Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. In Vitro Ischemia-Reperfusion Injury
2.3. Hypothermia Protocol
2.4. Cell Lysis and Viability
2.5. Bioenergetics
2.6. Reactive Oxidative Species and Lipid Peroxidation Measurement
2.7. Glutathione Determination
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayashi, M.; Shimizu, W.; Albert, C.M. The spectrum of epidemiology underlying sudden cardiac death. Circ. Res. 2015, 116, 1887–1906. [Google Scholar] [CrossRef] [PubMed]
- Elmer, J.; Callaway, C.W. The Brain after Cardiac Arrest. Semin. Neurol. 2017, 37, 19–24. [Google Scholar] [CrossRef]
- Sekhon, M.S.; Ainslie, P.N.; Griesdale, D.E. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: A ‘two-hit’ model. Crit. Care 2017, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.M.; Korge, P.; Weiss, J.N. Mitochondria and Ischemia/Reperfusion Injury. Ann. N. Y. Acad. Sci. 2005, 1047, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Lo, E.H.; Hayakawa, K. Placental Mitochondria Therapy for Cerebral Ischemia-Reperfusion Injury in Mice. Stroke 2020, 51, 3142–3146. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Takegawa, R.; Shoaib, M.; Aoki, T.; Choudhary, R.C.; Kuschner, C.E.; Nishikimi, M.; Miyara, S.J.; Rolston, D.M.; Guevara, S.; et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: A systematic review of animal and human studies. J. Transl. Med. 2021, 19, 214. [Google Scholar] [CrossRef] [PubMed]
- Dankiewicz, J.; Cronberg, T.; Lilja, G.; Jakobsen, J.C.; Bělohlávek, J.; Callaway, C.; Cariou, A.; Eastwood, G.; Erlinge, D.; Hovdenes, J.; et al. Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): A randomized clinical trial—Rationale and design. Am. Heart J. 2019, 217, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Bauersachs, J.; Akin, M. Therapeutic Hypothermia Following Cardiac Arrest After the TTM2 trial—More Questions Raised Than Answered. Curr. Probl. Cardiol. 2023, 48, 101046. [Google Scholar] [CrossRef]
- Fan, J.; Cai, S.; Zhong, H.; Cao, L.; Hui, K.; Xu, M.; Duan, M.; Xu, J. Therapeutic hypothermia attenuates global cerebral reperfusion-induced mitochondrial damage by suppressing dynamin-related protein 1 activation and mitochondria-mediated apoptosis in a cardiac arrest rat model. Neurosci. Lett. 2017, 647, 45–52. [Google Scholar] [CrossRef]
- Jahandiez, V.; Cour, M.; Abrial, M.; Loufouat, J.; Ovize, M.; Argaud, L. Therapeutic Hypothermia After Cardiac Arrest: Involvement of the Risk Pathway in Mitochondrial PTP-Mediated Neuroprotection. Shock 2019, 52, 224–229. [Google Scholar] [CrossRef]
- Aslami, H.; Beurskens, C.J.P.; Tuip, A.M.; Horn, J.; Juffermans, N.P. Induced hypothermia is associated with reduced circulating subunits of mitochondrial DNA in cardiac arrest patients. Mitochondrial DNA Part A 2018, 29, 525–528. [Google Scholar] [CrossRef]
- Lu, J.; Qian, H.Y.; Liu, L.J.; Zhou, B.C.; Xiao, Y.; Mao, J.N.; An, G.Y.; Rui, M.Z.; Wang, T.; Zhu, C.L. Mild hypothermia alleviates excessive autophagy and mitophagy in a rat model of asphyxial cardiac arrest. Neurol. Sci. 2014, 35, 1691–1699. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Y. Effects of mild hypothermia therapy on the levels of glutathione in rabbit blood and cerebrospinal fluid after cardiopulmonary resuscitation. Iran. J. Basic Med. Sci. 2015, 18, 194–198. [Google Scholar]
- Hayakawa, K.; Esposito, E.; Wang, X.; Terasaki, Y.; Liu, Y.; Xing, C.; Ji, X.; Lo, E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016, 535, 551–555. [Google Scholar] [CrossRef]
- Holloway, P.M.; Gavins, F.N.E. Modeling Ischemic Stroke In Vitro: Status Quo and Future Perspectives. Stroke 2016, 47, 561–569. [Google Scholar] [CrossRef]
