Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications
Abstract
:1. Introduction
1.1. Transcriptomic Profiles of Lung Allografts
1.2. Inflammation Signatures in Lung Allografts
1.3. DBD vs. DCD Lung Transcriptomic Signatures
1.4. Transcriptomic Profiles of Human Lung Allografts
1.5. Insights from Single-Cell RNA Sequencing in Lung Allografts
2. Leveraging EVLP as a Platform to Repair, Recondition, and Re-Engineer Lung Allografts
2.1. Physical Therapies on EVLP Circuit
2.2. Pharmacologic Therapies
2.3. Cellular and Molecular Therapies
2.4. Genetic Engineering
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loor, G.; Parulekar, A.; Smith, M. Evaluation of the INSPIRE trial and its implications for lung transplantation with normothermic portable ex vivo lung perfusion. J. Thorac. Cardiovasc. Surg. 2019, 158, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Dang Van, S.; Gaillard, M.; Laverdure, F.; Thes, J.; Venhard, J.C.; Fradi, M.; Vallee, A.; Ramadan, R.; Hebert, G.; Tamarat, R.; et al. Ex vivo perfusion of the donor heart: Preliminary experience in high-risk transplantations. Arch. Cardiovasc. Dis. 2021, 114, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Pinnelas, R.; Kobashigawa, J.A. Ex vivo normothermic perfusion in heart transplantation: A review of the TransMedics((R)) Organ Care System. Future Cardiol. 2022, 18, 5–15. [Google Scholar] [CrossRef]
- Nakajima, D.; Date, H. Ex vivo lung perfusion in lung transplantation. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 625–630. [Google Scholar] [CrossRef]
- Moreno Garijo, J.; Roscoe, A. Ex-vivo lung perfusion. Curr. Opin. Anaesthesiol. 2020, 33, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Prasad, N.K.; Pasrija, C.; Talaie, T.; Krupnick, A.S.; Zhao, Y.; Lau, C.L. Ex Vivo Lung Perfusion: Current Achievements and Future Directions. Transplantation 2021, 105, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, M.; Tian, F.; Tikkanen, J.; Ding, L.; Andrew Cheung, H.Y.; Nakajima, D.; Wang, Z.; Mariscal, A.; Hwang, D.; et al. alpha(1)-Anti-trypsin improves function of porcine donor lungs during ex-vivo lung perfusion. J. Heart Lung Transplant. 2018, 37, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Buchko, M.T.; Himmat, S.; Stewart, C.J.; Hatami, S.; Dromparis, P.; Adam, B.A.; Freed, D.H.; Nagendran, J. Continuous Hemodialysis Does Not Improve Graft Function during Ex Vivo Lung Perfusion over 24 Hours. Transplant. Proc. 2019, 51, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Kakishita, T.; Oto, T.; Hori, S.; Miyoshi, K.; Otani, S.; Yamamoto, S.; Waki, N.; Yoshida, O.; Okazaki, M.; Yamane, M.; et al. Suppression of inflammatory cytokines during ex vivo lung perfusion with an adsorbent membrane. Ann. Thorac. Surg. 2010, 89, 1773–1779. [Google Scholar] [CrossRef]
- Hashimoto, K.; Cypel, M.; Juvet, S.; Saito, T.; Zamel, R.; Machuca, T.N.; Hsin, M.; Kim, H.; Waddell, T.K.; Liu, M.; et al. Higher M30 and high mobility group box 1 protein levels in ex vivo lung perfusate are associated with primary graft dysfunction after human lung transplantation. J. Heart Lung Transplant. 2017, 37, 240–249. [Google Scholar] [CrossRef]
- Sladden, T.M.; Yerkovich, S.; Wall, D.; Tan, M.; Hunt, W.; Hill, J.; Smith, I.; Hopkins, P.; Chambers, D.C. Endothelial Glycocalyx Shedding Occurs during Ex Vivo Lung Perfusion: A Pilot Study. J. Transplant. 2019, 2019, 6748242. [Google Scholar] [CrossRef] [PubMed]
- Warnecke, G.; Van Raemdonck, D.; Smith, M.A.; Massard, G.; Kukreja, J.; Rea, F.; Loor, G.; De Robertis, F.; Nagendran, J.; Dhital, K.K.; et al. Normothermic ex-vivo preservation with the portable Organ Care System Lung device for bilateral lung transplantation (INSPIRE): A randomised, open-label, non-inferiority, phase 3 study. Lancet Respir. Med. 2018, 6, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, G.; Drokhlyansky, E.; Anand, S.; Fiskin, E.; Subramanian, A.; Slyper, M.; Wang, J.; Van Wittenberghe, N.; Rouhana, J.M.; Waldman, J.; et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022, 376, eabl4290. [Google Scholar] [CrossRef]
