A De Novo CaSR Missense Variant in Combination with Two Inherited Missense Variants in CFTR and SPINK1 Detected in a Patient with Chronic Pancreatitis
Abstract
:1. Introduction
2. Detailed Case Description
2.1. Clinical History
2.2. DNA Extraction and NGS Analysis
2.3. Protein Analysis of CaSR
2.4. Sequencing and Pathogenicity Analysis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashraf, H.; Colombo, J.P.; Marcucci, V.; Rhoton, J.; Olowoyo, O. A Clinical Overview of Acute and Chronic Pancreatitis: The Medical and Surgical Management. Cureus 2021, 13, e19764. [Google Scholar] [CrossRef] [PubMed]
- Rinderknecht, H. Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig. Dis. Sci. 1986, 31, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Szmola, R.; Bence, M.; Carpentieri, A.; Szabó, A.; Costello, C.E.; Samuelson, J.; Sahin-Tóth, M. Chymotrypsin C is a co-activator of human pancreatic procarboxypeptidases A1 and A2. J. Biol. Chem. 2011, 286, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, E.; Sahin-Tóth, M. Genetic Risk in Chronic Pancreatitis: The Trypsin-Dependent Pathway. Dig. Dis. Sci. 2017, 62, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sahin-Tóth, M. Chymotrypsin C mutations in chronic pancreatitis. J. Gastroenterol. Hepatol. 2011, 26, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Xu, Y.; Yin, H.; Zhang, H.; Ye, J. KRT8 phosphorylation regulates the epithelial-mesenchymal transition in retinal pigment epithelial cells through autophagy modulation. J. Cell. Mol. Med. 2020, 24, 3217–3228. [Google Scholar] [CrossRef]
- Hegyi, P.; Wilschanski, M.; Muallem, S.; Lukacs, G.L.; Sahin-Tóth, M.; Uc, A.; Gray, M.A.; Rakonczay, Z., Jr.; Maléth, J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev. Physiol. Biochem. Pharmacol. 2016, 170, 37–66. [Google Scholar] [PubMed]
- Witt, H.; Beer, S.; Rosendahl, J.; Chen, J.M.; Chandak, G.R.; Masamune, A.; Bence, M.; Szmola, R.; Oracz, G.; Macek, M., Jr.; et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat. Genet. 2013, 45, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Rácz, G.Z.; Kittel, A.; Riccardi, D.; Case, R.M.; Elliott, A.C.; Varga, G. Extracellular calcium sensing receptor in human pancreatic cells. Gut 2002, 51, 705–711. [Google Scholar] [CrossRef]
- Szabó, A.; Sahin-Tóth, M. Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J. Biol. Chem. 2012, 287, 20701–20710. [Google Scholar] [CrossRef]
- Halangk, W.; Lerch, M.M.; Brandt-Nedelev, B.; Roth, W.; Ruthenbuerger, M.; Reinheckel, T.; Domschke, W.; Lippert, H.; Peters, C.; Deussing, J. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Investig. 2000, 106, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Sahin-Tóth, M. Channelopathy of the Pancreas Causes Chronic Pancreatitis. Gastroenterology 2020, 158, 1538–1540. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Bozdogan, S.T.; Mujde, C.; Boga, I.; Sonmezler, O.; Hanta, A.; Rencuzogullari, C.; Ozcan, D.; Altintas, D.U.; Bisgin, A. Current Status of Genetic Diagnosis Laboratories and Frequency of Genetic Variants Associated with Cystic Fibrosis through a Newborn-Screening Program in Turkey. Genes 2021, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Lucarelli, M.; Narzi, L.; Pierandrei, S.; Bruno, S.M.; Stamato, A.; D’Avanzo, M.; Strom, R.; Quattrucci, S. A new complex allele of the CFTR gene partially explains the variable phenotype of the L997F mutation. Genet. Med. 2010, 12, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulytė, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef] [PubMed]
- Berke, G.; Gede, N.; Szadai, L.; Ocskay, K.; Hegyi, P.; Sahin-Tóth, M.; Hegyi, E. Bicarbonate defective CFTR variants increase risk for chronic pancreatitis: A meta-analysis. PLoS ONE 2022, 17, e0276397. [Google Scholar] [CrossRef]