- Gocoł, R.; Hudziak, D.; Bis, J.; Mendrala, K.; Morkisz, Ł.; Podsiadło, P.; Kosiński, S.; Piątek, J.; Darocha, T. The Role of Deep Hypothermia in Cardiac Surgery. Int. J. Environ. Res. Public Health 2021, 18, 7061. [Google Scholar] [CrossRef]
- Wang, H.; Olivero, W.; Wang, D.; Lanzino, G. Cold as a therapeutic agent. Acta Neurochir. 2006, 148, 565–570. [Google Scholar] [CrossRef]
- Bernard, S.A.; Gray, T.W.; Buist, M.D.; Jones, B.M.; Silvester, W.; Gutteridge, G.; Smith, K. Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest with Induced Hypothermia. N. Engl. J. Med. 2002, 346, 557–563. [Google Scholar] [CrossRef]
- Huang, C.H.; Chen, H.W.; Tsai, M.S.; Hsu, C.Y.; Peng, R.H.; Wang, T.D.; Chang, W.T.; Chen, W.J. Antiapoptotic Cardioprotective Effect of Hypothermia Treatment Against Oxidative Stress Injuries. Acad. Emerg. Med. 2009, 16, 872–880. [Google Scholar] [CrossRef]
- Davis, C.H.O.; Kim, K.Y.; Bushong, E.A.; Mills, E.A.; Boassa, D.; Shih, T.; Kinebuchi, M.; Phan, S.; Zhou, Y.; Bihlmeyer, N.A.; et al. Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. USA 2014, 111, 9633–9638. [Google Scholar] [CrossRef]
- Pekny, M.; Wilhelmsson, U.; Tatlisumak, T.; Pekna, M. Astrocyte activation and reactive gliosis—A new target in stroke? Neurosci. Lett. 2019, 689, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Dienel, G.A.; Hertz, L. Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 2005, 50, 362–388. [Google Scholar] [CrossRef] [PubMed]
- Lee JiYeon, L.J.; Chang MiYoon, C.M.; Park ChangHwan, P.C.; Kim HyeYoung, K.H.; Kim JinHyuk, K.J.; Son Hyeon, S.H.; Lee YongSung, L.Y.; Lee SangHun, L.S. Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J. Neurosci. Res. 2003, 73, 156–165. [Google Scholar] [CrossRef]
- Goldman, S.A.; Pulsinelli, W.A.; Clarke, W.Y.; Kraig, R.P.; Plum, F. The Effects of Extracellular Acidosis on Neurons and Glia in vitro. J. Cereb. Blood Flow Metab. 1989, 9, 471–477. [Google Scholar] [CrossRef]
- Giffard, R.G.; Monyer, H.; Choi, D.W. Selective vulnerability of cultured cortical glia to injury by extracellular acidosis. Brain Res. 1990, 530, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Zhang, L.; Hu, Z.; Wu, B. Protective effect of mild hypothermia on astrocytes with traumatic or ischemic injury. Nan Fang Yi Ke Da Xue Xue Bao 2010, 30, 61–63. [Google Scholar] [PubMed]
- Crouch, S.P.M.; Kozlowski, R.; Slater, K.J.; Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 1993, 160, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Petty, R.D.; Sutherland, L.A.; Hunter, E.M.; Cree, I.A. Comparison of MTT and ATP-based assays for the measurement of viable cell number. J. Biolumin. Chemilumin. 1995, 10, 29–34. [Google Scholar] [CrossRef]
- Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015, 6, 524–551. [Google Scholar] [CrossRef]
- Dröse, S.; Brandt, U. Molecular Mechanisms of Superoxide Production by the Mitochondrial Respiratory Chain. In Mitochondrial Oxidative Phosphorylation; Advances in Experimental Medicine and, Biology; Kadenbach, B., Ed.; Springer: New York, NY, USA, 2012; Volume 748, pp. 145–169. [Google Scholar] [CrossRef]
- Shenoda, B. The Role of Na+/Ca2+ Exchanger Subtypes in Neuronal Ischemic Injury. Transl. Stroke Res. 2015, 6, 181–190. [Google Scholar] [CrossRef]
- Goldberg, M.; Choi, D. Combined oxygen and glucose deprivation in cortical cell culture: Calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 1993, 13, 3510–3524. [Google Scholar] [CrossRef] [PubMed]