- Dominguez Conde, C.; Xu, C.; Jarvis, L.B.; Rainbow, D.B.; Wells, S.B.; Gomes, T.; Howlett, S.K.; Suchanek, O.; Polanski, K.; King, H.W.; et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 2022, 376, eabl5197. [Google Scholar] [CrossRef] [PubMed]
- Regev, A.; Teichmann, S.A.; Lander, E.S.; Amit, I.; Benoist, C.; Birney, E.; Bodenmiller, B.; Campbell, P.; Carninci, P.; Clatworthy, M.; et al. The Human Cell Atlas. Elife 2017, 6, e27041. [Google Scholar] [CrossRef]
- Tabula Muris Consortium; Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018, 562, 367–372. [Google Scholar] [CrossRef]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; DeLaura, I.F.; Anwar, I.J.; Kesseli, S.J.; Kahan, R.; Abraham, N.; Asokan, A.; Barbas, A.S.; Hartwig, M.G. Gene Therapy: Will the Promise of Optimizing Lung Allografts Become Reality? Front. Immunol. 2022, 13, 931524. [Google Scholar] [CrossRef]
- Cypel, M.; Yeung, J.C.; Liu, M.; Anraku, M.; Chen, F.; Karolak, W.; Sato, M.; Laratta, J.; Azad, S.; Madonik, M.; et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N. Engl. J. Med. 2011, 364, 1431–1440. [Google Scholar] [CrossRef]
- Nykanen, A.I.; Keshavjee, S.; Liu, M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J. Heart Lung Transplant. 2024, 43, 838–848. [Google Scholar] [CrossRef]
- Lonati, C.; Bassani, G.A.; Brambilla, D.; Leonardi, P.; Carlin, A.; Faversani, A.; Gatti, S.; Valenza, F. Influence of ex vivo perfusion on the biomolecular profile of rat lungs. FASEB J. 2018, 32, 5532–5549. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; Sharma, A.K.; Mas, V.R.; Gehrau, R.C.; Mulloy, D.P.; Zhao, Y.; Lau, C.L.; Kron, I.L.; Huerter, M.E.; Laubach, V.E. Ex Vivo Perfusion with Adenosine A2A Receptor Agonist Enhances Rehabilitation of Murine Donor Lungs after Circulatory Death. Transplantation 2015, 99, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, J.; Glorion, M.; Jouneau, L.; Estephan, J.; Leplat, J.J.; Blanc, F.; Richard, C.; Urien, C.; Roux, A.; Le Guen, M.; et al. Challenging the Ex Vivo Lung Perfusion Procedure with Continuous Dialysis in a Pig Model. Transplantation 2022, 106, 979–987. [Google Scholar] [CrossRef]
- Elgharably, H.; Okamoto, T.; Ayyat, K.S.; Niikawa, H.; Meade, S.; Farver, C.; Chan, E.R.; Aldred, M.A.; McCurry, K.R. Human Lungs Airway Epithelium Upregulate MicroRNA-17 and MicroRNA-548b in Response to Cold Ischemia and Ex Vivo Reperfusion. Transplantation 2020, 104, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Zamel, R.; Yeung, J.; Bader, G.D.; Dos Santos, C.C.; Bai, X.; Wang, Y.; Keshavjee, S.; Liu, M. Potential therapeutic targets for lung repair during human ex vivo lung perfusion. Eur. Respir. J. 2020, 55, 1902222. [Google Scholar] [CrossRef] [PubMed]
- Baciu, C.; Sage, A.; Zamel, R.; Shin, J.; Bai, X.H.; Hough, O.; Bhat, M.; Yeung, J.C.; Cypel, M.; Keshavjee, S.; et al. Transcriptomic investigation reveals donor-specific gene signatures in human lung transplants. Eur. Respir. J. 2021, 57, 2000327. [Google Scholar] [CrossRef]
- Yeung, J.C.; Zamel, R.; Klement, W.; Bai, X.H.; Machuca, T.N.; Waddell, T.K.; Liu, M.; Cypel, M.; Keshavjee, S. Towards donor lung recovery-gene expression changes during ex vivo lung perfusion of human lungs. Am. J. Transplant. 2018, 18, 1518–1526. [Google Scholar] [CrossRef]
- Gouin, C.; Vu Manh, T.P.; Jouneau, L.; Bevilacqua, C.; De Wolf, J.; Glorion, M.; Hannouche, L.; Urien, C.; Estephan, J.; Roux, A.; et al. Cell type- and time-dependent biological responses in ex vivo perfused lung grafts. Front. Immunol. 2023, 14, 1142228. [Google Scholar] [CrossRef]
