DNA Methylation Profiles of PSMA6, PSMB5, KEAP1, and HIF1A Genes in Patients with Type 1 Diabetes and Diabetic Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Ethics
2.2. Clinical Definitions
2.3. Biochemical Parameters
2.4. Sampling of Blood for DNA Extraction and Serum Preparation
2.5. Targeted DNA Methylation Assessment
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Cohort
3.2. Characteristics of Patients with Different Severity of DR
3.3. Association of DNA Methylation with DR Severity Stages
3.4. Correlations between DNA Methylation Levels and Clinical Parameters
3.5. Association of DNA Methylation with the Presence of DR Using Logistic Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lundeen, E.A.; Burke-Conte, Z.; Rein, D.B.; Wittenborn, J.S.; Saaddine, J.; Lee, A.Y.; Flaxman, A.D. Prevalence of Diabetic Retinopathy in the US in 2021. JAMA Ophthalmol. 2023, 141, 747–754. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, T.; Wang, S.; Mo, J.; Tian, T.; Zhou, X. Epigenetic modification of nucleic acids: From basic studies to medical applications. Chem. Soc. Rev. 2017, 46, 2844–2872. [Google Scholar] [CrossRef] [PubMed]
- Surguchov, A. α-Synuclein and Mechanisms of Epigenetic Regulation. Brain Sci. 2023, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Khullar, M.; Cheema, B.S.; Raut, S.K. Emerging Evidence of Epigenetic Modifications in Vascular Complication of Diabetes. Front. Endocrinol. 2017, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Testa, R.; Bonfigli, A.R.; Prattichizzo, F.; La Sala, L.; De Nigris, V.; Ceriello, A. The “Metabolic Memory” Theory and the Early Treatment of Hyperglycemia in Prevention of Diabetic Complications. Nutrients 2017, 9, 437. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Hossein-Nezhad, A.; Larijani, B.; Amini, M.; Keshtkar, A. Global DNA methylation as a possible biomarker for diabetic retinopathy. Diabetes Metab. Res. Rev. 2015, 31, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Agardh, E.; Lundstig, A.; Perfilyev, A.; Volkov, P.; Freiburghaus, T.; Lindholm, E.; Rönn, T.; Agardh, C.-D.; Ling, C. Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med. 2015, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J. Gene–environment interactions in human diseases. Nat. Rev. Genet. 2005, 6, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018, 378, 1323–1334. [Google Scholar] [CrossRef]
- Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 2019, 15, 327–345. [Google Scholar] [CrossRef]
- Thibaudeau, T.A.; Smith, D.M. A practical review of proteasome pharmacology. Pharmacol. Rev. 2019, 71, 170–197. [Google Scholar] [CrossRef] [PubMed]
- Sjakste, T.; Paramonova, N.; Osina, K.; Dokane, K.; Sokolovska, J.; Sjakste, N. Genetic variations in the PSMA3, PSMA6 and PSMC6 genes are associated with type 1 diabetes in latvians and with expression level of number of UPS-related and T1DM-susceptible genes in HapMap individuals. Mol. Genet. Genom. 2016, 291, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Kalnina, J.; Paramonova, N.; Sjakste, N.; Sjakste, T. Study of association between polymorphisms in the PSMB5 (rs11543947) and PSMA3 (rs2348071) genes and multiple sclerosis in Latvians. Biopolym. Cell 2014, 30, 305–309. [Google Scholar] [CrossRef]