- Masson, E.; Le Maréchal, C.; Levy, P.; Chuzhanova, N.; Ruszniewski, P.; Cooper, D.N.; Chen, J.M.; Férec, C. Co-inheritance of a novel deletion of the entire SPINK1 gene with a CFTR missense mutation (L997F) in a family with chronic pancreatitis. Mol. Genet. Metab. 2007, 92, 168–175. [Google Scholar] [CrossRef]
- Schneider, A.; Larusch, J.; Sun, X.; Aloe, A.; Lamb, J.; Hawes, R.; Cotton, P.; Brand, R.E.; Anderson, M.A.; Money, M.E.; et al. Combined bicarbonate conductance-impairing variants in CFTR and SPINK1 variants are associated with chronic pancreatitis in patients without cystic fibrosis. Gastroenterology 2011, 140, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Mayerle, J.; Sendler, M.; Hegyi, E.; Beyer, G.; Lerch, M.M.; Sahin-Tóth, M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019, 156, 1951–1968.e1. [Google Scholar] [CrossRef] [PubMed]
- Takáts, A.; Berke, G.; Szentesi, A.; Farkas, G., Jr.; Izbéki, F.; Erőss, B.; Czakó, L.; Vincze, A.; Hegyi, P.; Sahin-Tóth, M.; et al. Common calcium-sensing receptor (CASR) gene variants do not modify risk for chronic pancreatitis in a Hungarian cohort. Pancreatology 2021, 21, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Ewers, M.; Canaff, L.; Weh, A.E.; Masson, E.; Eiseler, K.; Chen, J.M.; Rebours, V.; Bugert, P.; Michl, P.; Rosendahl, J.; et al. The three common polymorphisms p.A986S, p.R990G and p.Q1011E in the calcium sensing receptor (CASR) are not associated with chronic pancreatitis. Pancreatology 2021, 21, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 2018, 15, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Shoback, D.M. Familial hypocalciuric hypercalcemia and related disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Baudry, C.; Rebours, V.; Houillier, P.; Hammel, P.; Ruszniewski, P.; Levy, P. Recurrent acute pancreatitis caused by association of a novel mutation of the calcium-sensing receptor gene and a heterozygous mutation of the SPINK1 gene. Pancreas 2010, 39, 420–421. [Google Scholar] [CrossRef] [PubMed]
- Felderbauer, P.; Klein, W.; Bulut, K.; Ansorge, N.; Dekomien, G.; Werner, I.; Epplen, J.T.; Schmitz, F.; Schmidt, W.E. Mutations in the calcium-sensing receptor: A new genetic risk factor for chronic pancreatitis? Scand. J. Gastroenterol. 2006, 41, 343–348. [Google Scholar] [CrossRef]
- Imam, Z.; Hanna, A.; Jomaa, D.; Khasawneh, M.; Abonofal, A.; Murad, M.H. Hypercalcemia of Malignancy and Acute Pancreatitis. Pancreas 2021, 50, 206–213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontempo, P.; Surace, C.; Menale, L.; Alicata, C.; D’Elia, G.; Tomaiuolo, A.C.; Minervino, D.; Lorefice, E.; Novelli, A. A De Novo CaSR Missense Variant in Combination with Two Inherited Missense Variants in CFTR and SPINK1 Detected in a Patient with Chronic Pancreatitis. Biomedicines 2024, 12, 1278. https://doi.org/10.3390/biomedicines12061278
Bontempo P, Surace C, Menale L, Alicata C, D’Elia G, Tomaiuolo AC, Minervino D, Lorefice E, Novelli A. A De Novo CaSR Missense Variant in Combination with Two Inherited Missense Variants in CFTR and SPINK1 Detected in a Patient with Chronic Pancreatitis. Biomedicines. 2024; 12(6):1278. https://doi.org/10.3390/biomedicines12061278
Chicago/Turabian StyleBontempo, Piera, Cecilia Surace, Lucia Menale, Claudia Alicata, Gemma D’Elia, Anna Cristina Tomaiuolo, Daniele Minervino, Elisa Lorefice, and Antonio Novelli. 2024. "A De Novo CaSR Missense Variant in Combination with Two Inherited Missense Variants in CFTR and SPINK1 Detected in a Patient with Chronic Pancreatitis" Biomedicines 12, no. 6: 1278. https://doi.org/10.3390/biomedicines12061278
APA StyleBontempo, P., Surace, C., Menale, L., Alicata, C., D’Elia, G., Tomaiuolo, A. C., Minervino, D., Lorefice, E., & Novelli, A. (2024). A De Novo CaSR Missense Variant in Combination with Two Inherited Missense Variants in CFTR and SPINK1 Detected in a Patient with Chronic Pancreatitis. Biomedicines, 12(6), 1278. https://doi.org/10.3390/biomedicines12061278