Circadian Interventions in Preclinical Models of Huntington’s Disease: A Narrative Review
Abstract
:1. Introduction
2. Preclinical Evidence
2.1. Environmental Enrichment
2.2. Bright & Targeted Wavelengths of Light
2.3. Scheduled/Time Restricted Feeding
2.4. Ketogenic Diet
3. Neuroendocrine Dysfunction in HD
4. Circadian Desynchrony and Cardiovascular Pathology in HD
5. Translation into Clinical Practice: Efficacy and Limitations
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; et al. Huntington disease. Nat. Rev. Dis. Primers 2015, 1, 15005. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.J.; Hunt, M.J.; Morton, A.J. Environmental stimulation increases survival in mice transgenic for exon 1 of the Huntington’s disease gene. Mov. Disord. 2000, 15, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, D.S.; Loh, D.H.; Wang, H.B.; Tahara, Y.; Kuljis, D.; Cutler, T.; Ghiani, C.A.; Shibata, S.; Block, G.D.; Colwell, C.S. Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington’s Disease. J. Biol. Rhythm. 2018, 33, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Loh, D.H.; Whittaker, D.S.; Cutler, T.; Howland, D.; Colwell, C.S. Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington’s Disease. eNeuro 2018, 5, ENEURO.0431-17.2017. [Google Scholar] [CrossRef] [PubMed]
- Faragó, A.; Zsindely, N.; Bodai, L. Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila. Sci. Rep. 2019, 9, 7174. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Narasimha, K.; Manjithaya, R.; Sheeba, V. Restoration of Sleep and Circadian Behavior by Autophagy Modulation in Huntington’s Disease. J. Neurosci. 2023, 43, 4907–4925. [Google Scholar] [CrossRef] [PubMed]
- Baxa, M.; Hruska-Plochan, M.; Juhas, S.; Vodicka, P.; Pavlok, A.; Juhasova, J.; Miyanohara, A.; Nejime, T.; Klima, J.; Macakova, M.; et al. A transgenic minipig model of Huntington’s disease. J. Huntington’s Dis. 2013, 2, 47–68. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zheng, X.; Lin, Y.; Li, C.; Liu, Z.; Li, J.; Tu, Z.; Zhao, Y.; Huang, C.; Chen, Y.; et al. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington’s disease. Nat. Biomed. Eng. 2023, 7, 629–646. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, J.C.; Bawden, C.S.; Rudiger, S.R.; McLaughlan, C.J.; Reid, S.J.; Waldvogel, H.J.; MacDonald, M.E.; Gusella, J.F.; Walker, S.K.; Kelly, J.M.; et al. An ovine transgenic Huntington’s disease model. Hum. Mol. Genet. 2010, 19, 1873–1882. [Google Scholar] [CrossRef]
- Morton, A.J. Sleep and Circadian Rhythm Dysfunction in Animal Models of Huntington’s Disease. J. Huntington’s Dis. 2023, 12, 133–148. [Google Scholar] [CrossRef]
- Fahrenkrug, J.; Popovic, N.; Georg, B.; Brundin, P.; Hannibal, J. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J. Mol. Neurosci. 2007, 31, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Morton, A.J.; Wood, N.I.; Hastings, M.H.; Hurelbrink, C.; Barker, R.A.; Maywood, E.S. Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J. Neurosci. 2005, 25, 157–163, Erratum in J. Neurosci. 2005, 25, 3994. [Google Scholar] [CrossRef] [PubMed]
- Kuljis, D.A.; Gad, L.; Loh, D.H.; Kaswan, Z.M.; Hitchcock, O.N.; Ghiani, C.A.; Colwell, C.S. Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington’s Disease. PLoS ONE 2016, 11, e0147583. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T.; Schroeder, A.; Loh, D.H.; Kuljis, D.; Jordan, M.C.; Roos, K.P.; Colwell, C.S. Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp. Neurol. 2011, 228, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Kuljis, D.; Kudo, T.; Tahara, Y.; Ghiani, C.A.; Colwell, C.S. Pathophysiology in the suprachiasmatic nucleus in mouse models of Huntington’s disease. J. Neurosci. Res. 2018, 96, 1862–1875. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Colwell, C.S. Do Disruptions in the Circadian Timing System Contribute to Autonomic Dysfunction in Huntington’s Disease? Yale J. Biol. Med. 2019, 92, 291–303. [Google Scholar] [PubMed]
- van Wamelen, D.J.; Aziz, N.A.; Anink, J.J.; van Steenhoven, R.; Angeloni, D.; Fraschini, F.; Jockers, R.; Roos, R.A.; Swaab, D.F. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington’s disease. Sleep 2013, 36, 117–125. [Google Scholar] [CrossRef]
- Van den Pol, A.N. The hypothalamic suprachiasmatic nucleus of rat: Intrinsic anatomy. J. Comp. Neurol. 1980, 191, 661–702. [Google Scholar] [CrossRef]
- Moore, R.Y.; Silver, R. Suprachiasmatic nucleus organization. Chronobiol. Int. 1998, 15, 475–487. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R. Coordination of circadian timing in mammals. Nature 2002, 418, 935–941. [Google Scholar] [CrossRef]
- Mohawk, J.A.; Takahashi, J.S. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011, 34, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Colwell, C.S. Rhythmic coupling among cells in the suprachiasmatic nucleus. J. Neurobiol. 2000, 43, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Colwell, C.S. Linking neural activity and molecular oscillations in the SCN. Nat. Rev. Neurosci. 2011, 12, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Pendergast, J.S.; Yamazaki, S. Peripheral Circadian Oscillators. Yale J. Biol. Med. 2019, 92, 327–335. [Google Scholar] [PubMed]