- Aghdam, S.Y.; Sheibani, N. The Ubiquitin-Proteasome System and Microvascular Complications of Diabetes. Ophthalmic Vis. Res. 2013, 8, 244–256. [Google Scholar] [PubMed]
- Chapple, S.J.; Siow, R.C.M.; Mann, G.E. Crosstalk between Nrf2 and the proteasome: Therapeutic potential of Nrf2 inducers in vascular disease and aging. Int. J. Biochem. Cell Biol. 2012, 44, 1315–1320. [Google Scholar] [CrossRef]
- Miyata, T.; Suzuki, N.; van Ypersele de Strihou, C. Diabetic nephropathy: Are there new and potentially promising therapies targeting oxygen biology? Kidney Int. 2013, 84, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Zhong, Q.; Kowluru, R.A. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy. Investig. Opthalmol. Vis. Sci. 2014, 55, 7256–7265. [Google Scholar] [CrossRef] [PubMed]
- Catrina, S.; Zheng, X. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers. Diabetes Metab. Res. Rev. 2016, 32 (Suppl. 1), 179–185. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, H.; Harris, A.L. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018, 27, 281–298. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, H.; Yan, N.; Lai, K.; Xiang, M. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection. Front. Cell. Neurosci. 2017, 11, 20. [Google Scholar] [CrossRef]
- Ekberg, N.R.; Eliasson, S.; Li, Y.W.; Zheng, X.; Chatzidionysiou, K.; Falhammar, H.; Gu, H.F.; Catrina, S.-B. Protective effect of the HIF-1A Pro582Ser polymorphism on severe diabetic retinopathy. J. Diabetes Res. 2019, 2019, 2936962. [Google Scholar] [CrossRef]
- Han, X.; Ma, W.; Zhu, Y.; Sun, X.; Liu, N. Advanced glycation end products enhance macrophage polarization to the M1 phenotype via the HIF-1α/PDK4 pathway. Mol. Cell. Endocrinol. 2020, 514, 110878. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, D.; Sun, X.; Huang, W.; Xu, Y.; Li, C.; Zhang, Y. Hypoxia-inducible Factor-1α in Diabetic Foot Ulcers: Plain but Not Simple. Gene Expr. 2023, 22, 306–320. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Tanaka, T.; Nangaku, M. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease. J. Diabetes Investig. 2017, 8, 261–271. [Google Scholar] [CrossRef]
- Gao, C.; Huang, W.; Kanasaki, K.; Xu, Y. The role of ubiquitination and sumoylation in diabetic nephropathy. BioMed Res. Int. 2014, 2014, 160692. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yang, C.; Nan, Q.; Gao, C.; Feng, H.; Gou, F.; Chen, G.; Zhang, Z.; Yan, P.; Peng, J.; et al. The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro. BioMed Res. Int. 2014, 2014, 684765. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Pan, J.; Wang, L.; Wang, P.; Zhang, M.; Liu, M.; Dong, Z.; Meng, Q.; Tao, X.; Zhao, X.; et al. Epigenetic regulation of lncRNA connects ubiquitin-proteasome system with infection-inflammation in preterm births and preterm premature rupture of membranes. BMC Pregnancy Childbirth 2015, 15, 35. [Google Scholar] [CrossRef]
