New Perspectives for Spinal Cord Stimulation in Parkinson’s Disease-Associated Gait Impairment: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Design and Inclusion/Exclusion Criteria
2.2. Statistical Analysis
3. Results
3.1. Study Cohort Characteristics and Data Presentation
3.2. Spinal Cord Stimulation Parameters and Implantation Protocol
3.3. Clinical SCS Outcome Divided Into Short-Term, Intermediate, and Long-Term Follow-Up
3.3.1. Short-Term SCS Effects (0–3 Months of FU)
3.3.2. Intermediate SCS Effects (3–12 Months of FU)
3.3.3. Long-Term SCS Effects (>12 Months of FU)
3.4. MSA-P Patients
4. Discussion
4.1. SCS as an Adjunctive Therapy for PD
4.2. Mechanism of Action of SCS in PD-Associated Gait Impairment
4.2.1. Pathophysiology of PD and Gait Disturbance
4.2.2. Mechanism of Action of SCS for PD-Associated Gait Impairment
4.3. Limitations and Future Directions to Improve SCS Outcome in PD-Associated Gait Impairment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J.Y.J.; et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef]
- Buhmann, C.; Wrobel, N.; Grashorn, W.; Fruendt, O.; Wesemann, K.; Diedrich, S.; Bingel, U. Pain in Parkinson disease: A cross-sectional survey of its prevalence, specifics, and therapy. J. Neurol. 2017, 264, 758–769. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ Can. Med. Assoc. J. = J. L’association Medicale Can. 2016, 188, 1157–1165. [Google Scholar] [CrossRef]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef]
- Ahlskog, J.E.; Muenter, M.D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. Off. J. Mov. Disord. Soc. 2001, 16, 448–458. [Google Scholar] [CrossRef]
- Okun, M.S. Deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2012, 367, 1529–1538. [Google Scholar] [CrossRef]
- Macht, M.; Kaussner, Y.; Möller, J.C.; Stiasny-Kolster, K.; Eggert, K.M.; Krüger, H.; Ellgring, H. Predictors of freezing in Parkinson’s disease: A survey of 6,620 patients. Mov. Disord. 2007, 22, 953–956. [Google Scholar] [CrossRef]
- Stolze, H.; Klebe, S.; Zechlin, C.; Baecker, C.; Friege, L.; Deuschl, G. Falls in frequent neurological diseases. J. Neurol. 2004, 251, 79–84. [Google Scholar] [CrossRef]
- Kim, S.D.; Allen, N.E.; Canning, C.G.; Fung, V.S.C. Postural Instability in Patients with Parkinson’s Disease. CNS Drugs 2013, 27, 97–112. [Google Scholar] [CrossRef]
- Buhmann, C.; Kassubek, J.; Jost, W.H. Management of Pain in Parkinson’s Disease. J. Park’s Dis. 2020, 10 (Suppl. 1), S37–S48. [Google Scholar] [CrossRef]
- Cury, R.G.; Pavese, N.; Aziz, T.Z.; Krauss, J.K.; Moro, E.; Neuromodulation of Gait Study Group from Movement Disorders Society. Gaps and roadmap of novel neuromodulation targets for treatment of gait in Parkinson’s disease. NPJ Park. Dis. 2022, 8, 8. [Google Scholar] [CrossRef]
- Rock, A.K.; Truong, H.; Park, Y.L.; Pilitsis, J.G. Spinal Cord Stimulation. Neurosurg. Clin. N. Am. 2019, 30, 169–194. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Kobayashi, R.; Kenji, S.; Taketomi, A.; Murakami, H.; Ono, K.; Otake, H. New mode of burst spinal cord stimulation improved mental status as well as motor function in a patient with Parkinson’s disease. Park. Relat. Disord. 2018, 57, 82–83. [Google Scholar] [CrossRef]
