The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissues
2.2. Real-Time Quantitative PCR Analysis (qRT-PCR)
- 5′-GCTTGATAGCTACAAATGAGGACC-3′ and 5′-CCACAAAGTTCCACATGC-3′ for APC; RefSeq: [NM_000038];
- 5′-CATGAACCGCCACAACAAC-3′ and 5′-TGGCACTTGCACTTGAGGT-3′ for WNT-3a; RefSeq: [NM_033131];
- 5′-CTCATGAACCTGCACAACAACG-3′ and 5′-CCAGCATGTCTTCAGGCTACAT-3′ for WNT-5a; RefSeq: [NM_03392];
- 5′-CCAACTTGCCATCAATGAATAA-3′ and 5′-GGCATCTGATTGGAGTGAGAA-3′ for BCL-9; RefSeq: [NM_004326];
- 5′-GAC GAG ATG ATC CCC TTC AA-3′ and 5′-AGG GCT CCT GAG AGG TTT GT-3′ for LEF-1; RefSeq: [NM_016269];
- 5′-AGCCAGTTCCTCATCAATGG-3′ and 5′-GGTAGTGGCTGGTACGGAAA-3′ for GUSB; RefSeq: [NM_000181].
2.3. Western Blotting
2.4. Statistical Analysis
3. Results
3.1. Gene Expression of APC, Wnt3a, Wnt5a, BCL9, and LEF1 in FAP and Tubular–Villous Adenomas
3.2. Protein Expression Assay by Western Blotting of APC and β-catenin
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonnington, S.N.; Rutter, M.D. Surveillance of colonic polyps: Are we getting it right? World J. Gastroenterol. 2016, 22, 1925–1934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Click, B.; Pinsky, P.F.; Hickey, T.; Doroudi, M.; Schoen, R.E. Association of Colonoscopy Adenoma Findings with Long-term Colorectal Cancer Incidence. JAMA 2018, 319, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Eide, T.J. Risk of colorectal cancer in adenoma-bearing individuals within a defined population. Int. J. Cancer 1986, 38, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Mao, L.; Li, Y.; Li, Q.; Li, X.; Zhang, Y.; Zhai, Z. β-catenin, leucine-rich repeat-containing G protein-coupled receptor 5 and GATA-binding factor 6 are associated with the normal mucosa-adenoma-adenocarcinoma sequence of colorectal tumorigenesis. Oncol. Lett. 2018, 15, 2287–2295. [Google Scholar] [CrossRef]
- Kim, N.H.; Jung, Y.S.; Jeong, W.S.; Yang, H.-J.; Park, S.-K.; Choi, K.; Park, D.I. Miss rate of colorectal neoplastic polyps and risk factors for missed polyps in consecutive colonoscopies. Intest. Res. 2017, 15, 411–418. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Colorectal cancer screening. In IARC Handbooks of Cancer Prevention; International Agency for Research on Cancer: Lyon, France, 2019; Volume 17, p. 300. [Google Scholar]
- Lieberman, D.A.; Rex, D.K.; Winawer, S.J.; Giardiello, F.M.; Johnson, D.A.; Levin, T.R. Guidelines for colonoscopy surveillance after screening and polypectomy: A consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2012, 143, 844–857. [Google Scholar] [CrossRef]
- Aceto, G.M.; Catalano, T.; Curia, M.C. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BioMed Res. Int. 2020, 2020, 1726309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dornblaser, D.; Young, S.; Shaukat, A. Colon polyps: Updates in classification and management. Curr. Opin. Gastroenterol. 2023, 40, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Galuppini, F.; Fassan, M.; Mastracci, L.; Gafà, R.; Mele, M.L.; Lazzi, S.; Remo, A.; Parente, P.; D’amuri, A.; Mescoli, C.; et al. The histomorphological and molecular landscape of colorectal adenomas and serrated lesions. Pathologica 2021, 113, 218–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dubé, C.; Yakubu, M.; McCurdy, B.R.; Lischka, A.; Koné, A.; Walker, M.J.; Peirson, L.; Tinmouth, J. Risk of advanced adenoma, colorectal cancer, and colorectal cancer mortality in people with low-risk adenomas at baseline colonoscopy: A systematic review and meta-analysis. Am. J. Gastroenterol. 2017, 112, 1790–1801. [Google Scholar] [CrossRef] [PubMed]