- Luo, Z.-F.; Qi, W.; Feng, B.; Mu, J.; Zeng, W.; Guo, Y.-H.; Pang, Q.; Ye, Z.-L.; Liu, L.; Yuan, F.-H. Prevention of diabetic nephropathy in rats through enhanced renal antioxidative capacity by inhibition of the proteasome. Life Sci. 2011, 88, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Mokarram, P.; Kavousipour, S.; Sarabi, M.M.; Mehrabani, G.; Fahmidehkar, M.A.; Shamsdin, S.A.; Alipour, A.; Naini, M.A. MGMT-B gene promoter hypermethylation in patients with inflammatory bowel disease—A novel finding. Asian Pac. J. Cancer Prev. 2015, 16, 1945–1952. [Google Scholar] [CrossRef]
- Mokarram, P.; Shakiba-Jam, F.; Kavousipour, S.; Sarabi, M.M.; Seghatoleslam, A. Promoter Methylation Status of Two Novel Human Genes, UBE2Q1 and UBE2Q2, in Colorectal Cancer: A New Finding in Iranian Patients. Asian Pac. J. Cancer Prev. 2015, 16, 8247–8252. [Google Scholar] [CrossRef]
- West, N.A.; Kechris, K.; Dabelea, D. Exposure to Maternal Diabetes in Utero and DNA Methylation Patterns in the Offspring. Immunometabolism 2013, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ahola, A.J.; Radzeviciene, L.; Zaharenko, L.; Bulum, T.; Skrebinska, S.; Prakapiene, E.; Blaslov, K.; Roso, V.; Rovite, V.; Pirags, V.; et al. Association between symptoms of depression, diabetes complications and vascular risk factors in four European cohorts of individuals with type 1 diabetes—InterDiane Consortium. Diabetes Res. Clin. Pract. 2020, 170, 108495. [Google Scholar] [CrossRef] [PubMed]
- Rovite, V.; Wolff-Sagi, Y.; Zaharenko, L.; Nikitina-Zake, L.; Grens, E.; Klovins, J. Genome Database of the Latvian Population (LGDB): Design, Goals, and Primary Results. J. Epidemiol. 2018, 28, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Sokolovska, J.; Dekante, A.; Baumane, L.; Pahirko, L.; Valeinis, J.; Dislere, K.; Rovite, V.; Pirags, V.; Sjakste, N. Nitric oxide metabolism is impaired by type 1 diabetes and diabetic nephropathy. Biomed. Rep. 2020, 12, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Santos, J.M.; Mishra, M. Epigenetic modifications and diabetic retinopathy. BioMed Res. Int. 2013, 2013, 635284. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, L.-L.; Cao, M.; Hu, A.; Hu, D.; Luo, Y.; Wang, H.; Zhong, J.-N. DNA methylation plays important roles in retinal development and diseases. Exp. Eye Res. 2021, 211, 108733. [Google Scholar] [CrossRef]
- Kumari, N.; Karmakar, A.; Ganesan, S.K. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy. J. Cell. Physiol. 2020, 235, 1933–1947. [Google Scholar] [CrossRef] [PubMed]
- Bard, J.A.; Goodall, E.A.; Greene, E.R.; Jonsson, E.; Dong, K.C.; Martin, A. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem. 2018, 87, 697–724. [Google Scholar] [CrossRef]
- Shang, F.; Taylor, A. Ubiquitin–proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med. 2011, 51, 5–16. [Google Scholar] [CrossRef]
- Olsen, A.S.; Sarras, M.P.; Leontovich, A.; Intine, R.V. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 2012, 61, 485–491. [Google Scholar] [CrossRef]
- Intine, R.V.; Sarras, M.P.J. Metabolic memory and chronic diabetes complications: Potential role for epigenetic mechanisms. Curr. Diabetes Rep. 2012, 12, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Pinney, S.E. DNA methylation and its role in the pathogenesis of diabetes. Pediatr. Diabetes 2017, 18, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.; Bento, C.F.; Matafome, P.; Sena, C.M.; Seiça, R.M.; Pereira, P. Atorvastatin-mediated protection of the retina in a model of diabetes with hyperlipidemia. Can. J. Physiol. Pharmacol. 2014, 92, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Svikle, Z.; Peterfelde, B.; Sjakste, N.; Baumane, K.; Verkauskiene, R.; Jeng, C.-J.; Sokolovska, J. Ubiquitin-proteasome system in diabetic retinopathy. PeerJ 2022, 10, e13715. [Google Scholar] [CrossRef] [PubMed]
