Systematic Review of Left Ventricular Remodeling in Response to Hypoglycemic Medications: Assessing Changes in End-Systolic and End-Diastolic Diameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Collection Process
2.6. Data Items
2.7. Risk of Bias and Quality Assessment
3. Results
3.1. Study Selection and Study Characteristics
3.2. Results of Individual Studies
3.3. Results of Synthesis
4. Discussion
4.1. Summary of Evidence
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azevedo, P.S.; Polegato, B.F.; Minicucci, M.F.; Paiva, S.A.; Zornoff, L.A. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq. Bras. Cardiol. 2016, 106, 62–69. [Google Scholar] [CrossRef]
- Kodsi, M.; Makarious, D.; Gan, G.C.H.; Choudhary, P.; Thomas, L. Cardiac reverse remodelling by imaging parameters with recent changes to guideline medical therapy in heart failure. ESC Heart Fail. 2023, 10, 3258–3275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leancă, S.A.; Afrăsânie, I.; Crișu, D.; Matei, I.T.; Duca, Ș.T.; Costache, A.D.; Onofrei, V.; Tudorancea, I.; Mitu, O.; Bădescu, M.C.; et al. Cardiac Reverse Remodeling in Ischemic Heart Disease with Novel Therapies for Heart Failure with Reduced Ejection Fraction. Life 2023, 13, 1000. [Google Scholar] [CrossRef]
- Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure. Card. Fail. Rev. 2017, 3, 7–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hassannejad, R.; Shafie, D.; Turk-Adawi, K.I.; Hajaj, A.M.; Mehrabani-Zeinabad, K.; Lui, M.; Kopec, J.A.; Abdul Rahim, H.F.; Safiri, S.; Fadhil, I.; et al. Changes in the burden and underlying causes of heart failure in the Eastern Mediterranean Region, 1990-2019: An analysis of the Global Burden of Disease Study 2019. EClinicalMedicine 2022, 56, 101788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, L.; Liao, K.; Wang, Y.; Lv, F.; Guo, X.; Zheng, Y.; Qin, J. Study of the Correlation Between the Ratio of Diastolic to Systolic Durations and Echocardiography Measurements and Its Application to the Classification of Heart Failure Phenotypes. Int. J. Gen. Med. 2021, 14, 5493–5503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schach, C.; Körtl, T.; Wachter, R.; Maier, L.S.; Sossalla, S. Echocardiographic Evaluation of LV Function in Patients with Tachyarrhythmia and Reduced Left Ventricular Function in Response to Rhythm Restoration. J. Clin. Med. 2021, 10, 3706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hasan, I.; Rashid, T.; Jaikaransingh, V.; Heilig, C.; Abdel-Rahman, E.M.; Awad, A.S. SGLT2 inhibitors: Beyond glycemic control. J. Clin. Transl. Endocrinol. 2024, 35, 100335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fatima, A.; Rasool, S.; Devi, S.; Talha, M.; Waqar, F.; Nasir, M.; Khan, M.R.; Ibne Ali Jaffari, S.M.; Haider, A.; Shah, S.U.; et al. Exploring the Cardiovascular Benefits of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: Expanding Horizons Beyond Diabetes Management. Cureus 2023, 15, e46243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pabel, S.; Hamdani, N.; Luedde, M.; Sossalla, S. SGLT2 Inhibitors and Their Mode of Action in Heart Failure-Has the Mystery Been Unravelled? Curr. Heart Fail Rep. 2021, 18, 315–328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, F.; Meng, R.; Zhu, D.L. Cardiovascular effects and mechanisms of sodium-glucose cotransporter-2 inhibitors. Chronic Dis. Transl. Med. 2020, 6, 239–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palazzuoli, A.; Iacoviello, M. Diabetes leading to heart failure and heart failure leading to diabetes: Epidemiological and clinical evidence. Heart Fail. Rev. 2023, 28, 585–596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Ashna, M.; Ross-Comptis, J.; Ansong, S.O.; Egbunu, E.O.; Okafor, G.C.; Jingwa, K.A.; Akintunde, A.A.; et al. Heart failure and diabetes: Understanding the bidirectional relationship. Medicine 2023, 102, e34906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abduch, M.C.; Alencar, A.M.; Mathias, W., Jr.; Vieira, M.L. Cardiac mechanics evaluated by speckle tracking echocardiography. Arq. Bras. Cardiol. 