Does Metabolic Syndrome and Its Components Have Prognostic Significance for Renal and Cardiovascular Outcomes in IgA Nephropathy?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Endpoint Definition
2.2. Statistical Analysis
3. Results
4. Discussion
5. Limitations of this Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACEI/ARB | angiotensin-converting enzyme inhibitor/angiotensin receptor blocker |
ADPKD | autosomal dominant polycystic kidney disease |
AU | albuminuria |
BB | beta blocker |
BMI | body mass index |
BP | blood pressure |
CAD | coronary artery disease |
CCB | calcium channel blocker |
CKD | chronic kidney disease |
COPD | chronic pulmonary obstructive disease |
CV | cardiovascular |
CVD | cardiovascular disease |
DD | diastolic dysfunction |
DM | diabetes mellitus |
E/A | early and late mitral inflow |
eGFR | estimated glomerular filtration rate |
ESKD | end-stage kidney disease |
Hb | hemoglobin |
HDL | high-density lipoprotein |
HT | hypertension |
IFG | impaired fasting glucose |
IgAN | immunoglobulin-A nephropathy |
IGT | impaired glucose tolerance |
LVEF | left ventricle ejection fraction |
LVEDD | left ventricular end-diastolic diameter |
LVH | left ventricular hypertrophy |
LVMI | left ventricular mass index |
MetS | metabolic syndrome |
NCEP | ATP III National Cholesterol Education Program Adult Treatment Panel III |
cfPWV | carotid–femoral pulse wave velocity |
SGLT-2-inhibitor | sodium–glucose transporter-2-inhibitor |
TG | triglyceride |
UA | uric acid |
References
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Canney, M.; Gunning, H.M.; Zheng, Y.; Rose, C.; Jauhal, A.; Hur, S.A.; Sahota, A.; Reich, H.N.; Barbour, S.J. Risk of Cardiovascular Events in Individuals with Primary Glomerular Diseases. Am. J. Kidney Dis. 2022, 80, 740–750. [Google Scholar] [CrossRef]
- Ortiz, A.; Wanner, C.; Gansevoort, R. Chronic kidney disease as cardiovascular risk factor in routine clinical practice: A position statement by the Council of the European Renal Association. Eur. J. Prev. Cardiol. 2022, 29, 2211–2215. [Google Scholar] [CrossRef]
- Kwon, C.S.; Daniele, P.; Forsythe, A.; Ngai, C. A Systematic Literature Review of the Epidemiology, Health-Related Quality of Life Impact, and Economic Burden of Immunoglobulin A Nephropathy. J. Health Econ. Outcomes Res. 2021, 8, 36–45. [Google Scholar] [CrossRef]
- Schena, F.P.; Pesce, F. Epidemiology and ancestral difference. In Recent Advances in IgA Nephropathy; Lai, K.N., Ed.; World Scientific Publishing Co.: Hackensack, NJ, USA, 2009; pp. 9–20. [Google Scholar]
- Berthoux, C.B.; Mohey, H. Clinical course of primary IgA nephropathy. In Recent Advances in IgA Nephropathy; Lai, K.N., Ed.; World Scientific Publishing Co.: Hackensack, NJ, USA, 2009; pp. 107–120. [Google Scholar]
- Floege, J.; Feehally, J. IgA nephropathy: Recent developments. J. Am. Soc. Nephrol. 2000, 11, 2395–2403. [Google Scholar] [CrossRef]
- Barrat, J.; Feehally, J. IgA nephropathy. J. Am. Soc. Nephrol. 2005, 16, 2088–2097. [Google Scholar] [CrossRef]