- Cypel, M.; Yeung, J.C.; Donahoe, L.; Chen, M.; Zamel, R.; Hoetzenecker, K.; Yasufuku, K.; de Perrot, M.; Pierre, A.F.; Waddell, T.K.; et al. Normothermic ex vivo lung perfusion: Does the indication impact organ utilization and patient outcomes after transplantation? J. Thorac. Cardiovasc. Surg. 2020, 159, 346–355 e341. [Google Scholar] [CrossRef]
- Korbecki, J.; Maruszewska, A.; Bosiacki, M.; Chlubek, D.; Baranowska-Bosiacka, I. The Potential Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Cardiovascular System, Respiratory System and Skin. Int. J. Mol. Sci. 2022, 24, 205. [Google Scholar] [CrossRef]
- Didion, S.P. Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature. Int. J. Mol. Sci. 2017, 18, 2563. [Google Scholar] [CrossRef] [PubMed]
- Weathington, N.M.; Alvarez, D.; Sembrat, J.; Radder, J.; Cardenes, N.; Noda, K.; Gong, Q.; Wong, H.; Kolls, J.; D’Cunha, J.; et al. Ex vivo lung perfusion as a human platform for preclinical small molecule testing. JCI Insight 2018, 3, e95515. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.; Su, Y.; Liu, Y.; Deng, C.; Wang, J.; Chen, T.; Jules, K.E.D.; Masau, J.F.; Li, H.; Wei, X. Melatonin protects circulatory death heart from ischemia/reperfusion injury via the JAK2/STAT3 signalling pathway. Life Sci. 2019, 228, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xu, L.; Zeng, Z.; Xue, C.; Li, J.; Chen, X.; Zhou, P.; Lin, S.; Liao, Y.; Du, X.; et al. Normothermic ex vivo Heart Perfusion Combined With Melatonin Enhances Myocardial Protection in Rat Donation After Circulatory Death Hearts via Inhibiting NLRP3 Inflammasome-Mediated Pyroptosis. Front. Cell Dev. Biol. 2021, 9, 733183. [Google Scholar] [CrossRef] [PubMed]
- Dromparis, P.; Aboelnazar, N.S.; Wagner, S.; Himmat, S.; White, C.W.; Hatami, S.; Luc, J.G.Y.; Rotich, S.; Freed, D.H.; Nagendran, J.; et al. Ex vivo perfusion induces a time- and perfusate-dependent molecular repair response in explanted porcine lungs. Am. J. Transplant. 2019, 19, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Iskender, I.; Arni, S.; Maeyashiki, T.; Citak, N.; Sauer, M.; Rodriguez, J.M.; Frauenfelder, T.; Opitz, I.; Weder, W.; Inci, I. Perfusate adsorption during ex vivo lung perfusion improves early post-transplant lung function. J. Thorac. Cardiovasc. Surg. 2021, 161, e109–e121. [Google Scholar] [CrossRef] [PubMed]
- Iskender, I.; Cosgun, T.; Arni, S.; Trinkwitz, M.; Fehlings, S.; Yamada, Y.; Cesarovic, N.; Yu, K.; Frauenfelder, T.; Jungraithmayr, W.; et al. Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. J. Heart Lung Transplant. 2017, 37, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ghaidan, H.; Stenlo, M.; Niroomand, A.; Mittendorfer, M.; Hirdman, G.; Gvazava, N.; Edstrom, D.; Silva, I.A.N.; Broberg, E.; Hallgren, O.; et al. Reduction of primary graft dysfunction using cytokine adsorption during organ preservation and after lung transplantation. Nat. Commun. 2022, 13, 4173. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Tane, S.; Haam, S.J.; D’Cunha, J.; Hayanga, A.J.; Luketich, J.D.; Shigemura, N. Targeting Circulating Leukocytes and Pyroptosis during Ex Vivo Lung Perfusion Improves Lung Preservation. Transplantation 2017, 101, 2841–2849. [Google Scholar] [CrossRef]
- Stone, J.P.; Critchley, W.R.; Major, T.; Rajan, G.; Risnes, I.; Scott, H.; Liao, Q.; Wohlfart, B.; Sjoberg, T.; Yonan, N.; et al. Altered Immunogenicity of Donor Lungs via Removal of Passenger Leukocytes Using Ex Vivo Lung Perfusion. Am. J. Transplant. 2016, 16, 33–43. [Google Scholar] [CrossRef]
- Noda, K.; Tane, S.; Haam, S.J.; Hayanga, A.J.; D’Cunha, J.; Luketich, J.D.; Shigemura, N. Optimal ex vivo lung perfusion techniques with oxygenated perfusate. J. Heart Lung Transplant. 2017, 36, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Haam, S.; Lee, S.; Paik, H.C.; Park, M.S.; Song, J.H.; Lim, B.J.; Nakao, A. The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death. Eur. J. Cardiothorac. Surg. 2015, 48, 542–547. [Google Scholar] [CrossRef]