- Shruthi, K.; Reddy, S.S.; Chitra, P.S.; Reddy, G.B. Ubiquitin-proteasome system and ER stress in the brain of diabetic rats. J. Cell. Biochem. 2019, 120, 5962–5973. [Google Scholar] [CrossRef] [PubMed]
- Homma, T.; Fujii, J. Emerging connections between oxidative stress, defective proteolysis, and metabolic diseases. Free Radic. Res. 2020, 54, 931–946. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.S.; Percy, M.J. The HIF pathway and erythrocytosis. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 165–192. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Frew, I.J.; Hagensen, M.; Skals, M.; Habelhah, H.; Bhoumik, A.; Kadoya, T.; Erdjument-Bromage, H.; Tempst, P.; Frappell, P.B.; et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell 2004, 117, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Song, B.-J.; Gong, Y.-D.; Gwak, W.J.; Soh, Y. Rapid degradation of hypoxia-inducible factor-1α by KRH102053, a new activator of prolyl hydroxylase 2. Br. J. Pharmacol. 2008, 154, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Catrina, S.-B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021, 64, 709–716. [Google Scholar] [CrossRef]
- Koyasu, S.; Kobayashi, M.; Goto, Y.; Hiraoka, M.; Harada, H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge. Cancer Sci. 2018, 109, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.Y.; Russ, J.; Wu, K.; Neal, D.; Suh, E.; McNally, A.G.; Irwin, D.J.; Van Deerlin, V.M.; Lee, E.B. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol. 2014, 128, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Gudsnuk, K.; Herbstman, J.B.; Tang, D.; Perera, F.P.; Champagne, F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA 2015, 112, 6807–6813. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Nakata, M.; Funabiki, Y.; Suzuki, S.; Awaya, T.; Murai, T.; Hagiwara, M. An epigenetic biomarker for adult high-functioning autism spectrum disorder. Sci. Rep. 2019, 9, 13662. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.H.; Ansari, S.A.; Mensah-Brown, E.P.K.; Emerald, B.S. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin. Epigenet. 2020, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Li, K.Y.; Tam, C.H.T.; Liu, H.; Day, S.; Lim, C.K.P.; So, W.Y.; Huang, C.; Jiang, G.; Shi, M.; Lee, H.M.; et al. DNA methylation markers for kidney function and progression of diabetic kidney disease. Nat. Commun. 2023, 14, 2543. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, M.; Dedeurwaerder, S.; Cunha, D.A.; Ndlovu, M.N.; Defrance, M.; Deplus, R.; Calonne, E.; Volkmar, U.; Igoillo-Esteve, M.; Naamane, N.; et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012, 31, 1405–1426. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Larijani, B.; Emamgholipour, S.; Amini, M.; Keshtkar, A.; Pasalar, P. Aberrant DNA methylation patterns in diabetic nephropathy. J. Diabetes Metab. Disord. 2014, 13, 69. [Google Scholar] [CrossRef]