- Shih, E.K.; Robinson, M.B. Role of Astrocytic Mitochondria in Limiting Ischemic Brain Injury? Physiology 2018, 33, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Hertz, L.; Hertz, E. Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem. Int. 2003, 43, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Hertz, L. Astrocytic Amino Acid Metabolism Under Control Conditions and During Oxygen and/or Glucose Deprivation. Neurochem. Res. 2003, 28, 243–258. [Google Scholar] [CrossRef]
- Zhao, H.; Asai, S.; Kanematsu, K.; Kunimatsu, T.; Kohno, T.; Ishikawa, K. Real-time monitoring of the effects of normothermia and hypothermia on extracellular glutamate re-uptake in the rat following global brain ischemia. NeuroReport 1997, 8, 2389–2392. [Google Scholar] [CrossRef]
- Shuaib, A.; Sochocka, E.; Code, W.; Hertz, L. Hypothermia protects astrocytes during ischemia in cell culture. Neurosci. Lett. 1992, 146, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Shuaib, A.; Hertz, L. Glutamate uptake and glutamate content in primary cultures of mouse astrocytes during anoxia, substrate deprivation and simulated ischemia under normothermic and hypothermic conditions. Brain Res. 1993, 618, 346–351. [Google Scholar] [CrossRef]
- Belenichev, I.F.; Aliyeva, O.G.; Popazova, O.O.; Bukhtiyarova, N.V. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: The prospect of using HSP70 modulators. Front. Cell. Neurosci. 2023, 17, 1131683. [Google Scholar] [CrossRef]
- Nishimura, R.N.; Dwyer, B.E. Evidence for different mechanisms of induction of HSP70i: A comparison of cultured rat cortical neurons with astrocytes. Brain Res. Mol. Brain Res. 1996, 36, 227–239. [Google Scholar] [CrossRef]
- Hearse, D. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release. J. Mol. Cell. Cardiol. 1973, 5, 395–407. [Google Scholar] [CrossRef]
- Juurlink, B.H.J. Response of Glial Cells to Ischemia: Roles of Reactive Oxygen Species and Glutathione. Neurosci. Biobehav. Rev. 1997, 21, 151–166. [Google Scholar] [CrossRef]
- Gao, X.Y.; Zhu, S.Z.; Xiang, W.; Huang, K.B.; Hu, Y.F.; Gu, Y.; Pan, S.Y. Prolonged hypothermia exposure diminishes neuroprotection for severe ischemic-hypoxic primary neurons. Cryobiology 2016, 72, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Lyden, P.D.; Lamb, J.; Kothari, S.; Toossi, S.; Boitano, P.; Rajput, P.S. Differential effects of hypothermia on neurovascular unit determine protective or toxic results: Toward optimized therapeutic hypothermia. J. Cereb. Blood Flow Metab. 2019, 39, 1693–1709. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, J.; Hussain, M.; Wu, L.; Shi, J.; Wu, C.; Ma, Y.; Zhang, M.; Yang, Q.; Fu, Y.; et al. Selective intra-arterial brain cooling improves long-term outcomes in a non-human primate model of embolic stroke: Efficacy depending on reperfusion status. J. Cereb. Blood Flow Metab. 2020, 40, 1415–1426. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Jang, E.; Kim, J.H.; Lee, S.; Kim, J.H.; Seo, J.W.; Jin, M.; Lee, M.G.; Jang, I.S.; Lee, W.H.; Suk, K. Phenotypic Polarization of Activated Astrocytes: The Critical Role of Lipocalin-2 in the Classical Inflammatory Activation of Astrocytes. J. Immunol. 2013, 191, 5204–5219. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; De La Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Yadav, D.K.; Kumar, S.; Choi, E.-H.; Chaudhary, S.; Kim, M.-H. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci. Rep. 2019, 9, 4496. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhai, Y.; Chen, J.; Xu, X.; Wang, H. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules 2021, 11, 923. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 2009, 30, 1–12. [Google Scholar] [CrossRef]