- Eckel-Mahan, K.; Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 2013, 93, 107–135. [Google Scholar] [CrossRef] [PubMed]
- Panda, S. Circadian physiology of metabolism. Science 2016, 354, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- McHill, A.W.; Butler, M.P. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism. Annu. Rev. Nutr. 2024, 44. [Google Scholar] [CrossRef]
- Schroeder, A.M.; Colwell, C.S. How to fix a broken clock. Trends Pharmacol. Sci. 2013, 34, 605–619. [Google Scholar] [CrossRef]
- Bird, E.D.; Caro, A.J.; Pilling, J.B. A sex related factor in the inheritance of Huntington’s chorea. Ann. Hum. Genet. 1974, 37, 255–260. [Google Scholar] [CrossRef]
- Hentosh, S.; Zhu, L.; Patino, J.; Furr, J.W.; Rocha, N.P.; Furr Stimming, E. Sex Differences in Huntington’s Disease: Evaluating the Enroll-HD Database. Mov. Disord. Clin. Pract. 2021, 8, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Zielonka, D.; Stawinska-Witoszynska, B. Gender Differences in Non-sex Linked Disorders: Insights From Huntington’s Disease. Front. Neurol. 2020, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Chiem, E.; Zhao, K.; Stark, G.; Ghiani, C.A.; Colwell, C.S.; Paul, K.N. Sex differences in sleep architecture in a mouse model of Huntington’s disease. J. Neurosci. Res. 2024, 102, e25290. [Google Scholar] [CrossRef] [PubMed]
- Wood, N.I.; Carta, V.; Milde, S.; Skillings, E.A.; McAllister, C.J.; Ang, Y.L.; Duguid, A.; Wijesuriya, N.; Afzal, S.M.; Fernandes, J.X.; et al. Responses to environmental enrichment differ with sex and genotype in a transgenic mouse model of Huntington’s disease. PLoS ONE 2010, 5, e9077. [Google Scholar] [CrossRef]
- Du, X.; Pang, T.Y.; Mo, C.; Renoir, T.; Wright, D.J.; Hannan, A.J. The influence of the HPG axis on stress response and depressive-like behaviour in a transgenic mouse model of Huntington’s disease. Exp. Neurol. 2015, 263, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, J.M.; Consoli, D.C.; Paffenroth, K.C.; Spitznagel, B.D.; Calipari, E.S.; Bowman, A.B.; Harrison, F.E. Manganese-induced hyperactivity and dopaminergic dysfunction depend on age, sex and YAC128 genotype. Pharmacol. Biochem. Behav. 2022, 213, 173337. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Wirsching, V.; Habermeyer, J.; Moceri, S.; Harrer, J.; Schmitz, C.; von Hörsten, S. Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease. Front. Neurosci. 2024, 18, 1354977. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, M.; Goldman, S.A. Glymphatic failure as a final common pathway to dementia. Science 2020, 370, 50–56. [Google Scholar] [CrossRef]
- Kantor, S.; Szabo, L.; Varga, J.; Cuesta, M.; Morton, A.J. Progressive sleep and electroencephalogram changes in mice carrying the Huntington’s disease mutation. Brain 2013, 136 Pt 7, 2147–2158. [Google Scholar] [CrossRef]
- Hablitz, L.M.; Nedergaard, M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J. Neurosci. 2021, 41, 7698–7711. [Google Scholar] [CrossRef]
- Skapetze, L.; Owino, S.; Lo, E.H.; Arai, K.; Merrow, M.; Harrington, M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol. Dis. 2023, 181, 106120, Erratum in Neurobiol. Dis. 2023, 182, 106162. [Google Scholar] [CrossRef] [PubMed]
- Ehrnhoefer, D.E.; Martin, D.D.O.; Schmidt, M.E.; Qiu, X.; Ladha, S.; Caron, N.S.; Skotte, N.H.; Nguyen, Y.T.N.; Vaid, K.; Southwell, A.L.; et al. Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathol. Commun. 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Moors, T.E.; Hoozemans, J.J.; Ingrassia, A.; Beccari, T.; Parnetti, L.; Chartier-Harlin, M.C.; van de Berg, W.D. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol. Neurodegener. 2017, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, D.S.; Akhmetova, L.; Carlin, D.; Romero, H.; Welsh, D.K.; Colwell, C.S.; Desplats, P. Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer’s disease. Cell Metab. 2023, 35, 1704–1721.e6. [Google Scholar] [CrossRef] [PubMed]
- Mees, I.; Li, S.; Tran, H.; Ang, C.S.; Williamson, N.A.; Hannan, A.J.; Renoir, T. Phosphoproteomic dysregulation in Huntington’s disease mice is rescued by environmental enrichment. Brain Commun. 2022, 4, fcac305. [Google Scholar] [CrossRef] [PubMed]
- Novati, A.; Nguyen, H.P.; Schulze-Hentrich, J. Environmental stimulation in Huntington disease patients and animal models. Neurobiol. Dis. 2022, 171, 105725. [Google Scholar] [CrossRef] [PubMed]
- Berlet, R.; Galang Cabantan, D.A.; Gonzales-Portillo, D.; Borlongan, C.V. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front. Cell Dev. Biol. 2022, 10, 798826. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, M.; Aungier, J.; Morton, A.J. Behavioral therapy reverses circadian deficits in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis. 2014, 63, 85–91. [Google Scholar] [CrossRef] [PubMed]
- de Jong, I.C.; Prelle, I.T.; van de Burgwal, J.A.; Lambooij, E.; Korte, S.M.; Blokhuis, H.J.; Koolhaas, J.M. Effects of environmental enrichment on behavioral responses to novelty, learning, and memory, and the circadian rhythm in cortisol in growing pigs. Physiol. Behav. 2000, 68, 571–578. [Google Scholar] [CrossRef]