- Bonnet, F.; Deprele, C.; Sassolas, A.; Moulin, P.; Berthezène, F.; Berthoux, F. Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am. J. Kidney Dis. 2001, 37, 720–727. [Google Scholar] [CrossRef]
- Lee, C.-C.; Sun, C.; Wu, I.-W.; Wang, S.-Y.; Wu, M.-S. Metabolic syndrome loses its predictive power in late-stage chronic kidney disease progression—A paradoxical phenomenon. Clin. Nephrol. 2011, 75, 141–149. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, B.; Sheng, L.T.; Pan, X.F.; Zhou, Y.; Zhu, J.; Li, X.; Yang, K.; Guo, K.; Zhang, X.; et al. Association between weight status, metabolic syndrome, and chronic kidney disease among middle-aged and elderly Chinese. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 2017–2026. [Google Scholar] [CrossRef]
- Li, Y.; Xie, D.; Qin, X.; Tang, G.; Xing, H.; Li, Z.; Xu, X.; Xu, X.; Hou, F. Metabolic syndrome, but not insulin resistance, is associated with an increased risk of renal function decline. Clin. Nutr. 2015, 34, 269–275. [Google Scholar] [CrossRef]
- Thomas, G.; Sehgal, A.R.; Kashyap, S.R.; Srinivas, T.R.; Kirwan, J.P.; Navaneethan, S.D. Metabolic Syndrome and Kidney Disease: A Systematic Review and Meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 2364–2373. [Google Scholar] [CrossRef]
- Rashidbeygi, E.; Safabakhsh, M.; Aghdam, S.D.; Mohammed, S.H.; Alizadeh, S. Metabolic syndrome and its components are related to a higher risk for albuminuria and proteinuria: Evidence from a meta-analysis on 10,603,067 subjects from 57 studies. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 830–843. [Google Scholar] [CrossRef]
- Syrjänen, J.; Mustonen, J.; Pasternack, A. Hypertriglyceridaemia and hyperuricemia are risk factors for progression of IgA nephropathy. Nephrol. Dial. Transplant. 2000, 15, 34–42. [Google Scholar] [CrossRef]
- Yamamoto, R.; Nagasawa, Y.; Shoji, T.; Iwatani, H.; Hamano, T.; Kawada, N.; Inoue, K.; Uehata, T.; Kaneko, T.; Okada, N.; et al. Cigarette smoking and progression of IgA nephropathy. Am. J. Kidney Dis. 2010, 56, 313–324. [Google Scholar] [CrossRef]
- Lakka, H.-M.; Laaksonen, D.E.; Lakka, T.A.; Niskanen, L.K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002, 288, 2709–2716. [Google Scholar] [CrossRef]
- Chen, J.; Muntner, P.; Hamm, L.L.; Jones, D.W.; Batuman, V.; Fonseca, V.; Whelton, P.K.; He, J. The metabolic syndrome and chronic kidney disease in US adults. Ann. Intern. Med. 2004, 140, 167–174. [Google Scholar] [CrossRef]
- Kurella, M.; Lo, J.C.; Chertow, G.M. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J. Am. Soc. Nephrol. 2005, 16, 2134–2140. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Reaven, G. Metabolic syndrome: Pathophysiology and implications for management of cardiovascular disease. Circulation 2002, 106, 286–292. [Google Scholar] [CrossRef]
- Kovács, T.; Vas, T.; Kovesdy, C.P.; Késõi, I.; Sági, B.; Wittmann, I.; Nagy, J. Metabolic syndrome and other cardiovascular risk factors associated with the progression of IgA nephropathy. Clin. Kidney J. 2013, 6, 395–401. [Google Scholar] [CrossRef]
- Lastra, G.; Manrique, C.; McFarlane, S.I.; Sowers, J.R. Cardiometabolic syndrome and chronic kidney disease. Curr. Diabetes Rep. 2006, 6, 207–212. [Google Scholar] [CrossRef]