- Haam, S.; Lee, J.G.; Paik, H.C.; Park, M.S.; Lim, B.J. Hydrogen gas inhalation during ex vivo lung perfusion of donor lungs recovered after cardiac death. J. Heart Lung Transplant. 2018, 37, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Arni, S.; Necati, C.; Maeyashiki, T.; Opitz, I.; Inci, I. Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators. Cells 2021, 10, 2249. [Google Scholar] [CrossRef]
- Nakajima, D.; Liu, M.; Ohsumi, A.; Kalaf, R.; Iskender, I.; Hsin, M.; Kanou, T.; Chen, M.; Baer, B.; Coutinho, R.; et al. Lung Lavage and Surfactant Replacement during Ex Vivo Lung Perfusion for Treatment of Gastric Acid Aspiration-Induced Donor Lung Injury. J. Heart Lung Transplant. 2017, 36, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Iskender, I.; Arni, S.; Hillinger, S.; Cosgun, T.; Yu, K.; Jungraithmayr, W.; Cesarovic, N.; Weder, W.; Inci, I. Ex vivo treatment with inhaled N-acetylcysteine in porcine lung transplantation. J. Surg. Res. 2017, 218, 341–347. [Google Scholar] [CrossRef]
- Harada, M.; Oto, T.; Otani, S.; Miyoshi, K.; Okada, M.; Iga, N.; Nishikawa, H.; Sugimoto, S.; Yamane, M.; Miyoshi, S. A neutrophil elastase inhibitor improves lung function during ex vivo lung perfusion. Gen. Thorac. Cardiovasc. Surg. 2015, 63, 645–651. [Google Scholar] [CrossRef]
- Allen, G.M.; Frankel, N.W.; Reddy, N.R.; Bhargava, H.K.; Yoshida, M.A.; Stark, S.R.; Purl, M.; Lee, J.; Yee, J.L.; Yu, W.; et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science 2022, 378, eaba1624. [Google Scholar] [CrossRef]
- Hernandez-Lopez, R.A.; Yu, W.; Cabral, K.A.; Creasey, O.A.; Lopez Pazmino, M.D.P.; Tonai, Y.; De Guzman, A.; Makela, A.; Saksela, K.; Gartner, Z.J.; et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science 2021, 371, 1166–1171. [Google Scholar] [CrossRef]
- Park, J.S.; Rhau, B.; Hermann, A.; McNally, K.A.; Zhou, C.; Gong, D.; Weiner, O.D.; Conklin, B.R.; Onuffer, J.; Lim, W.A. Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc. Natl. Acad. Sci. USA 2014, 111, 5896–5901. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bai, P.; Woischnig, A.K.; Charpin-El Hamri, G.; Ye, H.; Folcher, M.; Xie, M.; Khanna, N.; Fussenegger, M. Immunomimetic Designer Cells Protect Mice from MRSA Infection. Cell 2018, 174, 259–270 e211. [Google Scholar] [CrossRef]
- Martens, A.; Ordies, S.; Vanaudenaerde, B.M.; Verleden, S.E.; Vos, R.; Van Raemdonck, D.E.; Verleden, G.M.; Roobrouck, V.D.; Claes, S.; Schols, D.; et al. Immunoregulatory effects of multipotent adult progenitor cells in a porcine ex vivo lung perfusion model. Stem Cell Res. Ther. 2017, 8, 159. [Google Scholar] [CrossRef]
- La Francesca, S.; Ting, A.E.; Sakamoto, J.; Rhudy, J.; Bonenfant, N.R.; Borg, Z.D.; Cruz, F.F.; Goodwin, M.; Lehman, N.A.; Taggart, J.M.; et al. Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: An initial pilot and feasibility study. Transplant. Res. 2014, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- McAuley, D.F.; Curley, G.F.; Hamid, U.I.; Laffey, J.G.; Abbott, J.; McKenna, D.H.; Fang, X.; Matthay, M.A.; Lee, J.W. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 306, L809–L815. [Google Scholar] [CrossRef]
- Stone, M.L.; Zhao, Y.; Robert Smith, J.; Weiss, M.L.; Kron, I.L.; Laubach, V.E.; Sharma, A.K. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respir. Res. 2017, 18, 212. [Google Scholar] [CrossRef]