- Manno, F.A.M.; An, Z.; Kumar, R.; Su, J.; Liu, J.; Wu, E.X.; He, J.; Feng, Y.; Lau, C. Environmental enrichment leads to behavioral circadian shifts enhancing brain-wide functional connectivity between sensory cortices and eliciting increased hippocampal spiking. Neuroimage 2022, 252, 119016. [Google Scholar] [CrossRef]
- Hughes, A.T.L.; Piggins, H.D. Feedback actions of locomotor activity to the circadian clock. Prog. Brain Res. 2012, 199, 305–336. [Google Scholar] [CrossRef] [PubMed]
- Leise, T.L.; Harrington, M.E.; Molyneux, P.C.; Song, I.; Queenan, H.; Zimmerman, E.; Lall, G.S.; Biello, S.M. Voluntary exercise can strengthen the circadian system in aged mice. Age (Dordr) 2013, 35, 2137–2152. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.M.; Truong, D.; Loh, D.H.; Jordan, M.C.; Roos, K.P.; Colwell, C.S. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice. J. Physiol. 2012, 590, 6213–6226. [Google Scholar] [CrossRef] [PubMed]
- Plácido, E.; Gomes Welter, P.; Wink, A.; Karasiak, G.D.; Outeiro, T.F.; Dafre, A.L.; Gil-Mohapel, J.; Brocardo, P.S. Beyond Motor Deficits: Environmental Enrichment Mitigates Huntington’s Disease Effects in YAC128 Mice. Int. J. Mol. Sci. 2023, 24, 12607. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.Y.C.; Stam, N.C.; Nithianantharajah, J.; Howard, M.L.; Hannan, A.J. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience 2006, 141, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Spires, T.L.; Grote, H.E.; Varshney, N.K.; Cordery, P.M.; van Dellen, A.; Blakemore, C.; Hannan, A.J. Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J. Neurosci. 2004, 24, 2270–2276. [Google Scholar] [CrossRef] [PubMed]
- Smith-Dijak, A.I.; Sepers, M.D.; Raymond, L.A. Alterations in synaptic function and plasticity in Huntington disease. J. Neurochem. 2019, 150, 346–365. [Google Scholar] [CrossRef]
- Faraguna, U.; Vyazovskiy, V.V.; Nelson, A.B.; Tononi, G.; Cirelli, C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J. Neurosci. 2008, 28, 4088–4095. [Google Scholar] [CrossRef]
- Caldwell, C.C.; Petzinger, G.M.; Jakowec, M.W.; Cadenas, E. Treadmill exercise rescues mitochondrial function and motor behavior in the CAG140 knock-in mouse model of Huntington’s disease. Chem. Biol. Interact. 2020, 315, 108907. [Google Scholar] [CrossRef]
- Harrison, D.J.; Busse, M.; Openshaw, R.; Rosser, A.E.; Dunnett, S.B.; Brooks, S.P. Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington’s disease mouse model. Exp. Neurol. 2013, 248, 457–469. [Google Scholar] [CrossRef]
- Wood, N.I.; Glynn, D.; Morton, A.J. “Brain training” improves cognitive performance and survival in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis. 2011, 42, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Ji, E.S.; Kim, Y.M.; Shin, M.S.; Kim, C.J.; Lee, K.S.; Kim, K.; Ha, J.; Chung, Y.R. Treadmill exercise enhances spatial learning ability through suppressing hippocampal apoptosis in Huntington’s disease rats. J. Exerc. Rehabil. 2015, 11, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Hockly, E.; Cordery, P.M.; Woodman, B.; Mahal, A.; van Dellen, A.; Blakemore, C.; Lewis, C.M.; Hannan, A.J.; Bates, G.P. Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann. Neurol. 2002, 51, 235–242. [Google Scholar] [CrossRef]
- Skillings, E.A.; Wood, N.I.; Morton, A.J. Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington’s disease. Brain Behav. 2014, 4, 675–686. [Google Scholar] [CrossRef]
- van Dellen, A.; Blakemore, C.; Deacon, R.; York, D.; Hannan, A.J. Delaying the onset of Huntington’s in mice. Nature 2000, 404, 721–722. [Google Scholar] [CrossRef]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef]
- Prayag, A.S.; Najjar, R.P.; Gronfier, C. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. J. Pineal Res. 2019, 66, e12562. [Google Scholar] [CrossRef] [PubMed]
- Provencio, I.; Rodriguez, I.R.; Jiang, G.; Hayes, W.P.; Moreira, E.F.; Rollag, M.D. A novel human opsin in the inner retina. J. Neurosci. 2000, 20, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Duda, M.; Domagalik, A.; Orlowska-Feuer, P.; Krzysztynska-Kuleta, O.; Beldzik, E.; Smyk, M.K.; Stachurska, A.; Oginska, H.; Jeczmien-Lazur, J.S.; Fafrowicz, M.; et al. Melanopsin: From a small molecule to brain functions. Neurosci. Biobehav Rev. 2020, 113, 190–203. [Google Scholar] [CrossRef]
- Ricketts, E.J.; Joyce, D.S.; Rissman, A.J.; Burgess, H.J.; Colwell, C.S.; Lack, L.C.; Gradisar, M. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med. Rev. 2022, 64, 101667. [Google Scholar] [CrossRef]
- Foster, R.G.; Hughes, S.; Peirson, S.N. Circadian Photoentrainment in Mice and Humans. Biology 2020, 9, 180. [Google Scholar] [CrossRef]
- Challet, E.; Poirel, V.J.; Malan, A.; Pévet, P. Light exposure during daytime modulates expression of Per1 and Per2 clock genes in the suprachiasmatic nuclei of mice. J. Neurosci. Res. 2003, 72, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Pittendrigh, C.S.; Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. J. Comp. Physiol. 1976, 106, 223–252. [Google Scholar] [CrossRef]
- Ricketts, E.J.; Burgess, H.J.; Montalbano, G.E.; Coles, M.E.; McGuire, J.F.; Thamrin, H.; McMakin, D.L.; McCracken, J.T.; Carskadon, M.A.; Piacentini, J.; et al. Morning light therapy in adults with Tourette’s disorder. J. Neurol. 2022, 269, 399–410. [Google Scholar] [CrossRef]