2014, 102, 403–412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Saikhan, L.; Park, C.; Tillin, T.; Jones, S.; Mayet, J.; Chaturvedi, N.; Hughes, A. Does 3D-speckle tracking echocardiography improve prediction of major cardiovascular events in a multi-ethnic general population? A Southall and Brent Revisited (SABRE) cohort study. PLoS ONE 2023, 18, e0287173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, F.Q.; Wu, B.L.; Liu, X.W.; Pan, T.; Gao, B.L.; Li, C.Y. Three-Tesla magnetic resonance imaging of left ventricular volume and function in comparison with computed tomography and echocardiography. Medicine 2023, 102, e33549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Y.L.; Xu, X.Z.; Liu, J.; Wang, P.Y.; Wang, X.L.; Feng, H.L.; Liu, C.J.; Han, X. Effects of new hypoglycemic drugs on cardiac remodeling: A systematic review and network meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carluccio, E.; Biagioli, P.; Reboldi, G.; Mengoni, A.; Lauciello, R.; Zuchi, C.; D’addario, S.; Bardelli, G.; Ambrosio, G. Left ventricular remodeling response to SGLT2 inhibitors in heart failure: An updated meta-analysis of randomized controlled studies. Cardiovasc. Diabetol. 2023, 22, 235. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-R.; Shen, X.-Q.; Zhang, Y.; Chen, Y.-D.; Hu, S.-Y.; Qian, G.; Wang, J.; Yang, J.-J.; Wang, Z.-F.; Tian, F. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine 2015, 52, 516–526. [Google Scholar] [CrossRef]
- Yamada, H.; Tanaka, A.; Kusunose, K.; Amano, R.; Matsuhisa, M.; Daida, H.; Ito, M.; Tsutsui, H.; Nanasato, M.; Kamiya, H.; et al. Effect of sitagliptin on the echocardiographic parameters of left ventricular diastolic function in patients with type 2 diabetes: A subgroup analysis of the PROLOGUE study. Cardiovasc. Diabetol. 2017, 16, 63. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Seo, Y.; Ishizu, T.; Nishi, I.; Hamada-Harimura, Y.; Machino-Ohtsuka, T.; Sato, K.; Sai, S.; Sugano, A.; Obara, K.; et al. Effect of Dipeptidyl Peptidase-4 Inhibitors on Cardiovascular Outcome and Cardiac Function in Patients with Diabetes and Heart Failure—Insights from the Ibaraki Cardiac Assessment Study-Heart Failure (ICAS-HF) Registry. Circ. J. 2017, 81, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Paolisso, P.; Sacra, C.; Santamaria, M.; de Lucia, C.; Ruocco, A.; Mauro, C.; Paolisso, G.; Rizzo, M.R.; Barbieri, M.; et al. Cardiac resynchronization therapy with a defibrillator (CRTd) in failing heart patients with type 2 diabetes mellitus and treated by glucagon-like peptide 1 receptor agonists (GLP-1 RA) therapy vs. conventional hypoglycemic drugs: Arrhythmic burden, hospitalizations for heart failure, and CRTd responders rate. Cardiovasc. Diabetol. 2018, 17, 137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Otagaki, M.; Matsumura, K.; Kin, H.; Fujii, K.; Shibutani, H.; Matsumoto, H.; Takahashi, H.; Park, H.; Yamamoto, Y.; Sugiura, T.; et al. Effect of Tofogliflozin on Systolic and Diastolic Cardiac Function in Type 2 Diabetic Patients. Cardiovasc. Drugs Ther. 2019, 33, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Rau, M.; Thiele, K.; Hartmann, N.-U.K.; Schuh, A.; Altiok, E.; Möllmann, J.; Keszei, A.P.; Böhm, M.; Marx, N.; Lehrke, M. Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: A randomized controlled study. Cardiovasc. Diabetol. 2021, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Gamaza-Chulián, S.; Díaz-Retamino, E.; González-Testón, F.; Gaitero, J.C.; Castillo, M.J.; Alfaro, R.; Rodríguez, E.; González-Caballero, E.; Martín-Santana, A. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on left ventricular remodelling and longitudinal strain: A prospective observational study. BMC Cardiovasc. Disord. 2021, 21, 456. [Google Scholar] [CrossRef]