- Natali, A.; Pucci, G.; Boldrini, B.; Schillaci, G. Metabolic syndrome: At the crossroads of cardiorenal risk. J. Nephrol. 2009, 22, 29–38. [Google Scholar]
- Zoccali, C. Overweight, obesity and metabolic alterations in chronic kidney disease. Contrib. Soc. Biol. Med. Sci. MASA 2009, 30, 17–31. [Google Scholar]
- Fliser, D.; Pacini, G.; Engelleiter, R.; Kautzky-Willer, A.; Prager, R.; Franek, E.; Ritz, E. Insulin resistance and hyperinsulinemia are already present in patients with incipient renal disease. Kidney Int. 1998, 53, 1343–1347. [Google Scholar] [CrossRef]
- Ștefan, G.; Zugravu, A.; Stancu, S. Mortality in IgA Nephropathy: A Long-Term Follow-Up of an Eastern European Cohort. Medicina 2024, 60, 247. [Google Scholar] [CrossRef]
- Nagy, J.; Kovacs, T. Special clinical syndromes. In Recent Advances in IgA Nephropathy; Lai, K.N., Ed.; World Scientific Publishing Co.: Hackensack, NJ, USA, 2009; pp. 121–138. [Google Scholar]
- Kovesdy, C.P.; Trivedi, B.K.; Kalantar-Zadeh, K.; Anderson, J.E. Association of low blood pressure with increased mortality in patients with moderate to severe chronic kidney disease. Nephrol. Dial. Transplant. 2006, 21, 1257–1262. [Google Scholar] [CrossRef]
- Nagy, J.; Kovács, T.; Wittmann, I. Renal protection in IgA nephropathy requires strict blood pressure control. Nephrol. Dial. Transplant. 2005, 20, 1533–1539. [Google Scholar] [CrossRef]
- Kwan, B.C.H.; Murtaugh, M.A.; Beddhu, S. Associations of body size with metabolic syndrome and mortality in moderate chronic kidney disease. Clin. J. Am. Nephrol. 2007, 2, 992–998. [Google Scholar] [CrossRef]
- Kopple, J.D.; Feroze, U. The effect of obesity on chronic kidney disease. J. Ren. Nutr. 2011, 21, 66–71. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef]
- Madero, M.; Sarnak, M.J.; Wang, X.; Sceppa, C.C.; Greene, T.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; Levey, A.S.; Menon, V. Body mass index and mortality in CKD. Am. J. Kidney Dis. 2007, 3, 404–411. [Google Scholar] [CrossRef]
- Tanaka, M.; Yamada, S.; Iwasaki, Y.; Sugishita, T.; Yonemoto, S.; Tsukamoto, T.; Fukui, S.; Takasu, K.; Muso, E. Impact of obesity on IgA nephropathy: Comparative ultrastructural study between obese and non-obese patients. Nephron Clin. Pract. 2009, 112, 71–78. [Google Scholar] [CrossRef]
- Shimamoto, M.; Ohsawa, I.; Suzuki, H.; Hisada, A.; Nagamachi, S.; Honda, D.; Inoshita, H.; Shimizu, Y.; Horikoshi, S.; Tomino, Y. Impact of Body Mass Index on Progression of IgA Nephropathy Among Japanese Patients. J. Clin. Lab. Anal. 2015, 29, 353–360. [Google Scholar] [CrossRef]
- Muntner, P.; Coresh, J.; Smith, J.C.; Eckfeldt, J.; Klag, M.J. Plasma lipids and risk of developing renal dysfunction: The atherosclerosis risk in community study. Kidney Int. 2000, 58, 293–301. [Google Scholar] [CrossRef]
- Fried, F.; Orchard, T.J.; Kasiske, B.L. Effect of lipid reduction on the progression of renal disease: A meta-analysis. Kidney Int. 2001, 59, 260–269. [Google Scholar] [CrossRef]