- Nakajima, D.; Watanabe, Y.; Ohsumi, A.; Pipkin, M.; Chen, M.; Mordant, P.; Kanou, T.; Saito, T.; Lam, R.; Coutinho, R.; et al. Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation. J. Heart Lung Transplant. 2019, 38, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Mordant, P.; Nakajima, D.; Kalaf, R.; Iskender, I.; Maahs, L.; Behrens, P.; Coutinho, R.; Iyer, R.K.; Davies, J.E.; Cypel, M.; et al. Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. J. Heart Lung Transplant. 2016, 35, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Machuca, T.N.; Cypel, M.; Bonato, R.; Yeung, J.C.; Chun, Y.M.; Juvet, S.; Guan, Z.; Hwang, D.M.; Chen, M.; Saito, T.; et al. Safety and Efficacy of Ex Vivo Donor Lung Adenoviral IL-10 Gene Therapy in a Large Animal Lung Transplant Survival Model. Hum. Gene Ther. 2017, 28, 757–765. [Google Scholar] [CrossRef]
- Hamid, U.; Krasnodembskaya, A.; Fitzgerald, M.; Shyamsundar, M.; Kissenpfennig, A.; Scott, C.; Lefrancais, E.; Looney, M.R.; Verghis, R.; Scott, J.; et al. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS. Thorax 2017, 72, 971–980. [Google Scholar] [CrossRef]
- Martens, A.; Boada, M.; Vanaudenaerde, B.M.; Verleden, S.E.; Vos, R.; Verleden, G.M.; Verbeken, E.K.; Van Raemdonck, D.; Schols, D.; Claes, S.; et al. Steroids can reduce warm ischemic reperfusion injury in a porcine donation after circulatory death model with ex vivo lung perfusion evaluation. Transpl. Int. 2016, 29, 1237–1246. [Google Scholar] [CrossRef]
- Charles, E.J.; Mehaffey, J.H.; Sharma, A.K.; Zhao, Y.; Stoler, M.H.; Isbell, J.M.; Lau, C.L.; Tribble, C.G.; Laubach, V.E.; Kron, I.L. Lungs donated after circulatory death and prolonged warm ischemia are transplanted successfully after enhanced ex vivo lung perfusion using adenosine A2B receptor antagonism. J. Thorac. Cardiovasc. Surg. 2017, 154, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Cosgun, T.; Iskender, I.; Yamada, Y.; Arni, S.; Lipiski, M.; van Tilburg, K.; Weder, W.; Inci, I. Ex vivo administration of trimetazidine improves post-transplant lung function in pig model. Eur. J. Cardiothorac. Surg. 2017, 52, 171–177. [Google Scholar] [CrossRef]
- Francioli, C.; Wang, X.; Parapanov, R.; Abdelnour, E.; Lugrin, J.; Gronchi, F.; Perentes, J.; Eckert, P.; Ris, H.B.; Piquilloud, L.; et al. Pyrrolidine dithiocarbamate administered during ex-vivo lung perfusion promotes rehabilitation of injured donor rat lungs obtained after prolonged warm ischemia. PLoS ONE 2017, 12, e0173916. [Google Scholar] [CrossRef] [PubMed]
- Hsin, M.K.; Zamel, R.; Cypel, M.; Wishart, D.; Han, B.; Keshavjee, S.; Liu, M. Metabolic Profile of Ex Vivo Lung Perfusate Yields Biomarkers for Lung Transplant Outcomes. Ann. Surg. 2018, 267, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Alberty, L.; Ye, S.; Elsenousi, A.; Hills, E.; King, M.; D’Silva, E.; Leon, A.P.; Salan-Gomez, M.; Li, M.; Hochman-Mendez, C.; et al. Effect of intraoperative support mode on circulating inflammatory biomarkers after lung transplantation surgery. Artif. Organs 2023, 47, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Alberty, L.; Kanchi, R.S.; Ye, S.; Hochman-Mendez, C.; Daoud, D.; Coarfa, C.; Li, M.; Grimm, S.L.; Baz, M.; Rosas, I.; et al. Plasma protein biomarkers for primary graft dysfunction after lung transplantation: A single-center cohort analysis. Sci. Rep. 2022, 12, 16137. [Google Scholar] [CrossRef] [PubMed]
- Delaura, I.F.; Gao, Q.; Anwar, I.J.; Abraham, N.; Kahan, R.; Hartwig, M.G.; Barbas, A.S. Complement-targeting therapeutics for ischemia-reperfusion injury in transplantation and the potential for ex vivo delivery. Front. Immunol. 2022, 13, 1000172. [Google Scholar] [CrossRef] [PubMed]
- Miceli, V.; Bertani, A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022, 11, 826. [Google Scholar] [CrossRef]
- Haarer, J.; Johnson, C.L.; Soeder, Y.; Dahlke, M.H. Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl. Int. 2015, 28, 1–9. [Google Scholar] [CrossRef]
- Ali, M.; Pham, A.; Wang, X.; Wolfram, J.; Pham, S. Extracellular vesicles for treatment of solid organ ischemia-reperfusion injury. Am. J. Transplant. 2020, 20, 3294–3307. [Google Scholar] [CrossRef]