- Mazzone, P.; Viselli, F.; Ferraina, S.; Giamundo, M.; Marano, M.; Paoloni, M.; Masedu, F.; Capozzo, A.; Scarnati, E. High Cervical Spinal Cord Stimulation: A One Year Follow-Up Study on Motor and Non-Motor Functions in Parkinson’s Disease. Brain Sci. 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Aguirre-Padilla, D.H.; Poon, Y.Y.; Kalsi-Ryan, S.; Lozano, A.M.; Fasano, A. Spinal Cord Stimulation for Very Advanced Parkinson’s Disease: A 1-Year Prospective Trial. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 1082–1083. [Google Scholar] [CrossRef]
- Chakravarthy, K.V.; Chaturvedi, R.; Agari, T.; Iwamuro, H.; Reddy, R.; Matsui, A. Single arm prospective multicenter case series on the use of burst stimulation to improve pain and motor symptoms in Parkinson’s disease. Bioelectron. Med. 2020, 6, 18. [Google Scholar] [CrossRef]
- Lai, Y.; Pan, Y.; Wang, L.; Zhang, C.; Sun, B.; Li, D. Spinal Cord Stimulation with Surgical Lead Improves Pain and Gait in Parkinson’s Disease after a Dislocation of Percutaneous Lead: A Case Report. Stereotact. Funct. Neurosurg. 2020, 98, 104–109. [Google Scholar] [CrossRef]
- Thevathasan, W.; Mazzone, P.; Jha, A.; Djamshidian, A.; Dileone, M.; Di Lazzaro, V.; Brown, P. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology 2010, 74, 1325–1327. [Google Scholar] [CrossRef] [PubMed]
- Pinto de Souza, C.; Hamani, C.; Oliveira Souza, C.; Lopez Contreras, W.O.; Dos Santos Ghilardi, M.G.; Cury, R.G.; Reis Barbosa, E.; Jacobsen Teixeira, M.; Talamoni Fonoff, E. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov. Disord. Off. J. Mov. Disord. Soc. 2017, 32, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Samotus, O.; Parrent, A.; Jog, M. Spinal Cord Stimulation Therapy for Gait Dysfunction in Advanced Parkinson’s Disease Patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2018, 33, 783–792. [Google Scholar] [CrossRef]
- Hubsch, C.; D’Hardemare, V.; Ben Maacha, M.; Ziegler, M.; Patte-Karsenti, N.; Thiebaut, J.B.; Gout, O.; Brandel, J.P. Tonic spinal cord stimulation as therapeutic option in Parkinson disease with axial symptoms: Effects on walking and quality of life. Park. Relat. Disord. 2019, 63, 235–237. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, R.; Pan, Y.; Huang, P.; Tan, Y.; Fang, B.; Liu, J.; Li, D. Effects of High Cervical Spinal Cord Stimulation on Gait Disturbance and Dysarthropneumophonia in Parkinson’s Disease and Parkinson Variant of Multiple System Atrophy: A Case Series. Brain Sci. 2022, 12, 1222. [Google Scholar] [CrossRef]
- Zhou, P.-B.; Bao, M. Spinal cord stimulation treatment for freezing of gait in Parkinson’s disease: A case report. Brain Stimul. 2022, 15, 76–77. [Google Scholar] [CrossRef]
- Fénelon, G.; Goujon, C.; Gurruchaga, J.M.; Cesaro, P.; Jarraya, B.; Palfi, S.; Lefaucheur, J.P. Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson’s disease. Park. Relat. Disord. 2012, 18, 213–214. [Google Scholar] [CrossRef]