- Feig, I.D. Uric acid: A novel mediator and marker of risk in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2009, 18, 526–530. [Google Scholar] [CrossRef]
- Obermayr, R.P.; Temml, C.; Gutjahr, G.; Knechtelsdorfer, M.; Oberbauer, R.; Klauser-Braun, R. Elevated uric acid increases the risk for kidney disease. J. Am. Soc. Nephrol. 2008, 19, 2407–2413. [Google Scholar] [CrossRef]
- Myllymäki, J.; Honkanen, T.; Syrjänen, J.; Helin, H.; Rantala, I.; Pasternack, A.; Mustonen, J. Uric acid correlates with the severity of histopathological parameters in IgA nephropathy. Nephrol. Dial. Transplant. 2005, 20, 89–95. [Google Scholar] [CrossRef]
- Ben-Dov, I.Z.; Kark, J.D. Serum uric acid is a GFR-independent long-term predictor of acute and chronic renal insufficiency: The Jerusalem Lipid Research Clinic cohort study. Nephrol. Dial. Transplant. 2011, 26, 2558–2566. [Google Scholar] [CrossRef]
- Alizadeh, S.; Ahmadi, M.; Nejad, B.G.; Djazayeri, A.; Shab-Bidar, S. Metabolic syndrome and its components are associated with increased chronic kidney disease risk: Evidence from a meta-analysis on 11 109 003 participants from 66 studies. Int. J. Clin. Pract. 2018, 72, e13201. [Google Scholar] [CrossRef]
- Panwar, B.; Hanks, L.J.; Tanner, R.M.; Muntner, P.; Kramer, H.; McClellan, W.M.; Warnock, D.G.; Judd, S.E.; Gutiérrez, O.M. Obesity, metabolic health, and the risk of end-stage renal disease. Kidney Int. 2015, 87, 1216–1222. [Google Scholar] [CrossRef]
- Lea, J.; Cheek, D.; Thornley-Brown, D.; Appel, L.; Agodoa, L.; Contreras, G.; Gassman, J.; Lash, J.; Miller, E.R., 3rd; Randall, O.; et al. Metabolic Syndrome, Proteinuria, and the Risk of Progressive CKD in Hypertensive African Americans. Am. J. Kidney Dis. 2008, 51, 732–740. [Google Scholar] [CrossRef]
- Li, X.; Liang, Q.; Zhong, J.; Gan, L.; Zuo, L. The Effect of Metabolic Syndrome and Its Individual Components on Renal Function: A Meta-Analysis. J. Clin. Med. 2023, 12, 1614. [Google Scholar] [CrossRef]
- Drawz, P.; Rahman, M. Chronic Kidney Disease. Ann. Intern. Med. 2015, 162, ITC1–ITC16. [Google Scholar] [CrossRef]
- Kim, H.W.; Park, J.T.; Joo, Y.S.; Kang, S.C.; Lee, J.Y.; Lee, S.; Chang, T.I.; Kang, E.W.; Ryu, D.-R.; Yoo, T.H. Systolic blood pressure and chronic kidney disease progression in patients with primary glomerular disease. J. Nephrol. 2021, 34, 1057–1067. [Google Scholar] [CrossRef]
- Wang, M.; Xia, M.; Yang, H.; Zhang, D.; Zhao, Y.; He, Y.; Liu, J.; Zhang, L.; Yin, C.; Bai, Y. Interaction effect of blood glucose and pressure on the risk of chronic kidney disease: A population-based prospective cohort study. Endocrine 2022, 77, 252–261. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Narayan, K.M.V.; Weisman, D.; Golden, S.H.; Jaar, B.G. Association between prediabetes and risk of chronic kidney disease: A systematic review and meta-analysis. Diabet. Med. 2016, 33, 1615–1624. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.; Kwon, S.H.; Jeon, J.S.; Han, D.C.; Noh, H. Impaired fasting glucose and development of chronic kidney disease in non-diabetic population: A Mendelian randomization study. BMJ Open Diabetes Res. Care 2020, 8, e001395. [Google Scholar] [CrossRef]