- Wei, W.; Ao, Q.; Wang, X.; Cao, Y.; Liu, Y.; Zheng, S.G.; Tian, X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front. Pharmacol. 2020, 11, 590470. [Google Scholar] [CrossRef] [PubMed]
- Mahameed, M.; Xue, S.; Stefanov, B.A.; Hamri, G.C.; Fussenegger, M. Engineering a Rapid Insulin Release System Controlled By Oral Drug Administration. Adv. Sci. (Weinh) 2022, 9, e2105619. [Google Scholar] [CrossRef] [PubMed]
- Ordikhani, F.; Pothula, V.; Sanchez-Tarjuelo, R.; Jordan, S.; Ochando, J. Macrophages in Organ Transplantation. Front. Immunol. 2020, 11, 582939. [Google Scholar] [CrossRef] [PubMed]
- Guinn, M.T.; Balazsi, G. Noise-reducing optogenetic negative-feedback gene circuits in human cells. Nucleic Acids Res. 2019, 47, 7703–7714. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Ponzo, M.; Nicolette, C.A.; Tcherepanova, I.Y.; Biondi, A.; Magnani, C.F. The Past, Present, and Future of Non-Viral CAR T Cells. Front. Immunol. 2022, 13, 867013. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Guo, J.; Liu, G.; Kang, H.; Machens, H.G.; Schilling, A.F.; Slobodianski, A.; Zhang, Z. Nucleic acid direct delivery to fibroblasts: A review of nucleofection and applications. J. Biol. Eng. 2022, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Sayed, N.; Allawadhi, P.; Khurana, A.; Singh, V.; Navik, U.; Pasumarthi, S.K.; Khurana, I.; Banothu, A.K.; Weiskirchen, R.; Bharani, K.K. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022, 294, 120375. [Google Scholar] [CrossRef] [PubMed]
- Zhu, I.; Liu, R.; Garcia, J.M.; Hyrenius-Wittsten, A.; Piraner, D.I.; Alavi, J.; Israni, D.V.; Liu, B.; Khalil, A.S.; Roybal, K.T. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 2022, 185, 1431–1443 e1416. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, A.; Herbst, F.; Fraietta, J.A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol. Cancer 2022, 21, 78. [Google Scholar] [CrossRef]
- Katti, A.; Diaz, B.J.; Caragine, C.M.; Sanjana, N.E.; Dow, L.E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 2022, 22, 259–279. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Zhuang, S.; Wang, L.; Zhu, Y.; Chen, Y.; Sun, W.; Wu, Z.; Zhou, Z.; Chen, J.; et al. Gene editing and its applications in biomedicine. Sci. China Life Sci. 2022, 65, 660–700. [Google Scholar] [CrossRef]
- Didovyk, A.; Borek, B.; Tsimring, L.; Hasty, J. Transcriptional regulation with CRISPR-Cas9: Principles, advances, and applications. Curr. Opin. Biotechnol. 2016, 40, 177–184. [Google Scholar] [CrossRef]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Mesaki, K.; Juvet, S.; Yeung, J.; Guan, Z.; Wilson, G.W.; Hu, J.; Davidson, A.R.; Kleinstiver, B.P.; Cypel, M.; Liu, M.; et al. Immunomodulation of the donor lung with CRISPR-mediated activation of IL-10 expression. J. Heart Lung Transplant. 2023, 42, 1363–1377. [Google Scholar] [CrossRef]
- Chambers, D.C.; Carew, A.M.; Lukowski, S.W.; Powell, J.E. Transcriptomics and single-cell RNA-sequencing. Respirology 2019, 24, 29–36. [Google Scholar] [CrossRef]
- Timofte, I.; Wijesinha, M.; Vesselinov, R.; Kim, J.; Reed, R.; Sanchez, P.G.; Ladikos, N.; Pham, S.; Kon, Z.; Rajagopal, K.; et al. Survival benefit of lung transplantation compared with medical management and pulmonary rehabilitation for patients with end-stage COPD. ERJ Open Res. 2020, 6. [Google Scholar] [CrossRef]
- Snell, G.I.; Yusen, R.D.; Weill, D.; Strueber, M.; Garrity, E.; Reed, A.; Pelaez, A.; Whelan, T.P.; Perch, M.; Bag, R.; et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, part I: Definition and grading-A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2017, 36, 1097–1103. [Google Scholar] [CrossRef]
- Forgie, K.A.; Fialka, N.; Freed, D.H.; Nagendran, J. Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021, 10, 1417. [Google Scholar] [CrossRef]