- Agari, T.; Date, I. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson’s disease. Neurol. Med.-Chir. 2012, 52, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Landi, A.; Trezza, A.; Pirillo, D.; Vimercati, A.; Antonini, A.; Sganzerla, E.P. Spinal cord stimulation for the treatment of sensory symptoms in advanced Parkinson’s disease. Neuromodulation J. Int. Neuromodulation Soc. 2013, 16, 276–279. [Google Scholar] [CrossRef]
- Hassan, S.; Amer, S.; Alwaki, A.; Elborno, A. A patient with Parkinson’s disease benefits from spinal cord stimulation. Journal of clinical neuroscience. Off. J. Neurosurg. Soc. Australas. 2013, 20, 1155–1156. [Google Scholar] [CrossRef]
- Nishioka, K.; Nakajima, M. Beneficial Therapeutic Effects of Spinal Cord Stimulation in Advanced Cases of Parkinson’s Disease with Intractable Chronic Pain: A Case Series. Neuromodulation J. Int. Neuromodulation Soc. 2015, 18, 751–753. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Nukui, S.; Akamatu, M.; Hasegawa, Y.; Nishikido, O.; Inoue, S. Effectiveness of spinal cord stimulation for painful camptocormia with Pisa syndrome in Parkinson’s disease: A case report. BMC Neurol. 2017, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, Y.; Matsui, A.; Kobayashi-Noami, K.; Kojima, Y.; Tsubouchi, A.; Todoroki, D.; Abe, K.; Ishihara, T.; Nishikawa, N.; Sakamoto, T.; et al. Burst spinal cord stimulation for pain and motor function in Parkinson’s disease: A case series. Clin. Park. Relat. Disord. 2020, 3, 100043. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, T.; Zhuang, P.; Wang, Y.; Zhang, X.; Mei, S.; Li, J.; Ma, J. Spinal cord stimulation improves freezing of gait in a patient with multiple system atrophy with predominant parkinsonism. Brain Stimul. 2020, 13, 653–654. [Google Scholar] [CrossRef]
- Samotus, O.; Parrent, A.; Jog, M. Long-term update of the effect of spinal cord stimulation in advanced Parkinson’s disease patients. Brain Stimul. 2020, 13, 1196–1197. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef]
- Shealy, C.N.; Mortimer, J.T.; Reswick, J.B. Electrical Inhibition of Pain by Stimulation of the Dorsal Columns. Anesth. Analg. 1967, 46, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Sivanesan, E.; Maher, D.P.; Raja, S.N.; Linderoth, B.; Guan, Y. Supraspinal Mechanisms of Spinal Cord Stimulation for Modulation of Pain: Five Decades of Research and Prospects for the Future. Anesthesiology 2019, 130, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, R.; Petersson, P.; Siesser, W.B.; Caron, M.G.; Nicolelis, M.A. Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science 2009, 323, 1578–1582. [Google Scholar] [CrossRef]
- Santana, M.B.; Halje, P.; Simplício, H.; Richter, U.; Freire, M.A.M.; Petersson, P.; Fuentes, R.; Nicolelis, M.A. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron 2014, 84, 716–722. [Google Scholar] [CrossRef]
- Beiske, A.G.; Loge, J.H.; Rønningen, A.; Svensson, E. Pain in Parkinson’s disease: Prevalence and characteristics. Pain 2009, 141, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Ford, B. Pain in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2010, 25 (Suppl. 1), S98–S103. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Reviews. Neurosci. 2017, 18, 101–113. [Google Scholar] [CrossRef]
