 8.33 | 1 | 0.00 | 0.51 |
[Sex = M] | 0 | 1.00 | ||||
[Cardiovascular diseases = Y] | 0.15 | 0.28 | 0.28 | 1 | 0.60 | 1.16 |
[Cardiovascular diseases = N] | 0 | 1.00 | ||||
[BMI ≥ 25 = Y] | 0.82 | 0.27 | 9.07 | 1 | 0.00 | 2.27 |
[BMI ≥ 25 = N] | 0 | 1.00 | ||||
[WML = Y] | −0.24 | 0.27 | 0.82 | 1 | 0.37 | 0.79 |
[WML = N] | 0 | 1.00 | ||||
[Smoking = Y] | −0.29 | 0.36 | 0.65 | 1 | 0.42 | 0.75 |
[Smoking = N] | 0 | 1.00 | ||||
[Alcohol = Y] | 0.86 | 0.29 | 9.04 | 1 | 0.00 | 2.36 |
[Alcohol = N] | 0 | 1.00 | ||||
[CB = 3.00] | −0.31 | 0.59 | 0.28 | 1 | 0.59 | 0.73 |
[CB = 2.00] | −0.28 | 0.31 | 0.82 | 1 | 0.36 | 0.75 |
[CB = 1.00] | −0.16 | 0.28 | 0.33 | 1 | 0.57 | 0.85 |
[CB = 0.00] | 0 | 1.00 | ||||
CAMCOG—praxis | −0.12 | 0.05 | 6.40 | 1 | 0.01 | 0.89 |
GDS | −0.14 | 0.06 | 4.80 | 1 | 0.03 | 0.87 |
Age | −0.01 | 0.02 | 0.47 | 1 | 0.49 | 0.99 |
Education | −0.04 | 0.03 | 1.45 | 1 | 0.23 | 0.96 |
Duration | 0.00 | 0.11 | 0.00 | 1 | 1.00 | 1.00 |
CAMCOG—orientation | 0.04 | 0.17 | 0.04 | 1 | 0.83 | 1.04 |
CAMCOG—understanding | 0.12 | 0.17 | 0.49 | 1 | 0.49 | 1.12 |
CAMCOG—language | −0.09 | 0.05 | 2.67 | 1 | 0.10 | 0.92 |
CAMCOG—memory | −0.09 | 0.06 | 2.20 | 1 | 0.14 | 0.92 |
CAMCOG—perception | 0.00 | 0.05 | 0.00 | 1 | 0.97 | 1.00 |
CAMCOG—time perception | 0.12 | 0.08 | 1.91 | 1 | 0.17 | 1.12 |
FUCAS | −0.02 | 0.02 | 2.27 | 1 | 0.13 | 0.98 |
BNT | 0.01 | 0.02 | 0.16 | 1 | 0.69 | 1.01 |
BNT—time completion | 0.00 | 0.00 | 0.01 | 1 | 0.94 | 1.00 |
NPI | −0.06 | 0.06 | 0.82 | 1 | 0.36 | 0.95 |
FRSSD | 0.07 | 0.05 | 2.16 | 1 | 0.14 | 1.07 |
HAM-D | 0.08 | 0.05 | 2.47 | 1 | 0.12 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiakiri, A.; Bakirtzis, C.; Plakias, S.; Vlotinou, P.; Vadikolias, K.; Terzoudi, A.; Christidi, F. Predictive Models for the Transition from Mild Neurocognitive Disorder to Major Neurocognitive Disorder: Insights from Clinical, Demographic, and Neuropsychological Data. Biomedicines 2024, 12, 1232. https://doi.org/10.3390/biomedicines12061232
Tsiakiri A, Bakirtzis C, Plakias S, Vlotinou P, Vadikolias K, Terzoudi A, Christidi F. Predictive Models for the Transition from Mild Neurocognitive Disorder to Major Neurocognitive Disorder: Insights from Clinical, Demographic, and Neuropsychological Data. Biomedicines. 2024; 12(6):1232. https://doi.org/10.3390/biomedicines12061232
Chicago/Turabian StyleTsiakiri, Anna, Christos Bakirtzis, Spyridon Plakias, Pinelopi Vlotinou, Konstantinos Vadikolias, Aikaterini Terzoudi, and Foteini Christidi. 2024. "Predictive Models for the Transition from Mild Neurocognitive Disorder to Major Neurocognitive Disorder: Insights from Clinical, Demographic, and Neuropsychological Data" Biomedicines 12, no. 6: 1232. https://doi.org/10.3390/biomedicines12061232
APA StyleTsiakiri, A., Bakirtzis, C., Plakias, S., Vlotinou, P., Vadikolias, K., Terzoudi, A., & Christidi, F. (2024). Predictive Models for the Transition from Mild Neurocognitive Disorder to Major Neurocognitive Disorder: Insights from Clinical, Demographic, and Neuropsychological Data. Biomedicines, 12(6), 1232. https://doi.org/10.3390/biomedicines12061232