- Almeida, A.; Delgado-Esteban, M.; Bolaños, J.P.; Medina, J.M. Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J. Neurochem. 2002, 81, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Prebil, M.; Jensen, J.; Zorec, R.; Kreft, M. Astrocytes and energy metabolism. Arch. Physiol. Biochem. 2011, 117, 64–69. [Google Scholar] [CrossRef]
- Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci. 2020, 144, 151–164. [Google Scholar] [CrossRef]
- Nair, A.; Frederick, T.J.; Miller, S.D. Astrocytes in multiple sclerosis: A product of their environment. Cell Mol. Life Sci. CMLS 2008, 65, 2702–2720. [Google Scholar] [CrossRef]
- Takano, T.; Oberheim, N.; Cotrina, M.L.; Nedergaard, M. Astrocytes and ischemic injury. Stroke 2009, 40, S8–S12. [Google Scholar] [CrossRef] [PubMed]
- Watts, L.T.; Rathinam, M.L.; Schenker, S.; Henderson, G.I. Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J. Neurosci. Res. 2005, 80, 655–666. [Google Scholar] [CrossRef]
- Gerkau, N.J.; Rakers, C.; Petzold, G.C.; Rose, C.R. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J. Neurosci. Res. 2017, 95, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Ryou, M.; Mallet, R.T. An In Vitro Oxygen–Glucose Deprivation Model for Studying Ischemia–Reperfusion Injury of Neuronal Cells. In Traumatic and Ischemic Injury; Tharakan, B., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1717, pp. 229–235. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, M.; Lee, B.H. Crosstalk between Neuron and Glial Cells in Oxidative Injury and Neuroprotection. Int. J. Mol. Sci. 2021, 22, 13315. [Google Scholar] [CrossRef] [PubMed]
- Reichert, S.A.; Kim-Han, J.S.; Dugan, L.L. The Mitochondrial Permeability Transition Pore and Nitric Oxide Synthase Mediate Early Mitochondrial Depolarization in Astrocytes during Oxygen–Glucose Deprivation. J. Neurosci. 2001, 21, 6608–6616. [Google Scholar] [CrossRef]
- Juurlink, B.H.J.; Hertz, L. Ischemia-induced death of astrocytes and neurons in primary culture: Pitfalls in quantifying neuronal cell death. Dev. Brain Res. 1993, 71, 239–246. [Google Scholar] [CrossRef]
- Cahoy, J.D.; Emery, B.; Kaushal, A.; Foo, L.C.; Zamanian, J.L.; Christopherson, K.S.; Xing, Y.; Lubischer, J.L.; Krieg, P.A.; Krupenko, S.A.; et al. A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function. J. Neurosci. 2008, 28, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Romano, C.; Cotman, C. Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J. Neurosci. 1995, 15, 6103–6109. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyara, S.J.; Shinozaki, K.; Hayashida, K.; Shoaib, M.; Choudhary, R.C.; Zafeiropoulos, S.; Guevara, S.; Kim, J.; Molmenti, E.P.; Volpe, B.T.; et al. Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia. Biomedicines 2024, 12, 1705. https://doi.org/10.3390/biomedicines12081705
Miyara SJ, Shinozaki K, Hayashida K, Shoaib M, Choudhary RC, Zafeiropoulos S, Guevara S, Kim J, Molmenti EP, Volpe BT, et al. Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia. Biomedicines. 2024; 12(8):1705. https://doi.org/10.3390/biomedicines12081705
Chicago/Turabian StyleMiyara, Santiago J., Koichiro Shinozaki, Kei Hayashida, Muhammad Shoaib, Rishabh C. Choudhary, Stefanos Zafeiropoulos, Sara Guevara, Junhwan Kim, Ernesto P. Molmenti, Bruce T. Volpe, and et al. 2024. "Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia" Biomedicines 12, no. 8: 1705. https://doi.org/10.3390/biomedicines12081705
APA StyleMiyara, S. J., Shinozaki, K., Hayashida, K., Shoaib, M., Choudhary, R. C., Zafeiropoulos, S., Guevara, S., Kim, J., Molmenti, E. P., Volpe, B. T., & Becker, L. B. (2024). Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia. Biomedicines, 12(8), 1705. https://doi.org/10.3390/biomedicines12081705