- Espay, A.J.; LeWitt, P.A.; Kaufmann, H. Norepinephrine deficiency in Parkinson’s disease: The case for noradrenergic enhancement. Mov. Disord. Off. J. Mov. Disord. Soc. 2014, 29, 1710–1719. [Google Scholar] [CrossRef]
- McGregor, M.M.; Nelson, A.B. Circuit Mechanisms of Parkinson’s Disease. Neuron 2019, 101, 1042–1056. [Google Scholar] [CrossRef] [PubMed]
- Kühn, A.A.; Kupsch, A.; Schneider, G.H.; Brown, P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 2006, 23, 1956–1960. [Google Scholar] [CrossRef]
- Brown, P.; Oliviero, A.; Mazzone, P.; Insola, A.; Tonali, P.; Di Lazzaro, V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Mazzone, P.; Oliviero, A.; Altibrandi, M.G.; Pilato, F.; Tonali, P.A.; Di Lazzaro, V. Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp. Neurol. 2004, 188, 480–490. [Google Scholar] [CrossRef]
- Rossi, L.; Marceglia, S.; Foffani, G.; Cogiamanian, F.; Tamma, F.; Rampini, P.; Barbieri, S.; Bracchi, F.; Priori, A. Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson’s disease. Brain Res. Bull. 2008, 76, 512–521. [Google Scholar] [CrossRef]
- Fuentes, R.; Petersson, P.; Nicolelis, M.A.L. Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: Mechanistic approach. Eur. J. Neurosci. 2010, 32, 1100–1108. [Google Scholar] [CrossRef]
- Gubellini, P.; Salin, P.; Kerkerian-Le Goff, L.; Baunez, C. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Prog. Neurobiol. 2009, 89, 79–123. [Google Scholar] [CrossRef]
- Holsheimer, J. Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation. Neuromodulation J. Int. Neuromodulation Soc. 2002, 5, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Struijk, J.J.; Holsheimer, J.; van der Heide, G.G.; Boom, H.B. Recruitment of dorsal column fibers in spinal cord stimulation: Influence of collateral branching. IEEE Trans. Bio-Med. Eng. 1992, 39, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Stancák, A.; Kozák, J.; Vrba, I.; Tintera, J.; Vrána, J.; Polácek, H.; Stancák, M. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur. J. Pain 2008, 12, 137–148. [Google Scholar] [CrossRef]
- Shon, Y.M.; Lee, K.H.; Goerss, S.J.; Kim, I.Y.; Kimble, C.; Van Gompel, J.J.; Bennet, K.; Blaha, C.D.; Chang, S.Y. High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci. Lett. 2010, 475, 136–140. [Google Scholar] [CrossRef]
- Inoue, M.; Katsumi, Y.; Hayashi, T.; Mukai, T.; Ishizu, K.; Hashikawa, K.; Saji, H.; Fukuyama, H. Sensory stimulation accelerates dopamine release in the basal ganglia. Brain Res. 2004, 1026, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Paschen, S.; Forstenpointner, J.; Becktepe, J.; Heinzel, S.; Hellriegel, H.; Witt, K.; Helmers, A.K.; Deuschl, G. Long-term efficacy of deep brain stimulation for essential tremor: An observer-blinded study. Neurology 2019, 92, e1378–e1386. [Google Scholar] [CrossRef]
- Li, S.; Jiao, R.; Zhou, X.; Chen, S. Motor recovery and antidepressant effects of repetitive transcranial magnetic stimulation on Parkinson disease: A PRISMA-compliant meta-analysis. Medicine 2020, 99, e19642. [Google Scholar] [CrossRef]