- Lucci-Cordisco, E.; Risio, M.; Venesio, T.; Genuardi, M. The growing complexity of the intestinal polyposis syndromes. Am. J. Med. Genet. Part A 2013, 161, 2777–2787. [Google Scholar] [CrossRef] [PubMed]
- Corley, D.A.; Jensen, C.D.; Marks, A.R.; Zhao, W.K.; de Boer, J.; Levin, T.R.; Doubeni, C.; Fireman, B.H.; Quesenberry, C.P. Variation of adenoma prevalence by age, sex, race, and colon location in a large population: Implications for screening and quality programs. Clin. Gastroenterol. Hepatol. 2013, 11, 172–180. [Google Scholar] [CrossRef]
- Pommergaard, H.-C.; Burcharth, J.; Rosenberg, J.; Raskov, H. The association between location, age and advanced colorectal adenoma characteristics: A propensity-matched analysis. Scand. J. Gastroenterol. 2016, 52, 1218929. [Google Scholar] [CrossRef]
- Klein, J.L.; Okcu, M.; Preisegger, K.H.; Hammer, H.F. Distribution, size and shape of colorectal adenomas as determined by a colonoscopist with a high lesion detection rate: Influence of age, sex and colonoscopy indication. United Eur. Gastroenterol. J. 2016, 4, 438–448. [Google Scholar] [CrossRef]
- Ijspeert, J.E.; van Doorn, S.C.; van der Brug, Y.M.; Bastiaansen, B.A.; Fockens, P.; Dekker, E. The proximal serrated polyp detection rate is an easy-to-measure proxy for the detection rate of clinically relevant serrated polyps. Gastrointest. Endosc. 2015, 82, 870–877. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, K.-O.; Jung, Y.; Lee, J.; Kim, S.-W.; Kim, J.-H.; Kim, T.-J.; Cho, Y.-S.; Joo, Y.-E. Clinical and endoscopic characteristics of sessile serrated adenomas/polyps with dysplasia/adenocarcinoma in a Korean population: A Korean Association for the Study of Intestinal Diseases (KASID) multicenter study. Sci. Rep. 2019, 9, 3946. [Google Scholar] [CrossRef]
- Kahi, C.J.; Hewett, D.G.; Norton, D.L.; Eckert, G.J.; Rex, D.K. Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy. Clin. Gastroenterol. Hepatol. 2011, 9, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Leggett, B.; Whitehall, V. Role of serrated pathway in colorectal cancer pathogenesis. Gastroenterology 2010, 138, 2088–2100. [Google Scholar] [CrossRef]
- Lochhead, P.; Chan, A.T.; Giovannucci, E.; Fuchs, C.S.; Wu, K.; Nishihara, R.; O’Brien, M.; Ogino, S. Progress and opportunities in molecular pathological epidemiology of colorectal premalignant lesions. Am. J. Gastroenterol. 2014, 109, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Dinarvand, P.; Davaro, E.P.; Doan, J.V.; Ising, M.E.; Evans, N.R.; Phillips, N.J.; Lai, J.; Guzman, M.A. Familial adenomatous polyposis syndrome: An update and review of extraintestinal manifestations. Arch. Pathol. Lab. Med. 2019, 143, 1382–1398. [Google Scholar] [CrossRef] [PubMed]
- Taherian, M.; Lotfollahzadeh, S.; Daneshpajouhnejad, P.; Arora, K. Tubular Adenoma. 3 June 2023. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Tischoff, I.; Tannapfel, A. Präkanzerosen im Kolon. Der Internist 2013, 54, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shay, J.W. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J. Natl. Cancer Inst. 2017, 109, djw332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schatoff, E.M.; Leach, B.I.; Dow, L.E. WNT Signaling and Colorectal Cancer. Curr. Color. Cancer Rep. 2017, 13, 101–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hankey, W.; Frankel, W.L.; Groden, J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: Implications for therapeutic targeting. Cancer Metastasis Rev. 2018, 37, 159–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fodde, R.; Smits, R.; Clevers, H. APC, Signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer 2001, 1, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Morin, P.J.; Sparks, A.B.; Korinek, V.; Barker, N.; Clevers, H.; Vogelstein, B.; Kinzler, K.W. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta -catenin or APC. Science 1997, 275, 1787–1790. [Google Scholar] [CrossRef] [PubMed]