- Swiecicka-Klama, A.; Połtyn-Zaradna, K.; Szuba, A.; Zato’nska, K. The Natural Course of Impaired Fasting Glucose. Adv. Exp. Med. Biol. 2021, 1324, 41–50. [Google Scholar]
- Barbour, S.; Er, L.; Djurdjev, O.; Karim, M.; Levin, A. The prevalence of hematologic and metabolic abnormalities during chronic kidney disease stages in different ethnic groups. Kidney Int. 2008, 74, 108–114. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Hager, M.R.; Narla, A.D.; Tannock, L.R. Dyslipidemia in patients with chronic kidney disease. Rev. Endocr. Metab. Disord. 2017, 18, 29–40. [Google Scholar] [CrossRef]
- Stefansson, V.T.; Schei, J.; Solbu, M.D.; Jenssen, T.G.; Melsom, T.; Eriksen, B.O. Metabolic syndrome but not obesity measures are risk factors for accelerated age-related glomerular filtration rate decline in the general population. Kidney Int. 2018, 93, 1183–1190. [Google Scholar] [CrossRef]
- Soohoo, M.; Hashemi, L.; Hsiung, J.-T.; Moradi, H.; Budoff, M.J.; Kovesdy, C.P.; Kalantar-Zadeh, K.; Streja, E. Association of Serum Triglycerides and Renal Outcomes among 1.6 Million US Veterans. Nephron 2022, 146, 457–468. [Google Scholar] [CrossRef]
- Rahman, M.; Yang, W.; Akkina, S.; Alper, A.; Anderson, A.H.; Appel, L.J.; He, J.; Raj, D.S.; Schelling, J.; Strauss, L.; et al. Relation of Serum Lipids and Lipoproteins with Progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1190–1198. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chang, L.; Niu, S.; Kuo, I.; Yen, C.; Shen, F.; Chen, P.; Chang, J.; Hung, C. High risk of renal outcome of metabolic syndrome independent of diabetes in patients with CKD stage 1-4: The ICKD database. Diabetes Metab. Res. Rev. 2023, 39, e3618. [Google Scholar] [CrossRef]
- Sági, B.; Késői, I.; Késői, B.; Vas, T.; Csiky, B.; Kovács, T.; Nagy, J. Arterial stiffness may predict renal and cardiovascular prognosis in autosomal-dominant polycystic kidney disease. Physiol. Int. 2018, 105, 145–156. [Google Scholar] [CrossRef]
- Késoi, I.; Sági, B.; Tóth, O.I.; Vas, T.; Fazekas, A.; Kovács, T.; Pintér, T.; Wittmann, I.; Nagy, J. Different effect of IgA nephropathy and polycystic kidney disease on arterial stiffness. Kidney Blood Press. Res. 2011, 34, 158–166. [Google Scholar] [CrossRef]
- Sági, B.; Késői, I.; Vas, T.; Csiky, B.; Nagy, J.; Kovács, T.J. Relationship between arterial stiffness, left ventricular diastolic function, and renal function in chronic kidney disease. BMC Nephrol. 2023, 24, 261. [Google Scholar] [CrossRef]
- Sági, B.; Késői, I.; Vas, T.; Csiky, B.; Nagy, J.; Kovács, T.J. Left ventricular myocardial mass index associated with cardiovascular and renal prognosis in IgA nephropathy. BMC Nephrol. 2022, 23, 285. [Google Scholar] [CrossRef]
- Anders, H.J.; Peired, A.J.; Romagnani, P. SGLT2 inhibition requires reconsideration of fundamental paradigms in chronic kidney disease, ‘diabetic nephropathy’, IgA nephropathy and podocytopathies with FSGS lesions. Nephrol. Dial. Transplant. 2022, 37, 1609–1615. [Google Scholar] [CrossRef]