- Olkowicz, M.; Ribeiro, R.V.P.; Yu, F.; Alvarez, J.S.; Xin, L.; Yu, M.; Rosales, R.; Adamson, M.B.; Bissoondath, V.; Smolenski, R.T.; et al. Dynamic Metabolic Changes during Prolonged Ex Situ Heart Perfusion Are Associated with Myocardial Functional Decline. Front. Immunol. 2022, 13, 859506. [Google Scholar] [CrossRef]
Study | Model | Analysis | Principle Finding | Tissue |
---|---|---|---|---|
Lonati et al. [21] | Rat | Microarray | Compared pre- vs. post-EVLP specimens and found both pro- and anti-inflammatory pathways activated simultaneously. | Lung |
Stone et al. [22] | Murine | Microarray | In a donation-after-circulatory-death (DCD) lung model, the application of EVLP led to a decreased inflammatory profile compared to standard cold preservation. | Lung |
De Wolf et al. [23] | Porcine | Bulk RNA sequencing | Porcine lungs on EVLP were subjected to various perfusate conditions—perfusate replacement, dialysis, and without modification. Compared to control, all EVLP groups displayed upregulated inflammatory, cell survival, and proliferation of connective tissue pathways, without a difference between EVLP groups. | Blood, Lung |
Elgharably et al. [24] | Human | Bulk RNA sequencing | microRNA sequencing of rejected human lungs before and after EVLP showed upregulated miR-17 and miR-548b which are known to dampen downstream pro-inflammatory genes. | Perfusate solution, Lung |
Wong et al. [25] | Human | Microarray | Donor lung gene expression profiles were compared in EVLP and clinical transplantation. Commonly altered pathways included upregulated inflammation and cell death pathways and downregulated metabolism pathways. | Lung |
Baciu et al. [26] | Human | Microarray | Transcriptomic profiles were compared between DCD and donation-after-brain-death (DBD) lungs with and without EVLP. DBD lungs had upregulated inflammatory pathways while DCD lungs had upregulated cell death pathways. | Perfusate solution, Lung |
Yeung et al. [27] | Human | Microarray | Transcriptomic profile investigation of rejected human lungs during 12 h of EVLP. Evidence of cellular recovery during EVLP was shown with cell death pathways upregulated early on while cell viability and survival pathways were upregulated at 3 h of perfusion time. | Lung |
Gouin et al. [28] | Human | scRNAseq | Single-cell RNAseq of rejected human lungs at 4 h and 10 h of EVLP demonstrated unique patterns of gene expression across epithelial, endothelial, myeloid, and lymphoid compartments. | Perfusate solution, Lung |
Study | Model | Finding |
---|---|---|
Dromparis et al. [35] | Porcine EVLP | Cytokine and gene profiles can characterize lungs on EVLP. |
Iskender et al. [36,37]; Ghaidan et al. [38] | Porcine EVLP and Transplant | Removal of cytokines (e.g., IL-1a, IL-1b, IL-1ra, IL-4, IL-6, IL-8, IL-10, 1L-12, IL-18, TNF-a, INF-a, and INF-y) via adsorber improves organ quality. |
Noda et al. [39] Stone et al. [40] | Rat and Porcine EVLP and Transplant Porcine | Removal of leukocytes can improve organ quality, diminish allorecognition, reduce T cell priming, and reduce T cell infiltration. |
Noda et al. [41] | Rat EVLP and Transplant | Oxygenation of perfusate reduces inflammation activity in lungs. |
Haam et al. [42,43] | Porcine EVLP and Transplant | EVLP gas composition affects resistance, pressures, and cytokines (IL-1b, IL-8, and TNF-a), and reduces inflammation (higher IL-10 and lower IL-6) of lungs. |
Arni et al. [44] | Rat EVLP | EVLP lungs with sub-normothermic temperature with/without PFCOCs reduce inflammatory makers (TNFa, IL-6, and IL-7), chemokines controlling leukocyte movement (MIP-3a, MIP-1a, and GRO/KC), and growth factors (GM-CSF and G-CSF). |
Nakajima et al. [45] | Porcine EVLP and Transplant | Lung lavage with surfactant replacement reduced inflammatory mediators (IL-1b, IL-6, and IL-8) and improved function (static pulmonary compliance, delta partial pressure of oxygen, and pulmonary vascular resistance) of organs on EVLP. |