- Reis, J.; Teixeira, A.R.; Gonçalves, A.V.; Moreira, R.I.; Silva, T.P.; Timóteo, A.T.; Ferreira, R.C. Dapagliflozin Impact on the Exercise Capacity of Non-Diabetic Heart Failure with Reduced Ejection Fraction Patients. J. Clin. Med. 2022, 11, 2935. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhou, L.; Fan, Y.; Liu, F.; Fan, Y.; Zhang, X.; Wang, L.; Cheng, L. Effect of SGLT-2 inhibitor, dapagliflozin, on left ventricular remodeling in patients with type 2 diabetes and HFrEF. BMC Cardiovasc. Disord. 2023, 23, 544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hong, J.; Huang, L.; Jin, N.; Zhao, X.; Hu, J. Effect of dapagliflozin on left ventricular structure and function in patients with non-ischemic dilated cardiomyopathy: An observational study. Medicine 2024, 103, e37579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, T.-I.; Chen, Y.-C.; Lin, Y.-K.; Chung, C.-C.; Lu, Y.-Y.; Kao, Y.-H.; Chen, Y.-J. Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. Int. J. Mol. Sci. 2019, 20, 1680. [Google Scholar] [CrossRef]
- Rosa, C.M.; Campos, D.H.S.; Reyes, D.R.A.; Damatto, F.C.; Kurosaki, L.Y.; Pagan, L.U.; Gomes, M.J.; Corrêa, C.R.; Fernandes, A.A.H.; Okoshi, M.P.; et al. Effects of the SGLT2 Inhibition on Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats, a Model of Type 1 Diabetes Mellitus. Antioxidants 2022, 11, 982. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Pavlidis, G.; Thymis, J.; Birba, D.; Kalogeris, A.; Kousathana, F.; Kountouri, A.; Balampanis, K.; Parissis, J.; Andreadou, I.; et al. Effects of Glucagon-Like Peptide-1 Receptor Agonists, Sodium-Glucose Cotransporter-2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients With Type 2 Diabetes Mellitus After 12-Month Treatment. J. Am. Heart Assoc. 2020, 9, e015716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paiman, E.H.M.; van Eyk, H.J.; van Aalst, M.M.A.; Bizino, M.B.; van der Geest, R.J.; Westenberg, J.J.M.; Geelhoed-Duijvestijn, P.H.; Kharagjitsingh, A.V.; Rensen, P.C.N.; Smit, J.W.A.; et al. Effect of Liraglutide on Cardiovascular Function and Myocardial Tissue Characteristics in Type 2 Diabetes Patients of South Asian Descent Living in the Netherlands: A Double-Blind, Randomized, Placebo-Controlled Trial. J. Magn. Reson. Imag. 2020, 51, 1679–1688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos-Gallego, C.G.; Vargas-Delgado, A.P.; Requena-Ibanez, J.A.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.; Macaluso, F.; Sartori, S.; Roque, M.; Sabatel-Perez, F.; et al. Randomized Trial of Empagliflozin in Nondiabetic Patients with Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2021, 77, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, H.; Sugimoto, K.; Shintani, A.; Taniuchi, S.; Yamamoto, K.; Iwakura, K.; Okamura, A.; Takiuchi, S.; Fukuda, M.; Kamide, K.; et al. Effects of ipragliflozin on left ventricular diastolic function in patients with type 2 diabetes and heart failure with preserved ejection fraction: The EXCEED randomized controlled multicenter study. Geriatr. Gerontol. Int. 2022, 22, 298–304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Number | First Author | Reference | Country | Study Year | Study Design | Study Quality |
---|---|---|---|---|---|---|
1 | Chen et al. | [21] | China | 2015 | Randomized, double-blind, placebo trial | High |
2 | Yamada et al. | [22] | Japan | 2017 | Randomized, prospective, open-label, blinded-endpoint trial | High |
3 | Yamamoto et al. | [23] | Japan | 2017 | Prospective, observational | Medium |
4 | Sardu et al. | [24] | Italy | 2018 | Prospective, observational | Medium |
5 | Otagaki et al. | [25] | Japan | 2019 | Prospective, observational | Medium |
6 | Rau et al. | [26] | Germany | 2021 | Randomized, double-blind, placebo trial | High |