- Wang, H.B.; Whittaker, D.S.; Truong, D.; Mulji, A.K.; Ghiani, C.A.; Loh, D.H.; Colwell, C.S. Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington’s disease. Neurobiol. Sleep Circadian Rhythm. 2017, 2, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Volkow, N.D. Seasonality of brain function: Role in psychiatric disorders. Transl. Psychiatry 2023, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Brackenridge, C.J. Effect of climatic temperature on the age of onset of Huntington’s chorea. J. Neurol. Neurosurg. Psychiatry 1974, 37, 297–301. [Google Scholar] [CrossRef]
- Ouk, K.; Aungier, J.; Morton, A.J. Prolonged day length exposure improves circadian deficits and survival in a transgenic mouse model of Huntington’s disease. Neurobiol. Sleep Circadian Rhythm. 2016, 2, 27–38. [Google Scholar] [CrossRef]
- Meijer, J.H.; Colwell, C.S.; Rohling, J.H.T.; Houben, T.; Michel, S. Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. Prog. Brain Res. 2012, 199, 143–162. [Google Scholar] [CrossRef]
- Michel, S.; Meijer, J.H. From clock to functional pacemaker. Eur. J. Neurosci. 2020, 51, 482–493. [Google Scholar] [CrossRef]
- Naito, E.; Watanabe, T.; Tei, H.; Yoshimura, T.; Ebihara, S. Reorganization of the suprachiasmatic nucleus coding for day length. J. Biol. Rhythm. 2008, 23, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Smyllie, N.J.; Morris, H.; Gonçalves, C.F.; Dudek, M.; Pathiranage, D.R.J.; Chesham, J.E.; Adamson, A.; Spiller, D.G.; Zindy, E.; et al. Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator. PLoS Genet. 2020, 16, e1008729. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; McMahon, D.G. Light sets the brain’s daily clock by regional quickening and slowing of the molecular clockworks at dawn and dusk. eLife 2021, 10, e70137. [Google Scholar] [CrossRef]
- Li, Y.; Androulakis, I.P. Light-induced synchronization of the SCN coupled oscillators and implications for entraining the HPA axis. Front. Endocrinol. 2022, 13, 960351. [Google Scholar] [CrossRef]
- Schneider, W.T.; Vas, S.; Nicol, A.U.; Morton, A.J. Abnormally abrupt transitions from sleep-to-wake in Huntington’s disease sheep (Ovis aries) are revealed by automated analysis of sleep/wake transition dynamics. PLoS ONE 2021, 16, e0251767. [Google Scholar] [CrossRef] [PubMed]
- Vas, S.; Nicol, A.U.; Kalmar, L.; Miles, J.; Morton, A.J. Abnormal patterns of sleep and EEG power distribution during non-rapid eye movement sleep in the sheep model of Huntington’s disease. Neurobiol. Dis. 2021, 155, 105367. [Google Scholar] [CrossRef]
- Morton, A.J.; Middleton, B.; Rudiger, S.; Bawden, C.S.; Kuchel, T.R.; Skene, D.J. Increased plasma melatonin in presymptomatic Huntington disease sheep (Ovis aries): Compensatory neuroprotection in a neurodegenerative disease? J. Pineal Res. 2020, 68, e12624. [Google Scholar] [CrossRef]
- Scheer, F.A.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef] [PubMed]
- Laposky, A.D.; Shelton, J.; Bass, J.; Dugovic, C.; Perrino, N.; Turek, F.W. Altered sleep regulation in leptin-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R894–R903. [Google Scholar] [CrossRef]
- Peng, F.; Li, X.; Xiao, F.; Zhao, R.; Sun, Z. Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci. 2022, 45, 471–482. [Google Scholar] [CrossRef]
- Tacad, D.K.M.; Tovar, A.P.; Richardson, C.E.; Horn, W.F.; Keim, N.L.; Krishnan, G.P.; Krishnan, S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv. Nutr. 2022, 13, 758–791. [Google Scholar] [CrossRef] [PubMed]
- Ehichioya, D.E.; Taufique, S.K.T.; Farah, S.; Yamazaki, S. A time memory engram embedded in a light-entrainable circadian clock. Curr. Biol. 2023, 33, 5233–5239.e3. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Investig. 2011, 121, 2133–2141. [Google Scholar] [CrossRef]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef]
- Arble, D.M.; Bass, J.; Laposky, A.D.; Vitaterna, M.H.; Turek, F.W. Circadian timing of food intake contributes to weight gain. Obesity 2009, 17, 2100–2102. [Google Scholar] [CrossRef] [PubMed]
- Masaki, T.; Chiba, S.; Yasuda, T.; Noguchi, H.; Kakuma, T.; Watanabe, T.; Sakata, T.; Yoshimatsu, H. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes 2004, 53, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Rodríguez, V.; Rijo-Ferreira, F.; Izumo, M.; Xu, P.; Wight-Carter, M.; Green, C.B.; Takahashi, J.S. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 2022, 376, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Maywood, E.S.; Fraenkel, E.; McAllister, C.J.; Wood, N.; Reddy, A.B.; Hastings, M.H.; Morton, A.J. Disruption of peripheral circadian timekeeping in a mouse model of Huntington’s disease and its restoration by temporally scheduled feeding. J. Neurosci. 2010, 30, 10199–10204. [Google Scholar] [CrossRef]
- Chiem, E.; Zhao, K.; Dell’Angelica, D.; Ghiani, C.A.; Paul, K.N.; Colwell, C.S. Scheduled feeding improves sleep in a mouse model of Huntington’s disease. bioRxiv 2024. [Google Scholar] [CrossRef]
- Northeast, R.C.; Huang, Y.; McKillop, L.E.; Bechtold, D.A.; Peirson, S.N.; Piggins, H.D.; Vyazovskiy, V.V. Sleep homeostasis during daytime food entrainment in mice. Sleep 2019, 42, zsz157. [Google Scholar] [CrossRef]