- Steinhart, Z.; Angers, S. Wnt signaling in development and tissue homeostasis. Development 2018, 145, dev146589. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; He, L.; Cao, B.; Zhao, X.; Zhang, K.; Li, Y.; Beck, P.; Zhou, Z.; Tian, Y.; Cheng, S.; et al. Differential expression of LEF1/TCFs family members in colonic carcinogenesis. Mol. Carcinog. 2017, 56, 2372–2381. [Google Scholar] [CrossRef]
- Brembeck, F.H.; Wiese, M.; Zatula, N.; Grigoryan, T.; Dai, Y.; Fritzmann, J.; Birchmeier, W. BCL9-2 Promotes Early Stages of Intestinal Tumor Progression. Gastroenterology 2011, 141, 1359–1370.e3. [Google Scholar] [CrossRef]
- Brembeck, F.H.; Schwarz-Romond, T.; Bakkers, J.; Wilhelm, S.; Hammerschmidt, M.; Birchmeier, W. Essential role of BCL9-2 in the switch between β-catenin’s adhesive and transcriptional functions. Genes Dev. 2004, 18, 2225–2230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kramps, T.; Peter, O.; Brunner, E.; Nellen, D.; Froesch, B.; Chatterjee, S.; Murone, M.; Züllig, S.; Basler, K. Wnt/wingless Signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex. Cell 2002, 109, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.; Townsley, F.; Rosin-Arbesfeld, R.; Musisi, H.; Bienz, M. A new nuclear component of the Wnt signalling pathway. Nat. Cell Biol. 2002, 4, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Dong, H.; Xu, C.; Sun, M.; Gao, H.; Bu, F.; Chen, J. The Wnt-dependent and Wnt-independent functions of BCL9 in development, tumorigenesis, and immunity: Implications in therapeutic opportunities. Genes Dis. 2023, 11, 701–710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tufail, M.; Wu, C. Wnt3a is a promising target in colorectal cancer. Med. Oncol. 2023, 40, 86. [Google Scholar] [CrossRef] [PubMed]
- Voloshanenko, O.; Erdmann, G.; Dubash, T.D.; Augustin, I.; Metzig, M.; Moffa, G.; Hundsrucker, C.; Kerr, G.; Sandmann, T.; Anchang, B.; et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat. Commun. 2013, 4, 2610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, L.; Sun, B.; Liu, Z.; Cheng, R.; Li, Y.; Zhao, X. Wnt3a expression is associated with epithelial-mesenchymal transition and promotes colon cancer progression. J. Exp. Clin. Cancer Res. 2014, 33, 107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrer-Mayorga, G.; Niell, N.; Cantero, R.; González-Sancho, J.M.; del Peso, L.; Muñoz, A.; Larriba, M.J. Vitamin D and Wnt3A have additive and partially overlapping modulatory effects on gene expression and phenotype in human colon fibroblasts. Sci. Rep. 2019, 9, 8085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- A Torres, M.; A Yang-Snyder, J.; Purcell, S.M.; A DeMarais, A.; McGrew, L.L.; Moon, R.T. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol. 1996, 133, 1123–1137. [Google Scholar] [CrossRef]
- Bauer, M.; Bénard, J.; Gaasterland, T.; Willert, K.; Cappellen, D. WNT5A Encodes Two Isoforms with Distinct Functions in Cancers. PLoS ONE 2013, 8, e80526. [Google Scholar] [CrossRef]
- Asem, M.S.; Buechler, S.; Wates, R.B.; Miller, D.L.; Stack, M.S. Wnt5a Signaling in Cancer. Cancers 2016, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Wu, C. WNT5A: A double-edged sword in colorectal cancer progression. Mutat. Res. Mol. Mech. Mutagen. 2023, 792, 108465. [Google Scholar] [CrossRef] [PubMed]