7 | Gamaza-Chulian et al. | [27] | Spain | 2021 | Prospective, observational | Medium |
8 | Reis et al. | [28] | Portugal | 2022 | Randomized, open-label trial | Medium |
9 | Fu et al. | [29] | China | 2023 | Randomized, double-blind, placebo trial | High |
10 | Hong et al. | [30] | China | 2024 | Randomized, prospective, open-label, blinded-endpoint trial | Medium |
Number | First Author | Reference | Sample Size | Age (Years) | Treatment | Comorbidities | Gender (Men) |
---|---|---|---|---|---|---|---|
1 | Chen et al. | [21] | 83 | 57.7 (11.3) | GLP-1RA | CVD | 73.3% |
2 | Yamada et al. | [22] | 115 | 69 (8) | DPP-4I | T2DM | 67.0% |
3 | Yamamoto et al. | [23] | 137 | 71 (10) | DPP-4I | CVD+T2DM | 63.8% |
4 | Sardu et al. | [24] | 559 | 72 (6) | GLP-1RA | CVD+T2DM | 72.1% |
5 | Otagaki et al. | [25] | 42 | 65 (13.8) | SGLT-2I | T2DM | 69.1% |
6 | Rau et al. | [26] | 42 | 62 (6.8) | SGLT-2I | T2DM | 77.2% |
7 | Gamaza-Chulian et al. | [27] | 52 | 66.8 (8.6) | SGLT-2I | T2DM | 55.8% |
8 | Reis et al. | [28] | 40 | 60.9 (13) | SGLT-2I | CVD | 82.5% |
9 | Fu et al. | [29] | 60 | 70.7 (6.7) | SGLT-2I | CVD+T2DM | 71.7% |
10 | Hong et al. | [30] | 50 | 67 (59.7) | SGLT-2I | CVD | 80.0% |
Number | First Author | Reference | Treatment Scheme | LVEF | LVEDD | LVESD | Outcomes and Interpretation |
---|---|---|---|---|---|---|---|
1 | Chen et al. | [21] | Liraglutide for 3 months | Placebo: 47.7% at baseline vs. 52.6% at 3 months. Liraglutide: 47.2% at baseline vs. 57.2% at 3 months *. | Placebo: 46.3 mm at baseline vs. 45.9 mm at 3 months. Liraglutide: 46.5 mm at baseline vs. 45.2 mm at 3 months. | Placebo: 35.1 mm at baseline vs. 33.7 mm at 3 months. Liraglutide: 35.2 mm at baseline vs. 32.7 mm at 3 months *. | Liraglutide could improve left ventricular function in patients with NSTEMI. |
2 | Yamada et al. | [22] | Sitagliptin for 24 months | Baseline: 63.6%; 24 months: 62.5% | Baseline: 48.5 mm; 24 months: 47.5 mm | Baseline: 31.7 mm; 24 months: 31.5 mm | Except for significant e baseline-adjusted change in E/e′ for 24 months, Sitagliptin treatment was not associated with improvements in cardiac reverse remodeling. |
3 | Yamamoto et al. | [23] | DPP-4I (not mentioned) for 12 months | Baseline: 45%; 12 months: 50% * | Baseline: 55.7 mm; 12 months: 53.8 mm * | NR | DPP-4i treatment over 1 year showed improvement in LVEF and a decrease in LVEDD, suggesting potential stabilization or improvement in cardiac structure and function in HFpEF patients. |
4 | Sardu et al. | [24] | GLP-1 RA (not mentioned) for 12 months | Baseline: 27%; 12 months: 32% * | Baseline: 67 mm; 12 months: 66 mm | Baseline: 43 mm; 12 months: 36 mm | CRTd with GLP-1 RA therapy led to improvements in LVEF, reduced LVEDD and LVESD, significant decreases in arrhythmic events and heart failure hospitalizations, and an increase in CRTd responders. |
5 | Otagaki et al. | [25] | Tofogliflozin for 6 months | Placebo: 61.0% at baseline vs. 63.0% at 6 months. Tofogliflozin: 58.0% at baseline vs. 63.0% at 6 months *. | Placebo: 48.0 mm at baseline vs. 49.0 mm at 6 months. Tofogliflozin: 50 mm at baseline vs. 45 mm at 6 months *. | Placebo: 34 mm at baseline vs. 32 mm at 6 months. Tofogliflozin: 32 mm at baseline vs. 30 mm at 6 months. | Tofogliflozin treatment over 6 months demonstrated significant improvements in LVEF, LVEDD, and E/e’, suggesting beneficial effects on both systolic and diastolic functions in T2DM patients. |
6 | Rau et al. | [26] | Empagliflozin for 3 months | Placebo: 48% at baseline vs. 48% at 3 months. Empagliflozin: 51% at baseline vs. 51% at 3 months. | Placebo: 50 mm at baseline vs. 50 mm at 3 months. Empagliflozin: 49 mm at baseline vs. 48 mm at 3 months. | Placebo: 36 mm at baseline vs. 37 mm at 3 months. Empagliflozin: 34 mm at baseline vs. 33 mm at 3 months. | No significant changes in LVEF, LVEDD, or LVESD were observed over the course of treatment with empagliflozin compared to placebo. |