- Loh, D.H.; Jami, S.A.; Flores, R.E.; Truong, D.; Ghiani, C.A.; O’Dell, T.J.; Colwell, C.S. Misaligned feeding impairs memories. eLife 2015, 4, e09460. [Google Scholar] [CrossRef] [PubMed]
- Ruby, N.F.; Fisher, N.; Patton, D.F.; Paul, M.J.; Fernandez, F.; Heller, H.C. Scheduled feeding restores memory and modulates c-Fos expression in the suprachiasmatic nucleus and septohippocampal complex. Sci. Rep. 2017, 7, 6755. [Google Scholar] [CrossRef] [PubMed]
- Deota, S.; Lin, T.; Chaix, A.; Williams, A.; Le, H.; Calligaro, H.; Ramasamy, R.; Huang, L.; Panda, S. Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metab. 2023, 35, 150–165.e4. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 8767. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Leenders, K.L.; Spiegel, R.; Meier, D.; Vontobel, P.; Weigell-Weber, M.; Sanchez-Pernaute, R.; de Yébenez, J.G.; Boesiger, P.; Weindl, A.; et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 1996, 119 Pt 6, 2085–2095. [Google Scholar] [CrossRef]
- Ciarmiello, A.; Cannella, M.; Lastoria, S.; Simonelli, M.; Frati, L.; Rubinsztein, D.C.; Squitieri, F. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J. Nucl. Med. 2006, 47, 215–222. [Google Scholar] [PubMed]
- Hellem, M.N.N.; Vinther-Jensen, T.; Anderberg, L.; Budtz-Jørgensen, E.; Hjermind, L.E.; Larsen, V.A.; Nielsen, J.E.; Law, I. Hybrid 2-[18F] FDG PET/MRI in premanifest Huntington’s disease gene-expansion carriers: The significance of partial volume correction. PLoS ONE 2021, 16, e0252683. [Google Scholar] [CrossRef] [PubMed]
- Horta-Barba, A.; Martinez-Horta, S.; Sampedro, F.; Pérez-Pérez, J.; Camacho, V.; Pagonabarraga, J.; Kulisevsky, J. Structural and metabolic brain correlates of arithmetic word-problem solving in Huntington’s disease. J. Neurosci. Res. 2023, 101, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Klinkmueller, P.; Kronenbuerger, M.; Miao, X.; Bang, J.; E Ultz, K.; Paez, A.; Zhang, X.; Duan, W.; Margolis, R.L.; van Zijl, P.C.; et al. Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington’s disease. J. Cereb. Blood Flow Metab. 2021, 41, 1119–1130. [Google Scholar] [CrossRef]
- Michels, S.; Buchholz, H.G.; Rosar, F.; Heinrich, I.; Hoffmann, M.A.; Schweiger, S.; Tüscher, O.; Schreckenberger, M. 18F-FDG PET/CT: An unexpected case of Huntington’s disease. BMC Neurol. 2019, 19, 78. [Google Scholar] [CrossRef]
- Pagano, G.; Niccolini, F.; Politis, M. Current status of PET imaging in Huntington’s disease. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Bakels, H.S.; Perrone, F.; Di Nottia, M.; Mazza, T.; Abruzzese, M.P.; Zoccola, M.; Pagnotta, S.; Carrozzo, R.; de Bot, S.T.; et al. GLUT-1 changes in paediatric Huntington disease brain cortex and fibroblasts: An observational case-control study. eBioMedicine 2023, 97, 104849. [Google Scholar] [CrossRef]
- Chen, J.Y.; Tran, C.; Hwang, L.; Deng, G.; Jung, M.E.; Faull, K.F.; Levine, M.S.; Cepeda, C. Partial Amelioration of Peripheral and Central Symptoms of Huntington’s Disease via Modulation of Lipid Metabolism. J. Huntington’s Dis. 2016, 5, 65–81. [Google Scholar] [CrossRef]
- Lim, S.; Chesser, A.S.; Grima, J.C.; Rappold, P.M.; Blum, D.; Przedborski, S.; Tieu, K. D-β-hydroxybutyrate is protective in mouse models of Huntington’s disease. PLoS ONE 2011, 6, e24620. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.C.L.; McManus, E.J.; Brinkhuis, M.; Romero-Ferrando, B. Time-Restricted Ketogenic Diet in Huntington’s Disease: A Case Study. Front. Behav. Neurosci. 2022, 16, 931636. [Google Scholar] [CrossRef] [PubMed]
- Ruskin, D.N.; Ross, J.L.; Kawamura, M., Jr.; Ruiz, T.L.; Geiger, J.D.; Masino, S.A. A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington’s disease. Physiol. Behav. 2011, 103, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, D.S.; Tamai, T.K.; Bains, R.S.; Villanueva, S.A.M.; Luk, S.H.C.; Dell’Angelica, D.; Block, G.D.; Ghiani, C.A.; Colwell, C.S. Dietary ketosis improves circadian dysfunction as well as motor symptoms in the BACHD mouse model of Huntington’s disease. Front. Nutr. 2022, 9, 1034743. [Google Scholar] [CrossRef]
- Jiang, Z.; Yin, X.; Wang, M.; Chen, T.; Wang, Y.; Gao, Z.; Wang, Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis. 2022, 13, 1146–1165. [Google Scholar] [CrossRef]
- Chongtham, A.; Yoo, J.H.; Chin, T.M.; Akingbesote, N.D.; Huda, A.; Marsh, J.L.; Khoshnan, A. Gut Bacteria Regulate the Pathogenesis of Huntington’s Disease in Drosophila Model. Front. Neurosci. 2022, 16, 902205, Erratum in Front. Neurosci. 2022, 16, 991513. [Google Scholar] [CrossRef]
- Ma, D.; Wang, A.C.; Parikh, I.; Green, S.J.; Hoffman, J.D.; Chlipala, G.; Murphy, M.P.; Sokola, B.S.; Bauer, B.; Hartz, A.M.S.; et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. 2018, 8, 6670. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Shen, J.; Feng, S.; Huang, C.; Wang, H.; Huo, F.; Liu, H. Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6. Microbiome 2023, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.; Du, H.; Shang, S.; Zhang, Y.; Lu, X. Beta-Hydroxybutyrate Enhances BDNF Expression by Increasing H3K4me3 and Decreasing H2AK119ub in Hippocampal Neurons. Front. Neurosci. 2020, 14, 591177. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.C.; Hong, H.; Weidemann, B.J.; Ramsey, K.M.; Affinati, A.H.; Schmidt, M.S.; Cedernaes, J.; Omura, C.; Braun, R.; Lee, C.; et al. NAD+ Controls Circadian Reprogramming through PER2 Nuclear Translocation to Counter Aging. Mol. Cell 2020, 78, 835–849.e7. [Google Scholar] [CrossRef] [PubMed]