Lin et al. [7] | Porcine EVLP | A1AT administration to EVLP lungs reduced edema, apoptosis, inflammatory cytokines (IL-1a and IL-8) PAP, and PVR; improved compliance and gas exchange. |
Yamada et al. [46] | Porcine EVLP and Transplant | NAC administration reduces inflammatory markers (IL-1b and MPO) for EVLP lungs. |
Harada et al. [47] | Porcine EVLP and Transplant | Neutrophil elastase inhibitors administration reduces inflammatory markers (TNF-a, IL-6, and IL-8) and PVR; improves oxygen exchange and pulmonary compliance. |
Allen [48], Hernandez-Lopez [49], Park [50], Liu [51] | Human Cell Model, Mouse Model | Engineered cells can tune proteins, sense specific compounds/tissues/or cells, migrate to geographically restricted regions, target and eliminate pathological tissue, and reduce fibrosis and improve cardiac systolic and diastolic function. |
Martens et al. [52] | Porcine EVLP | Multipotent adult progenitor stem cells applied to lungs on EVLP reduces inflammatory markers (TNF-a, IL-1b, and INF-y). |
La Francesca et al. [53] | Human EVLP | Multipotent adult progenitor cells applied to lungs on EVLP reduced immunological cells seen on BAL, inflammation, and edema. |
McAuley [54] | Human EVLP | Multipotent mesenchymal stem cells applied to lungs on EVLP restored alveolar fluid clearance in injured lungs and improved endothelial permeability. |
Stone et al. [55] | Mouse EVLP | Extracellular vesicles applied to lungs on EVLP produced an increase in IL-17, TNF-a, HMGB1, and CXCL1 inflammatory markers and inhibited neutrophil migration. |
Nakakima et al. [56] | Porcine EVLP and Transplant | MSCs applied to EVLP lungs increased HGF production and increased IL-4 and decreased Caspase-3, IL-18, IFN-y, and the wet/dry weight of the lung. |
Mordant et al. [57] | Porcine EVLP | MSCs applied to lungs on EVLP reduce IL-8. |
Machuca et al. [58] | Porcine EVLP and Transplant | IL-10 gene therapy in donor lungs on EVLP improves gas exchange, reduces inflammation, and leads to lower TNF-a. |
Hamid et al. [59] | Human EVLP | Aspirin reduces neutrophilic inflammation and alveolar injury in lungs on EVLP. |
Martens et al. [60] | Porcine EVLP | Steroids administered to lungs on EVLP improved compliance, improved wet-to-dry weight, and reduced cytokines (IL-1b, IL-8, IFN-a, IL-10, TNF-a, and INF-y). |
Charles et al. [61] | Porcine EVLP and Transplant | A2BAR administered to EVLP lungs improved compliance and reduced IL-12. |
Cosgun et al. [62] | Porcine EVLP and Transplant | Trimetazidine administered to lungs on EVLP improved oxygenation/gas exchange, reduced myeloperoxidase, and reduced protein concentration in BAL. |
Francioli et al. [63] | Rat EVLP | Pyrrolidine dithiocarbamate administered to EVLP lungs improved edema, reduced BAL protein concentration, and inhibited cytokines (TNF-a and IL-6). |
Hsin et al. [64] | Human EVLP and Transplant | Metabolomics can be used to stratify lungs based on organ quality. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guinn, M.T.; Fernandez, R.; Lau, S.; Loor, G. Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines 2024, 12, 1793. https://doi.org/10.3390/biomedicines12081793
Guinn MT, Fernandez R, Lau S, Loor G. Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines. 2024; 12(8):1793. https://doi.org/10.3390/biomedicines12081793
Chicago/Turabian StyleGuinn, Michael Tyler, Ramiro Fernandez, Sean Lau, and Gabriel Loor. 2024. "Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications" Biomedicines 12, no. 8: 1793. https://doi.org/10.3390/biomedicines12081793
APA StyleGuinn, M. T., Fernandez, R., Lau, S., & Loor, G. (2024). Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines, 12(8), 1793. https://doi.org/10.3390/biomedicines12081793