- Ficari, F.; Cama, A.; Valanzano, R.; Curia, M.C.; Palmirotta, R.; Aceto, G.; Esposito, D.L.; Crognale, S.; Lombardi, A.; Messerini, L.; et al. APC gene mutations and colorectal adenomatosis in familial adenomatous polyposis. Br. J. Cancer 2000, 82, 348–353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Catalano, T.; D’amico, E.; Moscatello, C.; Di Marcantonio, M.C.; Ferrone, A.; Bologna, G.; Selvaggi, F.; Lanuti, P.; Cotellese, R.; Curia, M.C.; et al. Oxidative Distress Induces Wnt/β-Catenin Pathway Modulation in Colorectal Cancer Cells: Perspectives on APC Retained Functions. Cancers 2021, 13, 6045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silviera, M.L.; Smith, B.P.; Powell, J.; Sapienza, C. Epigenetic differences in normal colon mucosa of cancer patients suggest altered dietary metabolic pathways. Cancer Prev. Res. 2012, 5, 374–384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef]
- Aoki, K.; Taketo, M.M. Adenomatous polyposis coli (APC): A multi-functional tumor suppressor gene. J. Cell Sci. 2007, 120 Pt 19, 3327–3335. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Yuan, L.; Liu, X.; Li, M.; Zhang, F.; Gu, X.; Zhang, D.; Yang, Y.; Cui, B.; Tong, J.; et al. EphB6 overexpression and Apc mutation together promote colorectal cancer. Oncotarget 2016, 7, 31111–31121. [Google Scholar] [CrossRef]
- Behrens, J.; Von Kries, J.P.; Kühl, M.; Bruhn, L.; Wedlich, D.; Grosschedl, R.; Birchmeier, W. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 1996, 382, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Zhang, C.; Li, X.; Jia, C.; Chen, L.; Yuan, Y.; Gao, Q.; Lu, Z.; Feng, Y.; Zhao, R.; et al. LEF1 Enhances the Progression of Colonic Adenocarcinoma via Remodeling the Cell Motility Associated Structures. Int. J. Mol. Sci. 2021, 22, 10870. [Google Scholar] [CrossRef]
- Clevers, H. Wnt/β-Catenin Signaling in Development and Disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Mi, Y.; Ma, Y.; Jin, W. LEF1 regulates glioblastoma cell proliferation, migration, invasion, and cancer stem-like cell self-renewal. Tumor Biol. 2014, 35, 11505–11511. [Google Scholar] [CrossRef]
- Hao, Y.-H.; Lafita-Navarro, M.C.; Zacharias, L.; Borenstein-Auerbach, N.; Kim, M.; Barnes, S.; Kim, J.; Shay, J.; DeBerardinis, R.J.; Conacci-Sorrell, M. Induction of LEF1 by MYC activates the WNT pathway and maintains cell proliferation. Cell Commun. Signal. 2019, 17, 129. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Tang, T.; Pang, J.; Xu, J.; Yang, X.; Wang, L.; Huang, Y.; Huang, Z.; Liu, G.; Tong, D.; et al. LSD1 Promotes Bladder Cancer Progression by Upregulating LEF1 and Enhancing EMT. Front. Oncol. 2020, 10, 1234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, M.; Zhang, X.; Zhang, J.; Wang, K.; Zhang, Y.; Shang, W.; Zhang, Y.; Cui, J.; Shi, X.; Na, H.; et al. DC-SIGN-LEF1/TCF1-miR-185 feedback loop promotes colorectal cancer invasion and metastasis. Cell Death Differ. 2020, 27, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-H.; Fang, X.-Q.; Lim, W.-J.; Park, J.; Kang, T.-B.; Kim, J.H.; Lim, J.-H. Cinobufagin Suppresses Melanoma Cell Growth by Inhibiting LEF1. Int. J. Mol. Sci. 2020, 21, 6706. [Google Scholar] [CrossRef] [PubMed]
- Blazquez, R.; Rietkötter, E.; Wenske, B.; Wlochowitz, D.; Sparrer, D.; Vollmer, E.; Müller, G.; Seegerer, J.; Sun, X.; Dettmer, K.; et al. LEF1 supports metastatic brain colonization by regulating glutathione metabolism and increasing ROS resistance in breast cancer. Int. J. Cancer 2020, 146, 3170–3183. [Google Scholar] [CrossRef] [PubMed]