- Kim, Y.W.; Shin, I.S.; Moon, H.I.; Lee, S.C.; Yoon, S.Y. Effects of non-invasive brain stimulation on freezing of gait in parkinsonism: A systematic review with meta-analysis. Park. Relat. Disord. 2019, 64, 82–89. [Google Scholar] [CrossRef]
- Mondal, B.; Choudhury, S.; Simon, B.; Baker, M.R.; Kumar, H. Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 917–918. [Google Scholar] [CrossRef]
- e Souza, C.P.; Dos Santos, M.G.G.; Hamani, C.; Fonoff, E.T. Spinal cord stimulation for gait dysfunction in Parkinson’s disease: Essential questions to discuss. Mov. Disord. Off. J. Mov. Disord. Soc. 2018, 33, 1828–1829. [Google Scholar] [CrossRef]
- De Ridder, D.; Vanneste, S.; Plazier, M.; van der Loo, E.; Menovsky, T. Burst spinal cord stimulation: Toward paresthesia-free pain suppression. Neurosurg. 2010, 66, 986–990. [Google Scholar] [CrossRef]
- Vanegas-Arroyave, N.; Jankovic, J. Spinal cord stimulation for gait disturbances in Parkinson’s disease. Expert Rev. Neurother. 2023, 23, 651–659, Erratum in: Expert Rev. Neurother. 2023, 23, I. [Google Scholar] [CrossRef]
- Ciocca, M.; Seemungal, B.M.; Tai, Y.F. Spinal Cord Stimulation for Gait Disorders in Parkinson’s Disease and Atypical Parkinsonism: A Systematic Review of Preclinical and Clinical Data. Neuromodulation 2023, 26, 1339–1361. [Google Scholar] [CrossRef]
- Singh, O.; Carvalho, D.Z.; Espay, A.J.; Benarroch, E.E.; Grewal, S.S.; Pagani-Estévez, G.L. Spinal cord stimulation for gait impairment in Parkinson Disease: Scoping review and mechanistic considerations. Pain Med. 2023, 24 (Suppl. 2), S11–S17. [Google Scholar] [CrossRef] [PubMed]
- Rowald, A.; Komi, S.; Demesmaeker, R.; Baaklini, E.; Hernandez-Charpak, S.D.; Paoles, E.; Montanaro, H.; Cassara, A.; Becce, F.; Lloyd, B.; et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 2022, 28, 260–271. [Google Scholar] [CrossRef]
- Milekovic, T.; Moraud, E.M.; Macellari, N.; Moerman, C.; Raschellà, F.; Sun, S.; Perich, M.G.; Varescon, C.; Demesmaeker, R.; Bruel, A.; et al. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson’s disease. Nat. Med. 2023, 29, 2854–2865. [Google Scholar] [CrossRef] [PubMed]
- Fasse, A.; Newton, T.; Liang, L.; Agbor, U.; Rowland, C.; Kuster, N.; Gaunt, R.; Pirondini, E.; Neufeld, E. A novel CNN-based image segmentation pipeline for individualized feline spinal cord stimulation modeling. J. Neural Eng. 2024, 21, 036032. [Google Scholar] [CrossRef]
- Pradat, P.F.; Hayon, D.; Blancho, S.; Neveu, P.; Khamaysa, M.; Guerout, N. Advances in Spinal Cord Neuromodulation: The Integration of Neuroengineering, Computational Approaches, and Innovative Conceptual Frameworks. J. Pers. Med. 2023, 13, 993. [Google Scholar] [CrossRef]
Study Name (No. of Included Patients) | Gender (m/f/d); Age | Disease Duration (Age at Diagnosis) | Spine Level; Stimulation Parameters +/− DBS | Indication | Medication (Pre- vs. Post- Medication) | Outcome Measures | Baseline | 1st Follow-Up | Last Follow-Up |
---|---|---|---|---|---|---|---|---|---|