- Syreeni, A.; El-Osta, A.; Forsblom, C.; Sandholm, N.; Parkkonen, M.; Tarnow, L.; Parving, H.-H.; McKnight, A.J.; Maxwell, A.P.; Cooper, M.E.; et al. Genetic Examination of SETD7 and SUV39H1/H2 Methyltransferases and the Risk of Diabetes Complications in Patients with Type 1 Diabetes. Diabetes 2011, 60, 3073–3080. [Google Scholar] [CrossRef]
- Villeneuve, L.M.; Natarajan, R. Epigenetics of diabetic complications. Expert Rev. Endocrinol. Metab. 2010, 5, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wang, Y.; Pedersen, N.L.; Tang, B.; Hägg, S. Dynamic patterns of blood lipids and DNA methylation in response to statin therapy. Clin. Epigenet. 2022, 14, 153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, L.; Hambly, B.; Bao, S.; Wang, K. Diabetic retinopathy: Reversibility of epigenetic modifications and new therapeutic targets. Cell Biosci. 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Meng, C.; He, S.; Gu, C.; Lhamo, T.; Draga, D.; Luo, D.; Qiu, Q. DNA methylation in diabetic retinopathy: Pathogenetic role and potential therapeutic targets. Cell Biosci. 2022, 12, 186. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, M.Q.; Zhang, X. Histone methylation marks play important roles in predicting the methylation status of CpG islands. Biochem. Biophys. Res. Commun. 2008, 374, 559–564. [Google Scholar] [CrossRef]
- Kurdyukov, S.; Bullock, M. DNA Methylation Analysis: Choosing the Right Method. Biology 2016, 5, 3. [Google Scholar] [CrossRef]
NDR (n = 41) | NPDR (n = 27) | PDR/LPC (n = 46) | p-Value | |
---|---|---|---|---|
Sex (female), n (%) | 21 (51.22%) | 12 (44.44%) | 28 (61.87%) | 0.372 |
Age, years | 40 (30–47) a,b | 31 (26–43) b | 45 (35–51) a | 0.002 |
Smokers, n (%) | 9 (21.95%) a | 14 (51.85%) | 8 (17.39%) a | 0.004 |
Duration of diabetes, years | 19 (13–25) a | 17 (13–21) a | 28 (22–35) | <0.001 |
Body mass index, kg/m2 | 26.60 (23.90–29.70) | 22.80 (20.70–24.80) a | 24.40 (22.02–27.40) a | <0.001 |
Waist/hip ratio | 0.87 (0.77–0.94) | 0.83 (0.80–0.88) | 0.86 (0.78–0.95) | 0.468 |
Arterial hypertension, n (%) | 21 (51.22%) a | 12 (44.44%) a | 39 (84.78%) | <0.001 |
Diabetic nephropathy, n (%) | 0 (0.00%) | 6 (23.08%) a | 16 (35.56%) a | <0.001 |
Polyneuropathy, n (%) | 25 (60.98%) | 18 (66.67%) | 35 (76.09%) | 0.310 |
Cardiovascular diseases, n (%) | 1 (2.44%) a | 0 (0.00%) a | 10 (21.74%) | <0.001 |
HbA1c, % | 8.30 (7.95–9.60) a | 10.15 (8.72–11.17) | 8.60 (8.02–9.70) a | 0.009 |
Total cholesterol, mmol/L | 5.32 (4.29–5.91) | 4.78 (3.95–5.54) | 5.20 (4.16–5.79) | 0.378 |
High-density lipoprotein cholesterol, mmol/L | 1.62 (1.26–1.91) | 1.58 (1.24–1.76) | 1.53 (1.21–1.90) | 0.850 |
Low-density lipoprotein cholesterol, mmol/L | 2.98 (2.33–3.42) | 2.63 (1.84–3.26) | 3.01 (2.07–3.34) | 0.426 |
Triglycerides, mmol/L | 0.96 (0.74–1.47) a | 1.09 (0.79–1.81) a,b | 1.32 (0.93–1.78) b | 0.047 |
eGFR, mL/min/1.73 m2 | 114.57 (108.26–124.13) a | 118.53 (108.44–128.74) a | 85.11 (64.17–105.30) | <0.001 |
Albuminuria, mg/mmol | 0.39 (0.21–1.19) | 2.58 (0.38–23.90) a | 3.47 (0.48–17.57) a | <0.001 |
ACEI/ARB usage, n (%) | 10 (24.39%) a | 6 (22.22%) a | 27 (58,70%) | <0.001 |