- Heino, S.; Fang, S.; Lähde, M.; Högström, J.; Nassiri, S.; Campbell, A.; Flanagan, D.; Raven, A.; Hodder, M.; Nasreddin, N.; et al. Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. Sci. Adv. 2021, 7, eabj0512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sampietro, J.; Dahlberg, C.L.; Cho, U.S.; Hinds, T.R.; Kimelman, D.; Xu, W. Crystal Structure of a β-Catenin/BCL9/Tcf4 Complex. Mol. Cell 2006, 24, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.J.; Acebrón, S.P. Wnt signalling in cell division: From mechanisms to tissue engineering. Trends Cell Biol. 2022, 32, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Rajasekaran, M.; Xia, H.; Kong, S.N.; Deivasigamani, A.; Sekar, K.; Gao, H.; Swa, H.L.; Gunaratne, J.; Ooi, L.L.; et al. CDK 1-mediated BCL 9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling. EMBO J. 2018, 37, e99395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, K.; Okuno, Y.; Kawashima, N.; Muramatsu, H.; Okuno, T.; Wang, X.; Kataoka, S.; Sekiya, Y.; Hamada, M.; Murakami, N.; et al. MEF2D-BCL9 Fusion Gene Is Associated with High-Risk Acute B-Cell Precursor Lymphoblastic Leukemia in Adolescents. J. Clin. Oncol. 2016, 34, 3451–3459. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Wu, Z.; Zhou, Y.; Wei, Z.; Tian, E.; Mei, S.; Zhu, Y.; Liu, C.; He, F.; Li, H.; et al. BCL9 regulates CD226 and CD96 checkpoints in CD8+ T cells to improve PD-1 response in cancer. Signal Transduct. Target. Ther. 2021, 6, 313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaur, N.; Chettiar, S.; Rathod, S.; Rath, P.; Muzumdar, D.; Shaikh, M.; Shiras, A. Wnt3a mediated activation of Wnt/β-catenin signaling promotes tumor progression in glioblastoma. Mol. Cell. Neurosci. 2013, 54, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Lamb, R.; Ablett, M.P.; Spence, K.; Landberg, G.; Sims, A.H.; Clarke, R.B. Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS ONE 2013, 8, e67811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verras, M.; Brown, J.; Li, X.; Nusse, R.; Sun, Z. Wnt3a growth factor induces androgen receptor-mediated transcription and enhances cell growth in human prostate cancer cells. Cancer Res. 2004, 64, 8860–8866. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.A.; Richards, A.K.; Kusumah, I.; Perumal, V.; Bolitho, E.M.; Mutsaers, S.E.; Dharmarajan, A.M. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells. Biochem. Biophys. Res. Commun. 2013, 440, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Y.-W.; Shaughnessy, J.D., Jr.; Yaccoby, S. Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood 2008, 112, 374–382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nygren, M.K.; Døsen, G.; Hystad, M.E.; Stubberud, H.; Funderud, S.; Rian, E. Wnt3A activates canonical Wnt signalling in acute lymphoblastic leukaemia (ALL) cells and inhibits the proliferation of B-ALL cell lines. Br. J. Haematol. 2006, 136, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A.; Park, J.-H.; Rhyu, S.Y.; Oh, S.-T.; Kang, W.-K.; Kim, H.-N. Wnt3a expression is associated with MMP-9 expression in primary tumor and metastatic site in recurrent or stage IV colorectal cancer. BMC Cancer 2014, 14, 125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, G.; Wu, L.; Sun, G.; Shi, X.; Cao, H.; Tang, W. WNT5a in Colorectal Cancer: Research Progress and Challenges. Cancer Manag. Res. 2021, 13, 2483–2498. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Bui, T.D.; Poulsom, R.; Kaklamanis, L.; Williams, G.; Harris, A.L. Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br. J. Cancer 1999, 81, 496–502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ying, J.; Li, H.; Yu, J.; Ng, K.M.; Poon, F.F.; Wong, S.C.C.; Chan, A.T.; Sung, J.J.; Tao, Q. WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/β-catenin signaling, and is frequently methylated in colorectal cancer. Clin. Cancer Res. 2008, 14, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature 2005, 434, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Abdelmaksoud-Dammak, R.; Miladi-Abdennadher, I.; Saadallah-Kallel, A.; Khabir, A.; Sellami-Boudawara, T.; Frikha, M.; Daoud, J.; Mokdad-Gargouri, R. Downregulation of WIF-1 and Wnt5a in patients with colorectal carcinoma: Clinical significance. Tumor Biol. 2014, 35, 7975–7982. [Google Scholar] [CrossRef] [PubMed]