[21] (2 p) | 75 y | / | high cervical (A) 130 Hz/2 V/240 µs (B) 130 Hz/3 V/240 µs | MI n.s. | n.s. | UPDRS III 10 m walk (s) | means: A/B 0.68 37.8 ± 11.5 5.5 ± 1.2 | 10 d A 1.9/B 2.1 A 35.4 ± 12.5 B 37.3 ± 10.5 A 5.4 ± 0.4 B 5.6 ± 1.0 | / |
77 y | / | high cervical (A) 300 Hz/3 V/200 µs (B) 300 Hz/4 V/200 µs | MI n.s. | n.s. | UPDRS 10 m walk (s) | means: A/B 0.68 37.8 ± 11.5 unable | 10 d A 1.9/B 2.1 A 35.4 ± 12.5 B 37.3 ± 10.5 unable | / | |
[22] (4 p) | 3/m (64, 68, 69 y) 1/f (56 y) | 21.2 y (± 10.1) | T2–T4 300 Hz, 2–4.6 V, 90 μs + DBS (4 p) | PIGD n.s. | LEED (mg/d) 812.5 ± 469.7 vs. 762.5 ± 423.0 | UPDRS III TUG (s) 20 m walk (s) FOG-Q | (DBS on/ Med off) 33.0 ± 13.7 35.2 ± 23.4 94.0 ± 72.0 17.7 ± 0.9 | 6 m (DBS on/ Med off) 19.7 ± 67 11.8 ± 5.9 29.0 ± 14.0 7.7 ± 0.9 | 6 m (DBS on/Med on) 15.0 ± 4.2 |
[23] (5 p/4 p) | 5/m 71 y (63–85 y) | 14 y (8–18 y) | T8–10 30–130 Hz, 300–400 μs | FOG | L-Dopa(mg/d) 1330 ± 441 vs. 6 m 1215 ± 420 vs. 36 m 1262.5 ± 619.3 | UPDRS III Sit-to-stand (s) FOG-Q | 32 ± 12 7.6 ± 6.0 20.0 ± 1.0 | 6 m (5 p) 21.4 ± 10.8 3.8 ± 2.5 15.0 ± 3.9 | 36 m (4 p) 26.2 ± 9.6 n.s. 16.8 ± 2.9 |
[24] (5 p) | 5/m 68.8 ± 3.9 y | 14.8 ± 7 y | T10–11 T-SCS 100 Hz and 300 μs + DBS (1 p) | FOG | n.s. | MDS-UPDRS III SWS Time (s) Steps FOG-Q | No significance | 60 d Med off/ stim on −23.22% Med off/ stim on −23.6% −12.4% Med on/stim off −19.3% −18% | Med on/stim on −36.8% Med on/stim on −29.8% −20% |
[25] (8 p) PD Group (3 p) | 3/m 64 ± 11 y | 8 ± 5 y | C2–5 20–40 Hz/1–2.5 V/120–280 µs + DBS (1p) | PIGD | LEED 550–1164.25 mg/d | MDS-UPDRS III TUG: 5 m Time (s) Step length (cm) | 44 ± 5 Med off | 3 m 39 ± 3 −15% unchanged | 6 m 37 ± 1 −14% +20% |
MSA-P Group (5 p) | 2/m 3/f 60 ± 5 y | 4 ± 2 y | C2–5 15–45 Hz/0.45–3.8 V/120–310 µs + DBS (2 p) | PIGD | LEED 0–600 mg/d | MDS-UPDRS III TUG: 5 m Time (s) Step length (cm) | 44 ± 16 Med off | 3 m 44 ± 14 −40% −8% | 6 m 44 ± 18 −28% −10% |
[26] (1 p) | F 66 y | 15 y 51 y | T9–10 260 Hz, 1.0 V, 210 µs | FOG | n.s. | MDS-UPDRS III TUG: 7m Time (s) Steps FOG (NFOGQ) | Med off Med on 33/19 31 63 22 | 3 m Med off/Med on 12/8 1 d 9 14 3 m 6 |
(No. of Included Patients) | Gender (m/f/d); Age | Disease Duration (Age at Diagnosis) | Spine Level; Stimulation Parameters +/− DBS | Indication | Medication (Pre- vs. Post-Medication) | Outcome Measures | Baseline | 1st Follow-Up | Last Follow-Up |
---|---|---|---|---|---|---|---|---|---|
[27] (1 p) | M 74 y | 5 y 69 y | T9–T10 100–130 Hz/ 3.5 V/410 µs | NP (LLP) FBSS | L-Dopa (1200 mg/d) vs. n.s. | VAS UPDRS III 7 m walk (s) | Med off/Stim off 6.9 ± 1.0 56.7 ± 3.3 29.3 ± 2.3 | 30 min–60 min Med off/ Stim on 1.9 ± 0.2 29.7 ± 2.5 23 ± 6.3 | 30 min–60 min Med on/ Stim off 4.5 26 22 |
[28] (15 p) | 5/m 10/f 63–79 y (mean 71.1 y) | 7–31 y (mean 17.2 y) | T7–T12 5–20 Hz/0–4 V/210–330 µs + DBS (7 p) | MSP NP CP LBP LP AP | n.s. | VAS UPDRS III TUG (s) 10 m walk (s) | 8.9 (7.8–10) 23.5 ± 9.7 21.6 ± 10.7 14.7 ± 8.4 | 3 m 2.0 ( 0–3.3) 18.9 ± 10.4 15.6 ± 7.3 12.7 ± 8.0 | 12 m 2.3 ( 0–4) 21.3 ± 12.2 18.2 ± 10.8 13.3 ± 9.3 |