Statin usage, n (%) | 4 (9.76%) a | 2 (7.41%) a | 15 (32.61%) | 0.006 |
NDR | NPDR | PDR/LPC | p-Value | |
---|---|---|---|---|
HIF1A, % | 4.7 (2.4–6.7) | 3.8 (3.1–4.9) | 4.9 (2.6–9.6) | 0.216 |
KEAP1, % | 4.7 (3.7–5.9) | 4.7 (3.6–7.1) | 4.6 (3.6–5.8) | 0.973 |
PSMA6, % | 5.9 (3.9–8.7) a,b | 4.5 (3.8–5.7) a | 6.6 (4.7–10.7) b | 0.003 |
PSMB5, % | 2.2 (1.9–3.7) a | 2.2 (1.9–3.0) a | 3.2 (2.5–7.1) | <0.001 |
NDR | NPDR | PDR/LPC | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | HIF1A | PSMA6 | PSMB5 | HIF1A | PSMA6 | PSMB5 | HIF1A | PSMA6 | PSMB5 |
Duration of diabetes, years | 0.52 (<0.001) | 0.43 (0.005) | −0.04 (0.804) | −0.14 (0.493) | −0.04 (0.859) | 0.05 (0.797) | 0.14 (0.343) | −0.08 (0.588) | −0.08 (0.616) |
HbA1c, % | −0.12 (0.465) | −0.09 (0.596) | 0.44 (0.005) | −0.02 (0.91) | −0.08 (0.705) | −0.14 (0.483) | −0.12 (0.435) | −0.03 (0.84) | 0.00 (0.993) |
Albuminuria, mg/mmol | 0.06 (0.728) | −0.15 (0.378) | 0.24 (0.145) | 0.07 (0.752) | −0.09 (0.701) | 0.13 (0.554) | 0.19 (0.278) | 0.45 (0.008) | 0.45 (0.008) |
KEAP1 | 0.26 (0.102) | 0.23 (0.145) | 0.46 (0.003) | 0.01 (0.977) | 0.26 (0.187) | −0.07 (0.741) | 0.08 (0.620) | 0.17 (0.272) | 0.12 (0.412) |
HIF1A | 0.55 (<0.001) | 0.12 (0.463) | 0.39 (0.045) | 0.15 (0.44) | 0.45 (0.002) | 0.17 (0.26) | |||
PSMA6 | 0.35 (0.024) | −0.01 (0.977) | 0.40 (0.006) |
Variables | Univariate Regression Results | Multivariate Regression Results 1 | Multivariate Regression Results 2 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
PSMA6 | 1.96 (1.15; 3.33) | 0.013 | 1.01 (0.50; 2.03) | 0.983 | 1.00 (0.57; 1,78) | 0.990 |
PSMB5 | 1.90 (1.14; 3.16) | 0.013 | 1.75 (0.98; 3.12) | 0.057 | 1.57 (1.04; 2.36) | 0.030 |
KEAP1 | 0.84 (0.53; 1.34) | 0.472 | 0.77 (0.42; 1.41) | 0.395 | 0.74 (0.45; 1.22) | 0.238 |
HIF1A | 3.19 (1.26; 8.06) | 0.014 | 2.00 (0.81; 4.93) | 0.134 | 2.13 (0.95; 4.77) | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svikle, Z.; Paramonova, N.; Siliņš, E.; Pahirko, L.; Zariņa, L.; Baumane, K.; Petrovski, G.; Sokolovska, J. DNA Methylation Profiles of PSMA6, PSMB5, KEAP1, and HIF1A Genes in Patients with Type 1 Diabetes and Diabetic Retinopathy. Biomedicines 2024, 12, 1354. https://doi.org/10.3390/biomedicines12061354
Svikle Z, Paramonova N, Siliņš E, Pahirko L, Zariņa L, Baumane K, Petrovski G, Sokolovska J. DNA Methylation Profiles of PSMA6, PSMB5, KEAP1, and HIF1A Genes in Patients with Type 1 Diabetes and Diabetic Retinopathy. Biomedicines. 2024; 12(6):1354. https://doi.org/10.3390/biomedicines12061354
Chicago/Turabian StyleSvikle, Zane, Natalia Paramonova, Emīls Siliņš, Leonora Pahirko, Līga Zariņa, Kristīne Baumane, Goran Petrovski, and Jelizaveta Sokolovska. 2024. "DNA Methylation Profiles of PSMA6, PSMB5, KEAP1, and HIF1A Genes in Patients with Type 1 Diabetes and Diabetic Retinopathy" Biomedicines 12, no. 6: 1354. https://doi.org/10.3390/biomedicines12061354
APA StyleSvikle, Z., Paramonova, N., Siliņš, E., Pahirko, L., Zariņa, L., Baumane, K., Petrovski, G., & Sokolovska, J. (2024). DNA Methylation Profiles of PSMA6, PSMB5, KEAP1, and HIF1A Genes in Patients with Type 1 Diabetes and Diabetic Retinopathy. Biomedicines, 12(6), 1354. https://doi.org/10.3390/biomedicines12061354