- O’Hearn, L.A. The therapeutic properties of ketogenic diets, slow-wave sleep, and circadian synchrony. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Fujikura, Y.; Ohkura, N.; Higo-Yamamoto, S.; Mishima, T.; Oishi, K. A ketogenic diet containing medium-chain triglycerides reduces REM sleep duration without significant influence on mouse circadian phenotypes. Food Res. Int. 2023, 169, 112852. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.H.; Memon, A.A.; Memon, R.A.; Joop, A.; Pilkington, J.; Catiul, C.; Gerstenecker, A.; Triebel, K.; Cutter, G.; Bamman, M.M.; et al. Slow Wave Sleep and EEG Delta Spectral Power are Associated with Cognitive Function in Parkinson’s Disease. J. Park. Dis. 2021, 11, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.F.; Gerashchenko, D.; Timofeev, I.; Bacskai, B.J.; Kastanenka, K.V. Slow Wave Sleep Is a Promising Intervention Target for Alzheimer’s Disease. Front. Neurosci. 2020, 14, 705. [Google Scholar] [CrossRef] [PubMed]
- Masi, D.; Spoltore, M.E.; Rossetti, R.; Watanabe, M.; Tozzi, R.; Caputi, A.; Risi, R.; Balena, A.; Gandini, O.; Mariani, S.; et al. The Influence of Ketone Bodies on Circadian Processes Regarding Appetite, Sleep and Hormone Release: A Systematic Review of the Literature. Nutrients 2022, 14, 1410. [Google Scholar] [CrossRef]
- Goodman, A.O.; Murgatroyd, P.R.; Medina-Gomez, G.; Wood, N.I.; Finer, N.; Vidal-Puig, A.J.; Morton, A.J.; Barker, R.A. The metabolic profile of early Huntington’s disease—A combined human and transgenic mouse study. Exp. Neurol. 2008, 210, 691–698. [Google Scholar] [CrossRef]
- Valenza, M.; Rigamonti, D.; Goffredo, D.; Zuccato, C.; Fenu, S.; Jamot, L.; Strand, A.; Tarditi, A.; Woodman, B.; Racchi, M.; et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J. Neurosci. 2005, 25, 9932–9939. [Google Scholar] [CrossRef]
- Block, R.C.; Dorsey, E.R.; Beck, C.A.; Brenna, J.T.; Shoulson, I. Altered cholesterol and fatty acid metabolism in Huntington disease. J. Clin. Lipidol. 2010, 4, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Knowlton, B.; Cupples, L.A.; Marder, K.; Shoulson, I.; Myers, R.H. Weight loss in early stage of Huntington’s disease. Neurology 2002, 59, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Hult, S.; Soylu, R.; Björklund, T.; Belgardt, B.F.; Mauer, J.; Brüning, J.C.; Kirik, D.; Petersén, Å. Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab. 2011, 13, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Soylu-Kucharz, R.; Adlesic, N.; Baldo, B.; Kirik, D.; Petersén, Å. Hypothalamic overexpression of mutant huntingtin causes dysregulation of brown adipose tissue. Sci. Rep. 2015, 5, 14598. [Google Scholar] [CrossRef] [PubMed]
- Dickson, E.; Soylu-Kucharz, R.; Petersén, Å.; Björkqvist, M. Hypothalamic expression of huntingtin causes distinct metabolic changes in Huntington’s disease mice. Mol. Metab. 2022, 57, 101439. [Google Scholar] [CrossRef] [PubMed]
- Hult Lundh, S.; Nilsson, N.; Soylu, R.; Kirik, D.; Petersén, Å. Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington’s disease. Hum. Mol. Genet. 2013, 22, 3485–3497. [Google Scholar] [CrossRef] [PubMed]
- Björkqvist, M.; Petersén, A.; Bacos, K.; Isaacs, J.; Norlén, P.; Gil, J.; Popovic, N.; Sundler, F.; Bates, G.P.; Tabrizi, S.J.; et al. Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington’s disease. Hum. Mol. Genet. 2006, 15, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Petersén, A.; Gil, J.; Maat-Schieman, M.L.; Björkqvist, M.; Tanila, H.; Araújo, I.M.; Smith, R.; Popovic, N.; Wierup, N.; Norlén, P.; et al. Orexin loss in Huntington’s disease. Hum. Mol. Genet. 2005, 14, 39–47. [Google Scholar] [CrossRef]
- Williams, R.H.; Morton, A.J.; Burdakov, D. Paradoxical function of orexin/hypocretin circuits in a mouse model of Huntington’s disease. Neurobiol. Dis. 2011, 42, 438–445. [Google Scholar] [CrossRef]
- van Wamelen, D.J.; Aziz, N.A. Hypothalamic pathology in Huntington disease. Handb. Clin. Neurol. 2021, 182, 245–255. [Google Scholar] [CrossRef]
- Kalliolia, E.; Silajdžić, E.; Nambron, R.; Hill, N.R.; Doshi, A.; Frost, C.; Watt, H.; Hindmarsh, P.; Björkqvist, M.; Warner, T.T. Plasma melatonin is reduced in Huntington’s disease. Mov. Disord. 2014, 29, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.M.; Domínguez, D.J.F.; Reyes, A.; Zaenker, P.; Feindel, K.W.; Newton, R.U.; Hannan, A.J.; Slater, J.A.; Eastwood, P.R.; Lazar, A.S.; et al. Investigating the relationships between hypothalamic volume and measures of circadian rhythm and habitual sleep in premanifest Huntington’s disease. Neurobiol. Sleep Circadian Rhythm. 2018, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Li, W.; Wang, J.; Baranov, S.V.; Heath, B.E.; Jia, J.; Suofu, Y.; Baranova, O.V.; Wang, X.; Larkin, T.M.; et al. Biosynthesis of neuroprotective melatonin is dysregulated in Huntington’s disease. J. Pineal Res. 2023, 75, e12909. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.A.; Pijl, H.; Frölich, M.; van der Graaf, A.W.; Roelfsema, F.; Roos, R.A. Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J. Clin. Endocrinol. Metab. 2009, 94, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Adamczak-Ratajczak, A.; Kupsz, J.; Owecki, M.; Zielonka, D.; Sowinska, A.; Checinska-Maciejewska, Z.; Krauss, H.; Michalak, S.; Gibas-Dorna, M. Circadian rhythms of melatonin and cortisol in manifest Huntington’s disease and in acute cortical ischemic stroke. J. Physiol. Pharmacol. 2017, 68, 539–546. [Google Scholar] [PubMed]