- Hibi, K.; Mizukami, H.; Goto, T.; Kitamura, Y.; Sakata, M.; Saito, M.; Ishibashi, K.; Kigawa, G.; Nemoto, H.; Sanada, Y. WNT5A gene is aberrantly methylated from the early stages of colorectal cancers. Hepatogastroenterology 2009, 56, 1007–1009. [Google Scholar] [PubMed]
- Cao, Y.-C.; Yang, F.; Liu, X.-H.; Xin, X.; Wang, C.-C.; Geng, M. Expression of Wnt5a, APC, β-catenin and their clinical significance in human colorectal adenocarcinoma. Zhonghua Zhong Liu Za Zhi 2012, 34, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Rawson, J.B.; Mrkonjic, M.; Daftary, D.; Dicks, E.; Buchanan, D.D.; Younghusband, H.B.; Parfrey, P.S.; Young, J.P.; Pollett, A.; Green, R.C.; et al. Promoter methylation of Wnt5a is associated with microsatellite instability and BRAF V600E mutation in two large populations of colorectal cancer patients. Br. J. Cancer 2011, 104, 1906–1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Q.; Chen, H. Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics 2012, 7, 551–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, C.; Robinson, J.; Clark, S.; Stamp, G.; Poulsom, R.; Silver, A. Elevation of WNT5A expression in polyp formation in Lkb1+/− mice and Peutz–Jeghers syndrome. J. Pathol. 2011, 223, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.R.; Das, A.M.; Helvensteijn, W.; Franken, P.F.; Swagemakers, S.; van der Valk, M.A.; Hagen, T.L.T.; Kuipers, E.J.; van Veelen, W.; Smits, R. Wnt5a promotes human colon cancer cell migration and invasion but does not augment intestinal tumorigenesis in Apc 1638N mice. Carcinogenesis 2013, 34, 2629–2638. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liao, W.; Zhang, L.; Tu, X.; Hu, J.; Chen, T.; Dai, X.; Xiong, Y.; Liang, W.; Ding, C.; et al. RSPO2 suppresses colorectal cancer metastasis by counteracting the Wnt5a/Fzd7-driven noncanonical Wnt pathway. Cancer Lett. 2017, 402, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tang, C.; Zhu, Y.; Xie, M.; He, D.; Pan, Q.; Zhang, P.; Hua, D.; Wang, T.; Jin, L.; et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin. Sci. 2017, 131, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Greten, F.R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 2021, 21, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Jridi, I.; Canté-Barrett, K.; Pike-Overzet, K.; Staal, F.J.T. Inflammation and Wnt Signaling: Target for Immunomodulatory Therapy? Front. Cell Dev. Biol. 2021, 8, 615131. [Google Scholar] [CrossRef]
- Cui, G. TH9, TH17, and TH22 Cell Subsets and Their Main Cytokine Products in the Pathogenesis of Colorectal Cancer. Front. Oncol. 2019, 9, 1002. [Google Scholar] [CrossRef]
- Liu, J.-L.; Yang, M.; Bai, J.-G.; Liu, Z.; Wang, X.-S. “Cold” colorectal cancer faces a bottleneck in immunotherapy. World J. Gastrointest. Oncol. 2023, 15, 240–250. [Google Scholar] [CrossRef]
Patients with FAP Polyps | ||||||
Case | Age | Sex | Phenotype | Site and Size of Polyps | Dysplasia (L or H) | n. of Polyps |
5FI | 25 | F | Adenomatous | Diffuse or “carpet”, <1 cm | HGD | 1060 |
6FI a,e | 58 | M | Adenomatous | Diffuse | HGD | 25 |
7FI a,e | 28 | F | Adenomatous | Diffuse | HGD | 375 |