- Caster, D.J.; Lafayette, R.A. The Treatment of Primary IgA Nephropathy: Change, Change, Change. Am. J. Kidney Dis. 2024, 83, 229–240. [Google Scholar] [CrossRef]
Clinical Data (n = 125) | Met sy − (n = 60) | Met sy + (n = 65) | p |
---|---|---|---|
Man/woman (n/%) | 36/24 (60/40) | 46/19 (71/29) | 0.079 |
Age (year) (mean and 25–75th percentiles) | 53.2 (43.0–63.0) | 55.4 (44.0–64.0) | 0.109 |
Average systolic BP (Hgmm) (mean and 25–75th percentiles) | 123.5 (115.0–129.25) | 127.4 (117.3–131.2) | 0.002 * |
Average diastolic BP (Hgmm) | 73 ± 9.6 | 75.7 ± 9.5 | 0.231 |
24 h pulse pressure (Hgmm) (mean and 25–75th percentiles) | 49.35 (43.0–54.0) | 53.10 (44.5–56.5) | 0.012 * |
Diurnal index systolic (%) | 10.92 ± 5.08 | 8.36 ± 7.72 | 0.020 * |
Abdominal circumference in males (cm) | 100.2 ± 4.2 | 112.1 ± 6.5 | 0.030 * |
Abdominal circumference in females (cm) | 90.1 ± 5.7 | 94.4 ± 7.3 | 0.023 * |
Metabolic Parameters | |||
Hypertension (n,%) | 41 (68) | 53 (81) | 0.118 |
BMI (kg/m2) (mean and 25–75th percentiles) | 26.5 (22.9–29.7) | 28.6 (23.4–30.1) | 0.001 * |
Dyslipidemia (n,%) | 24 (40) | 34 (52) | 0.137 |
Diabetes (n, %) | 9 (15) | 21 (32) | 0.087 |
IFG and IGT (n/%) | 2 (3) | 10 (15) | 0.025 * |
Overweighted (n/%) | 3 (5) | 5 (8) | 0.098 |
Obesity (n/%) | 2 (3) | 32 (49) | 0.001 * |
Visceral obesity (n/%) | 2 (3) | 28 (43) | 0.001 * |
eGFR (mL/min) | 94.6 ± 29.3 | 78.9 ± 37.9 | 0.005 * |
eGFR < 60 mL/min (n/%) | 2 (3) | 4 (6) | 0.086 |
Duration of kidney disease (year) | 10.2 ± 9.7 | 8.8 ± 9.1 | 0.101 |
Smoking (n, %) | 7 (12) | 11(17) | 0.156 |
Therapy | |||
ACEI/ARB (n, %) | 46 (77) | 60 (92) | 0.079 |
BB (n, %) | 12 (20) | 19 (29) | 0.178 |
Statin (n, %) | 16 (27) | 22 (34) | 0.164 |
CCB (n, %) | 9 (15) | 19 (29) | 0.082 |
Echocardiographic Parameters | |||
LVEF (%) (mean and 25–75th percentiles) | 62.8 (59.0–66.5) | 63.5 (60.1–66.7) | 0.211 |
LVMI (g/m2) | 103.53 ± 15.95 | 109.21 ± 21.25 | 0.123 |
LVEDD (cm) | 6.05 ± 6.29 | 5.57 ± 5.13 | 0.173 |
DD (n/%) | 7 (11) | 17 (26) | <0.001 * |
E/A | 1.18 ± 0.32 | 0.93 ± 0.30 | <0.001 * |
Arterial Stiffness | |||
cfPWV (m/s) (mean and 25–75th percentiles) | 9.97 (8.48–11.35) | 11.34 (10.1–12.2) | 0.003 * |
Laboratory Results | |||
Hb (g/dL) | 13.9 ± 1.6 | 13.6 ± 1.7 | 0.245 |
AU (mg/day) (mean and 25–75th percentiles) | 457.48 (65.0–700.0) | 558.34 (75.1–789.1) | 0.078 |
UA (µmol/L) | 303 ± 97.4 | 342 ± 84.9 | 0.009 * |
Total cholesterol (mmol/L) (mean and 25–75th percentiles) | 4.97 (4.28–5.51) | 4.79 (4.35–5.41) | 0.124 |
HDL cholesterol (mmol/L) (mean and 25–75th percentiles) | 1.27 (1.03–1.44) | 1.21 (1.0–1.38) | 0.029 * |
TG (mmol/L) (mean and 25–75th percentiles) | 1.72 (0.93–2.04) | 1.99 (0.99–2.34) | 0.012 * |
Hypercholesterinemia (n/%) | 9 (15) | 21 (32) | 0.04 * |
Hypertriglyceridemia (n/%) | 5 (8) | 52 (80) | 0.001 * |
Earlier CV Disease | |||
Heart failure | 0 (0) | 1(1) | 0.176 |
Stroke | 0 (0) | 1 (1) | 0.187 |
CAD | 1 (2) | 3 (5) | 0.087 |
COPD | 0 (0) | 1 (1) | 0.139 |
HT (n/%) | IFG/ IGT (n/%) | DM (n/%) | Obesity (n/%) | Triglyceride (n/%) | HDL Cholesterol (n/%) | Number of Positive Parameters/ Patients (average/n) | |
---|---|---|---|---|---|---|---|