- Saleh, N.; Moutereau, S.; Durr, A.; Krystkowiak, P.; Azulay, J.P.; Tranchant, C.; Broussolle, E.; Morin, F.; Bachoud-Lévi, A.C.; Maison, P. Neuroendocrine disturbances in Huntington’s disease. PLoS ONE 2009, 4, e4962. [Google Scholar] [CrossRef] [PubMed]
- Heuser, I.J.; Chase, T.N.; Mouradian, M.M. The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol. Psychiatry 1991, 30, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Dufour, B.D.; McBride, J.L. Corticosterone dysregulation exacerbates disease progression in the R6/2 transgenic mouse model of Huntington’s disease. Exp. Neurol. 2016, 283 Pt A, 308–317. [Google Scholar] [CrossRef]
- Dufour, B.D.; McBride, J.L. Normalizing glucocorticoid levels attenuates metabolic and neuropathological symptoms in the R6/2 mouse model of huntington’s disease. Neurobiol. Dis. 2019, 121, 214–229. [Google Scholar] [CrossRef]
- Gentenaar, M.; Meulmeester, F.L.; van der Burg, X.R.; Hoekstra, A.T.; Hunt, H.; Kroon, J.; van Roon-Mom, W.M.C.; Meijer, O.C. Glucocorticoid receptor antagonist CORT113176 attenuates motor and neuropathological symptoms of Huntington’s disease in R6/2 mice. Exp. Neurol. 2024, 374, 114675. [Google Scholar] [CrossRef]
- van Wamelen, D.J.; Roos, R.A.; Aziz, N.A. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener. Dis. Manag. 2015, 5, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Tacad, D.K.M.; Tovar, A.P.; Richardson, C.E.; Horn, W.F.; Krishnan, G.P.; Keim, N.L.; Krishnan, S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Peripheral Hormones. Adv. Nutr. 2022, 13, 792–820. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, O.; Springer, C.; Skov, L.J.; Madsen, A.N.; Hasholt, L.; Nørremølle, A.; Holst, B. Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington’s disease. J. Neuroendocrinol. 2019, 31, e12699. [Google Scholar] [CrossRef] [PubMed]
- Popovic, V.; Svetel, M.; Djurovic, M.; Petrovic, S.; Doknic, M.; Pekic, S.; Miljic, D.; Milic, N.; Glodic, J.; Dieguez, C.; et al. Circulating and cerebrospinal fluid ghrelin and leptin: Potential role in altered body weight in Huntington’s disease. Eur. J. Endocrinol. 2004, 151, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.A.; Pijl, H.; Frölich, M.; Schröder-van der Elst, J.P.; van der Bent, C.; Roelfsema, F.; Roos, R.A. Growth hormone and ghrelin secretion are associated with clinical severity in Huntington’s disease. Eur. J. Neurol. 2010, 17, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.A.; Pijl, H.; Frölich, M.; van der Graaf, A.W.; Roelfsema, F.; Roos, R.A. Leptin secretion rate increases with higher CAG repeat number in Huntington’s disease patients. Clin. Endocrinol. (Oxf) 2010, 73, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Nambron, R.; Silajdžić, E.; Kalliolia, E.; Ottolenghi, C.; Hindmarsh, P.; Hill, N.R.; Costelloe, S.J.; Martin, N.G.; Positano, V.; Watt, H.C.; et al. A Metabolic Study of Huntington’s Disease. PLoS ONE 2016, 11, e0146480. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ross, C.A.; Cai, H.; Cong, W.N.; Daimon, C.M.; Carlson, O.D.; Egan, J.M.; Siddiqui, S.; Maudsley, S.; Martin, B. Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front. Physiol. 2014, 5, 231. [Google Scholar] [CrossRef] [PubMed]
- Mattar, P.; Reginato, A.; Lavados, C.; Das, D.; Kalyani, M.; Martinez-Lopez, N.; Sharma, M.; Skovbjerg, G.; Skytte, J.L.; Roostalu, U.; et al. Insulin and leptin oscillations license food-entrained browning and metabolic flexibility. Cell Rep. 2024, 43, 114390. [Google Scholar] [CrossRef]
- Oishi, K.; Hashimoto, C. Short-term time-restricted feeding during the resting phase is sufficient to induce leptin resistance that contributes to development of obesity and metabolic disorders in mice. Chronobiol. Int. 2018, 35, 1576–1594. [Google Scholar] [CrossRef]
- Stengel, A.; Goebel, M.; Wang, L.; Taché, Y. Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: Role as regulators of food intake and body weight. Peptides 2010, 31, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Desmet, L.; Thijs, T.; Mas, R.; Verbeke, K.; Depoortere, I. Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag. Nutrients 2021, 13, 3846. [Google Scholar] [CrossRef] [PubMed]
- Melkani, G.C. Huntington’s Disease-Induced Cardiac Disorders Affect Multiple Cellular Pathways. React. Oxyg. Species (Apex) 2016, 2, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Pattison, J.S.; Sanbe, A.; Maloyan, A.; Osinska, H.; Klevitsky, R.; Robbins, J. Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation 2008, 117, 2743–2751. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Luk, S.H.C.; Bains, R.S.; Whittaker, D.S.; Chiem, E.; Jordan, M.C.; Roos, K.P.; Ghiani, C.A.; Colwell, C.S. Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington’s Disease. Front. Cardiovasc. Med. 2021, 8, 810810. [Google Scholar] [CrossRef] [PubMed]