8FI b,e | 18 | F | Adenomatous (Tubular–villous) | Diffuse | HGD | 415 |
9FI c,e | 15 | F | Adenomatous | Diffuse | LGD | 375 |
16FI | n.a | F | Adenomatous | Diffuse | LGD | n.a |
25FI | n.a. | M | Adenomatous | Diffuse | LGD | n.a. |
26FI | 46 | F | Adenomatous | Diffuse | LGD | 835 |
31FI | M | Adenomatous | Diffuse | |||
33FI | 49 | F | Adenomatous | Diffuse | LGD | 97 |
35FI c,e | 31 | M | Adenomatous | Diffuse | LGD | 550 |
36FI | 42 | F | Adenomatous | Diffuse | LGD | 250 |
39FI | 42 | M | Adenomatous | Diffuse | LGD | 430 |
40FI a,d,e | 61 | F | Adenomatous | Diffuse | HGD | 730 |
41FI | 49 | M | Adenomatous | Diffuse | LGD | 1025 |
42FI | 42 | F | Adenomatous and amartomatous | Diffuse | LGD | 210 |
43FI | 36 | M | Adenomatous | Diffuse | LGD? | n.a |
Patients with Sporadic Polyps | ||||||
Case | Age | Sex | Phenotype | Site and Size of Polyps | Dysplasia (L or H) | Morphology |
1CH | 50 | M | Hyperplastic | Sigma, 6 mm | LGD | Spl |
2CH | 67 | M | Tubular | Sigma, 10 mm | LGD | Spl |
3CH | 49 | M | Hyperplastic | Sigma, 4 mm | LGD | Spl |
9CH | 47 | M | Tubular–villous | Retto, 15 mm | LGD | Ppl |
11CH | 57 | F | Hyperplastic–adenomatous | Descending, 4 mm | LGD | Spl |
13CH | 83 | F | Tubular | Descending, 15 mm | LGD | Spl |
15CH | 37 | F | Villous | Sigma, 50 mm | HGD | Ppl |
16CH | 60 | M | Tubular | Cecum, 15 mm | LGD | Ppl |
17CH | 66 | M | Tubular–villous | Sigma, 15 mm | LGD | Ppl |
18CH | 64 | M | Tubular–villous | Descending, 8 mm | LGD | Spl |
21CH | 78 | M | Tubular–villous | Sigma, 10 mm | LGD | Spl |
22CH | 67 | M | Tubular–villous | Rectum, 10 mm | LGD | Spl |
23CH | 68 | F | Tubular–villous | Sigma, 10 mm | LGD | Ppl |
24CH | 59 | M | Tubular–villous | Ascending | LGD | Ppl |
25CH | 77 | M | Tubular–villous | Descending | HGD | Ppl |
26CH | 69 | M | Tubular | Splenic flexure, 10 mm | LGD | Spl |
27CH | 61 | F | Tubular–villous | Sigma, 15 mm | LGD | Ppl |
28CH | 77 | M | Tubular–villous | Hepatic flexure, 5 mm | LGD | Spl |
29CH | 47 | M | Hyperplastic–adenomatous | Descending, 20 mm | Not atypical | Ppl |
30CH | 53 | M | Hyperplastic–adenomatous | Retto-sigma, 7 mm | Not atypical | Spl |
31CH | 76 | M | Tubular | Ascending, 5 mm | LGD | Spl |
32CH | 51 | M | Tubular–villous | Ascending, 45 mm | LGD | Spl |
33CH | 68 | F | Tubular–villous | Colon, 40 mm | LGD | LST-G |
34CH | 67 | M | Tubular | Colon sx, 7 mm | LGD | Ppl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Antonio, D.L.; Fantini, F.; Moscatello, C.; Ferrone, A.; Scaringi, S.; Valanzano, R.; Ficari, F.; Efthymakis, K.; Neri, M.; Aceto, G.M.; et al. The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues. Biomedicines 2024, 12, 1730. https://doi.org/10.3390/biomedicines12081730
D’Antonio DL, Fantini F, Moscatello C, Ferrone A, Scaringi S, Valanzano R, Ficari F, Efthymakis K, Neri M, Aceto GM, et al. The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues. Biomedicines. 2024; 12(8):1730. https://doi.org/10.3390/biomedicines12081730
Chicago/Turabian StyleD’Antonio, Domenica Lucia, Fabiana Fantini, Carmelo Moscatello, Alessio Ferrone, Stefano Scaringi, Rosa Valanzano, Ferdinando Ficari, Konstantinos Efthymakis, Matteo Neri, Gitana Maria Aceto, and et al. 2024. "The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues" Biomedicines 12, no. 8: 1730. https://doi.org/10.3390/biomedicines12081730
APA StyleD’Antonio, D. L., Fantini, F., Moscatello, C., Ferrone, A., Scaringi, S., Valanzano, R., Ficari, F., Efthymakis, K., Neri, M., Aceto, G. M., & Curia, M. C. (2024). The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues. Biomedicines, 12(8), 1730. https://doi.org/10.3390/biomedicines12081730