7 | Gamaza-Chulian et al. | [27] | SGLT-2I (not mentioned) for 6 months | Baseline: 64.6%; 6 months: 64.4% | Baseline: 44.5 mm; 6 months: 45.0 mm | NR | SGLT2 inhibitors were associated with significant reductions in indexed LVM and improvements in GLS, suggesting beneficial effects on cardiac remodeling and function in T2DM patients, although there was no significant evidence of reverse remodeling in terms of LVEF and LVEDD. |
8 | Reis et al. | [28] | Dapagliflozin for 6 months | Baseline: 34.5% vs. 6 months: 36.9% (Dapagliflozin) Baseline: 33.5% vs. 6 months: 36.2% (Control) | Baseline: 65.1 mm vs. 6 months: 63.0 mm (Dapagliflozin) Baseline: 67.2 mm vs. 6 months: 65.8 mm (Control) | Baseline: 49.4 mm vs. 6 months: 46.1 mm (Dapagliflozin) Baseline: 46.9 mm vs. 6 months: 41.6 mm (Control) | There were no statistically significant changes in LVEF, LVEDD, or LVESD observed over the course of treatment with Dapagliflozin compared to the control. The study suggested a modest trend towards improved cardiac function and remodeling in the Dapagliflozin group, although changes were not statistically significant. |
9 | Fu et al. | [29] | Dapagliflozin for 12 months | Baseline: 30.6% vs. 12 months: 36.3% (Dapagliflozin) Baseline: 31.3% vs. 12 months: 33.7% (Placebo)* | Baseline: 59.3 mm vs. 12 months: 53.8 mm (Dapagliflozin) Baseline: 59.9 mm vs. 12 months: 55.5 mm (Placebo) * | Baseline: 50.3 mm vs. 12 months: 46.0 mm (Dapagliflozin) Baseline: 50.7 mm vs. 12 months: 48.3 mm (Placebo) * | Dapagliflozin demonstrated a statistically significant improvement in LVEF, LVEDD, and LVESD over one year, suggesting beneficial effects on cardiac remodeling in patients with type 2 diabetes and HFrEF. |
10 | Hong et al. | [30] | Dapagliflozin for 12 months | Baseline: 27.87% vs. 12 months: 42.22% (Dapagliflozin) Baseline: 31.99% vs. 12 months: 35.52% (Placebo)* | Baseline: 64.3 mm vs. 12 months: 59.35 mm (Dapagliflozin) Baseline: 68.30 mm vs. 12 months: 66.37 mm (Placebo) * | Baseline: 53.61 mm vs. 12 months: 47.39 mm (Dapagliflozin) Baseline: 57.15 mm vs. 12 months: 54.52 mm (Placebo) * | Dapagliflozin combined with conventional therapy resulted in significant improvements in LVEF, LVEDD, and LVESD compared to placebo, indicating a substantial benefit in cardiac function and remodeling in NIDCM patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buz, B.-F.; Negrean, R.A.; Caruntu, F.; Parvanescu, T.; Slovenski, M.; Tomescu, M.C.; Arnautu, D.-A. Systematic Review of Left Ventricular Remodeling in Response to Hypoglycemic Medications: Assessing Changes in End-Systolic and End-Diastolic Diameters. Biomedicines 2024, 12, 1791. https://doi.org/10.3390/biomedicines12081791
Buz B-F, Negrean RA, Caruntu F, Parvanescu T, Slovenski M, Tomescu MC, Arnautu D-A. Systematic Review of Left Ventricular Remodeling in Response to Hypoglycemic Medications: Assessing Changes in End-Systolic and End-Diastolic Diameters. Biomedicines. 2024; 12(8):1791. https://doi.org/10.3390/biomedicines12081791
Chicago/Turabian StyleBuz, Bogdan-Flaviu, Rodica Anamaria Negrean, Florina Caruntu, Tudor Parvanescu, Milena Slovenski, Mirela Cleopatra Tomescu, and Diana-Aurora Arnautu. 2024. "Systematic Review of Left Ventricular Remodeling in Response to Hypoglycemic Medications: Assessing Changes in End-Systolic and End-Diastolic Diameters" Biomedicines 12, no. 8: 1791. https://doi.org/10.3390/biomedicines12081791
APA StyleBuz, B. -F., Negrean, R. A., Caruntu, F., Parvanescu, T., Slovenski, M., Tomescu, M. C., & Arnautu, D. -A. (2024). Systematic Review of Left Ventricular Remodeling in Response to Hypoglycemic Medications: Assessing Changes in End-Systolic and End-Diastolic Diameters. Biomedicines, 12(8), 1791. https://doi.org/10.3390/biomedicines12081791