- Marotta, J.; Piano, C.; Brunetti, V.; Genovese, D.; Bentivoglio, A.R.; Calabresi, P.; Cortelli, P.; Della Marca, G. Heart Rate Variability during Wake and Sleep in Huntington’s Disease Patients: An Observational, Cross-Sectional, Cohort Study. Neurodegener. Dis. 2021, 21, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.L.; Nopoulos, P.C. Autonomic Changes in Juvenile-Onset Huntington’s Disease. Brain Sci. 2020, 10, 589. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.L.; Heinzerling, A.E.; Brinker, A.N.; Harshman, L.A.; Magnotta, V.A.; Kamholz, J.A.; Boes, A.D.; Nopoulos, P.C. Autonomic changes in Huntington’s disease correlate with altered central autonomic network connectivity. Brain Commun. 2022, 4, fcac253. [Google Scholar] [CrossRef]
- Smarr, B.; Cutler, T.; Loh, D.H.; Kudo, T.; Kuljis, D.; Kriegsfeld, L.; Ghiani, C.A.; Colwell, C.S. Circadian dysfunction in the Q175 model of Huntington’s disease: Network analysis. J. Neurosci. Res. 2019, 97, 1606–1623. [Google Scholar] [CrossRef]
- Rüb, U.; Hentschel, M.; Stratmann, K.; Brunt, E.; Heinsen, H.; Seidel, K.; Bouzrou, M.; Auburger, G.; Paulson, H.; Vonsattel, J.; et al. Huntington’s disease (HD): Degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol. 2014, 24, 247–260. [Google Scholar] [CrossRef]
- Mielcarek, M.; Inuabasi, L.; Bondulich, M.K.; Muller, T.; Osborne, G.F.; Franklin, S.A.; Smith, D.L.; Neueder, A.; Rosinski, J.; Rattray, I.; et al. Dysfunction of the CNS-heart axis in mouse models of Huntington’s disease. PLoS Genet. 2014, 10, e1004550. [Google Scholar] [CrossRef]
- İşcan, D.; Çetinkaya, Y. Cardiac autonomic involvement in Huntington’s disease. Neurol. Sci. 2024, 45, 3823–3828. [Google Scholar] [CrossRef]
- Bartlett, D.M.; Poudel, G.; Maddison, K.J.; Lampit, A.; Dann, L.; Eastwood, P.R.; Lazar, A.S.; Ziman, M.R.; Cruickshank, T.M. Effect of multidisciplinary rehabilitation on sleep outcomes in individuals with preclinical Huntington disease: An exploratory study. Ann. Phys. Rehabil. Med. 2020, 63, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Dauwan, M.; Begemann, M.J.H.; Slot, M.I.E.; Lee, E.H.M.; Scheltens, P.; Sommer, I.E.C. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: A transdiagnostic systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2021, 268, 1222–1246. [Google Scholar] [CrossRef] [PubMed]
- Mirek, E.; Filip, M.; Chwała, W.; Szymura, J.; Pasiut, S.; Banaszkiewicz, K.; Bar, M.R.; Szczudlik, A. The influence of motor ability rehabilitation on temporal-spatial parameters of gait in Huntington’s disease patients on the basis of a three-dimensional motion analysis system: An experimental trial. Neurol. Neurochir. Pol. 2018, 52, 575–580. [Google Scholar] [CrossRef]
- Papoutsi, M.; Flower, M.; Hensman Moss, D.J.; Holmans, P.; Estevez-Fraga, C.; Johnson, E.B.; Scahill, R.I.; Rees, G.; Langbehn, D.; Tabrizi, S.J. Track-HD Investigators. Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington’s disease. Brain Commun. 2022, 4, fcac279. [Google Scholar] [CrossRef] [PubMed]
- Quinn, L.; Kegelmeyer, D.; Kloos, A.; Rao, A.K.; Busse, M.; Fritz, N.E. Clinical recommendations to guide physical therapy practice for Huntington disease. Neurology 2020, 94, 217–228. [Google Scholar] [CrossRef]
- Owen, N.E.; Barker, R.A.; Voysey, Z.J. Sleep Dysfunction in Huntington’s Disease: Impacts of Current Medications and Prospects for Treatment. J. Huntington’s Dis. 2023, 12, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.S.; Liao, P.Y.; Chen, H.M.; Chang, C.P.; Chen, S.K.; Chern, Y. Degeneration of ipRGCs in Mouse Models of Huntington’s Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment. J. Neurosci. 2019, 39, 1505–1524. [Google Scholar] [CrossRef]
- Elliott, J.E.; Tinsley, C.E.; Reynolds, C.; Olson, R.J.; Weymann, K.B.; Au-Yeung, W.M.; Wilkerson, A.; Kaye, J.A.; Lim, M.M. Tunable White Light for Elders (TWLITE): A Protocol Demonstrating Feasibility and Acceptability for Deployment, Remote Data Collection, and Analysis of a Home-Based Lighting Intervention in Older Adults. Sensors 2022, 22, 5372. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Angelica, D.; Singh, K.; Colwell, C.S.; Ghiani, C.A. Circadian Interventions in Preclinical Models of Huntington’s Disease: A Narrative Review. Biomedicines 2024, 12, 1777. https://doi.org/10.3390/biomedicines12081777
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington’s Disease: A Narrative Review. Biomedicines. 2024; 12(8):1777. https://doi.org/10.3390/biomedicines12081777
Chicago/Turabian StyleDell’Angelica, Derek, Karan Singh, Christopher S. Colwell, and Cristina A. Ghiani. 2024. "Circadian Interventions in Preclinical Models of Huntington’s Disease: A Narrative Review" Biomedicines 12, no. 8: 1777. https://doi.org/10.3390/biomedicines12081777
APA StyleDell’Angelica, D., Singh, K., Colwell, C. S., & Ghiani, C. A. (2024). Circadian Interventions in Preclinical Models of Huntington’s Disease: A Narrative Review. Biomedicines, 12(8), 1777. https://doi.org/10.3390/biomedicines12081777