MetS + (n = 65) | 53 (82) | 10 (15) | 21 (32) | 32 (49) | 52 (80) | 33 (51) | 201 (3.09) |
MetS − (n = 60) | 41 (68) | 2 (3) | 9 (15) | 2 (3) | 5 (8) | 15(25) | 74 (1.23) |
Parameters | Primary Combined Endpoint Rate (n/%) | Secondary Renal Endpoint Rate (n/%) | Secondary CV Endpoint Rate (n/%) |
---|---|---|---|
HT− (n = 30) | 2 (7) | 2 (7) | 0 (0) |
HT+ (n = 95) | 36 (38) | 26 (27) | 13 (14) |
DM− (n = 95) | 22 (23) | 17 (18) | 6 (6) |
DM+ (n = 30) | 16 (53) | 11 (37) | 7 (23) |
Dyslipidemia− (n = 67) | 16 (24) | 12 (18) | 4 (6) |
Dyslipidemia+ (n = 58) | 22 (38) | 16 (27) | 9 (15) |
BMI low (n = 57) | 11 (19) | 7 (12) | 4 (7) |
BMI high (n = 68) | 27 (40) | 21 (31) | 9 (13) |
UA low (n = 65) | 11 (17) | 7 (11) | 4 (6) |
UA high (n = 60) | 27 (45) | 21 (35) | 9 (15) |
MetS− (n = 60) | 15 (25) | 10 (17) | 6 (10) |
MetS+ (n = 65) | 23 (35) | 18 (27) | 7 (11) |
MetS component 0 (n = 35) | 1 (3) | 1 (3) | 0 (0) |
MetS component 1 (n = 22) | 8 (36) | 9 (41) | 3 (13) |
MetS components 2+ (n = 68) | 29 (42) | 18 (26) | 10 (15) |
PWV < 10 m/s and MetS− (n = 61) | 9 (15) | 8 (13) | 1 (2) |
PWV > 10 m/s and MetS+ (n = 38) | 13 (34) | 9 (23) | 5 (13) |
PWV < 10 m/s and MetS− (n = 10) | 6 (60) | 4 (40) | 3 (30) |
PWV > 10 m/s and MetS+ (n = 16) | 10 (62) | 7 (44) | 4 (25) |
Clinical Data (n = 125) | OR | CI (95%) | p |
---|---|---|---|
Gender | 4.333 | 3.973–4.761 | 0.001 * |
Age | 2.906 | 2.198–3.214 | 0.026 * |
Average systolic BP | 0.800 | 0.290–0.993 | 0.354 |
Average diastolic BP | 0.576 | 0.119–0.626 | 0.615 |
24 h pulse pressure | 0.737 | 0.174–0.947 | 0.535 |
Diurnal index systolic | 0.559 | 0.283–0.874 | 0.693 |
Metabolic Parameters | |||
HT | 5.806 | 5.301–6.455 | 0.018 * |
DM | 1.912 | 1.808–2.178 | 0.011 * |
BMI | 2.205 | 1.913–2.742 | 0.021 * |
Dyslipidemia | 3.474 | 2.237–4.546 | 0.034 * |
IFG and IGT | 0.564 | 0.118–0.922 | 0.787 |
Overweighted | 0.479 | 0.340–0.941 | 0.109 |
Obesity | 0.367 | 0.204–0.530 | 0.607 |
eGFR | 3.187 | 2.455–4.366 | 0.021 * |
Duration of kidney disease | 0.718 | 0.387–0.972 | 0.284 |
Smoking | 0.341 | 0.327–0.823 | 0.499 |
Echocardiographic Parameters | |||
LVEF | 0.635 | 0.602–0.968 | 0.526 |
LVMI | 0.460 | 0.068–0.691 | 0.772 |
LVEDD | 0.508 | 0.285–0.952 | 0.293 |
Laboratory Results | |||
Hb | 2.237 | 2.151–2.486 | 0.029 * |
AU | 2.568 | 1.933–3.653 | 0.013 * |
UA | 1.837 | 1.735–1.952 | 0.021 * |
Total cholesterol | 0.903 | 0.450–0.937 | 0604 |
HDL cholesterol | 0.476 | 0.045–0.846 | 0.997 |
TG | 0.806 | 0.463–0.944 | 0.143 |
B | p | Exp(B) | 95% CI for Exp(B) Lower | 95% CI for Exp(B) Upper | |
---|---|---|---|---|---|
Primary combined endpoint | |||||
Gender | −0.898 | 0.078 | 0.408 | 0.150 | 1.104 |
Age | 0.027 | 0.093 | 1.028 | 0.995 | 1.061 |
Dyslipidemia | 1.144 | 0.034 * | 3.140 | 1.091 | 9.042 |
HT | −0.774 | 0.363 | 0.461 | 0.087 | 2.447 |
DM | −0.964 | 0.031 * | 0.381 | 0.159 | 0.914 |
BMI | 0.014 | 0.787 | 1.014 | 0.916 | 1.123 |
eGFR | −0.021 | 0.010 * | 0.980 | 0.964 | 0.995 |
Hb | −0.344 | 0.006 * | 0.709 | 0.555 | 0.905 |
AU | 0.001 | 0.001 * | 1.001 | 1.001 | 1.002 |
UA | 0.004 | 0.083 | 1.004 | 0.999 | 1.009 |
Secondary renal endpoint | |||||
Gender | −0.492 | 0.416 | 0.611 | 0.186 | 2.003 |
Age | 0.021 | 0.234 | 1.021 | 0.986 | 1.058 |
Dyslipidemia | 1.964 | 0.003 * | 7.130 | 1.931 | 26.328 |
HT | −0.743 | 0.430 | 0.476 | 0.075 | 3.011 |
DM | −0.568 | 0.285 | 0.567 | 0.200 | 1.605 |
BMI | 0.087 | 0.151 | 1.091 | 0.969 | 1.228 |
eGFR | −0.030 | 0.004 * | 0.971 | 0.951 | 0.991 |
Hb | −0.493 | 0.002 * | 0.611 | 0.444 | 0.841 |
AU | 0.002 | 0.001 * | 1.002 | 1.001 | 1.002 |
UA | 0.005 | 0.119 | 1.005 | 0.999 | 1.011 |
Secondary CV endpoint | |||||
Gender | −2.632 | 0.029 * | 0.072 | 0.007 | 0.759 |
Age | 0.072 | 0.095 | 1.075 | 0.987 | 1.170 |
Dyslipidemia | 0.571 | 0.531 | 1.771 | 0.296 | 10.581 |
HT | −11.318 | 0.961 | 0.001 | 0.001 | 126.263 |
DM | −2.240 | 0.002 * | 0.106 | 0.025 | 0.454 |
BMI | −0.231 | 0.029 * | 0.794 | 0.646 | 0.976 |
eGFR | −0.002 | 0.874 | 0.998 | 0.969 | 1.027 |
Hb | −0.260 | 0.192 | 0.771 | 0.521 | 1.140 |
AU | 0.001 | 0.744 | 1.000 | 0.999 | 1.001 |
UA | 0.002 | 0.542 | 1.002 | 0.995 | 1.010 |
B | p | Exp(B) | 95% CI for Exp(B) Lower | 95% CI for Exp(B) Upper | |
---|---|---|---|---|---|
Primary endpoint | |||||
Dyslipidemia | −0.008 | 0.981 | 0.992 | 0.493 | 1.995 |
HT | −1.249 | 0.102 | 0.287 | 0.064 | 1.279 |
DM | −0.800 | 0.051 | 0.449 | 0.201 | 1.002 |
BMI | −0.013 | 0.743 | 0.987 | 0.913 | 1.067 |
UA | 0.006 | 0.002 * | 1.006 | 1.002 | 1.009 |
Secondary renal endpoint | |||||
Dyslipidemia | 0.114 | 0.777 | 1.121 | 0.508 | 2.475 |
HT | −0.828 | 0.290 | 0.437 | 0.094 | 2.024 |
DM | −0.549 | 0.258 | 0.578 | 0.223 | 1.496 |
BMI | 0.040 | 0.357 | 1.041 | 0.955 | 1.135 |
UA | 0.006 | 0.003 * | 1.006 | 1.002 | 1.010 |
Secondary CV endpoint | |||||
Dyslipidemia | −0.728 | 0.254 | 0.483 | 0.138 | 1.687 |
HT | −12.342 | 0.971 | 0.001 | 0.001 | 8.049 |
DM | −1.840 | 0.005 * | 0.159 | 0.044 | 0.567 |
BMI | −0.128 | 0.077 | 0.880 | 0.763 | 1.014 |
UA | 0.004 | 0.150 | 1.004 | 0.998 | 1.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sági, B.; Vas, T.; Csiky, B.; Nagy, J.; Kovács, T.J. Does Metabolic Syndrome and Its Components Have Prognostic Significance for Renal and Cardiovascular Outcomes in IgA Nephropathy? Biomedicines 2024, 12, 1250. https://doi.org/10.3390/biomedicines12061250
Sági B, Vas T, Csiky B, Nagy J, Kovács TJ. Does Metabolic Syndrome and Its Components Have Prognostic Significance for Renal and Cardiovascular Outcomes in IgA Nephropathy? Biomedicines. 2024; 12(6):1250. https://doi.org/10.3390/biomedicines12061250
Chicago/Turabian StyleSági, Balázs, Tibor Vas, Botond Csiky, Judit Nagy, and Tibor József Kovács. 2024. "Does Metabolic Syndrome and Its Components Have Prognostic Significance for Renal and Cardiovascular Outcomes in IgA Nephropathy?" Biomedicines 12, no. 6: 1250. https://doi.org/10.3390/biomedicines12061250
APA StyleSági, B., Vas, T., Csiky, B., Nagy, J., & Kovács, T. J. (2024). Does Metabolic Syndrome and Its Components Have Prognostic Significance for Renal and Cardiovascular Outcomes in IgA Nephropathy? Biomedicines, 12(6), 1250. https://doi.org/10.3390/biomedicines12061250