[29] (1 p) | F 65 y | n.s. | T9–10 60 Hz, 1.5 V, 100 μs vs. 30 Hz; 1.8–2.5 V, 250-μs + DBS | LP NP SDO | L-Dopa (750 mg/day) vs. n.s. | VAS UPDRS III 20 m walk (s) | 9–10 Med off/stim off 77 Med on/stim on 23 Med on/stim off 57 | 1 d −50% unchanged unchanged unchanged | 16 m −70% unchanged unchanged unchanged −20% |
[30] (1 p) | F 43 y | 8 y 35 y | C2 40 Hz, 0.3 - 1.1 mA, 500 μs | NP | carbidopa L-Dopa rasagiline n.s. | VAS UPDRS III 10 m walk (s) | 8–9 28 17 | 1 w 2 12 m 22 n.s. | 24 m 0–2 16 11 |
[31] (3 p) | f 67 y | 5 y 62 y | T8–L1 20–65 Hz, 0.6–2.0 V, 360–420 μs | FBSS SSL LBP LLP | VAS UPDRS III HY | 10 35 4 | 2 w 7 n.s. 4 | 12 m 4 27 4 | |
m 80 y | 10 y 70 y | T8–L1 5 Hz, 0.45–5.8 V, 60–450 μs | SSL LBP LLP | VAS UPDRS III HY | 7 43 5 | 2 w 0 n.s. 4 | 12 m 4 29 4 | ||
m 76 y | 13 y 63 y | T8–L1 5–10 Hz, 0.6–1.7 V, 420 μs | SSL LBP LLP | VAS UPDRS III HY | 9 33 4 | 2 w 2 n.s. 3 | 12 m 3 18 4 | ||
[32] (1 p) | f 65 y | 12 y 53 y | T8 Program A: 7 Hz, 2,5 V, 450 μs Program B: 7 Hz, 3,5 V, 250 μs + DBS | PC PPS | 800 mg/d carbidopa/L-Dopa, 4.5 mg/d pramipexole 20 mg/d istradefylline | VAS UPDRS TUG (s) | 10 (p.o. 2) 48 15 | 11 d 2 33 8 | 29 d / 34 7 |
[16] (1 p) | m 74 y | 3 y 71 y | T6–8 40 Hz burst, 500 Hz intra-burst rate, 1 ms | LBP LP | L-dopa/carbidopa, selegiline, ropinirole hydrochloride n.s. | Pain ( SF-MPQ-2) UPDRS III 20 m walk (s) HY | 47 20 32 3 | Post stimulation 18 2 w 6 25 2 | |
[19] (15 p) | / 74 y ±5.2 | 17 y ±8.7 | 14 Thoracic 1 cervical - T-SCS (40 Hz 350 μs; 10 Hz 350 μs) - B-SCS (40 Hz, 500 Hz, 1 ms) five-pulse train - Cycle mode (on-time of 10– 15 s; 40 Hz, 500 Hz intra-burst rate, 1 ms) + DBS (8 p) | NP | n.s. | VAS 10 m walk (s) ( 11 p) TUG (s) (11 p) UPDRS + HY | No difference | 22 m ( 4–33 m) prior DBS/ no DBS −61%/−57% 8/11 p 12% improvement 7/11 p 21% improvement | Cycling/burst −67%/−48% Continuous burst: 18% improvement Cycling: 7% worsening |
[33] (5 p) | 2/m 3/f 74 y 66–81 y | 12.4 y 5–31 y | T8–9 B-SCS 40 Hz burst, 500 Hz intra-burst rate, 1 ms | LBP | n.s. | VAS UPDRS III TUG (s) FOG (3 p: P1, P2, P3) | 64.6 ± 30.3 34.6 ± 12.8 23.1 ± 11.9 3/2/1 | 4 w 32.4 ± 28.3 23.8 ± 4.4 21.3 ± 10.9 | 24 w 57.0 ± 33.2 25.0 ± 9.7 12.7 ± 4.7 1/0/0 |
[20] (1 p) | M 73 y | 13 60 y | 1st T8–10 continuous 30 Hz, 180–210µs, 1.5–2.5 V Dislocation 2nd T8–9 cycling 30 min on and 15 min off 60 Hz, 270–390µs, 3.6–4.0 V + DBS | FBSS LBP | n.s. | VAS UPDRS III TUG (s) | (Med OFF/Med ON) 8/7 45/43 40/22 | 1st SCS 2 d 3/3 2 m 7/6 2 d 43/43 2 m 45/45 2 d 26/23 2 m 29/22 | 2nd SCS 4 d 3/3 2 m 3/3 4 d 42/42 2 m 42/40 4 d 26/22 2 m 22/22 |
[34] (1 p) (MSA-P) | M 75 y | 5 y 70 y | T10–12 60 Hz/1.0 V/200 µs | LP | n.s. | VAS MDS-UPDRS III FOG (NFOGQ) | 6 m −71% −38% −63% |
VAS | Base line | T1 | T2 | T3 | T4 | ||||||||||
References | n | Mean | Sd | n | Mean | Sd | n | Mean | Sd | n | Mean | Sd | n | Mean | Sd |
[21] | 1 | 0.7 | 0 | 0 | 0 | 0 | |||||||||
[28] | 1 | 8.9 | 1 | 2 | 1 | 2.3 | 0 | 0 | |||||||
[30] | 1 | 8.5 | 1 | 2 | 1 | 0.0 | 1 | 0.0 | 0 | ||||||
[34] [31] | 3 | 8.7 | 1.5 | 3 | 3 | 3.6 | 3 | 3.0 | 3.6 | 3 | 3.7 | 0.6 | 0 | ||
[32] | 1 | 10.0 | 1 | 2 | 0 | 0 | 0 | ||||||||
[20] | 1 | 7.0 | 1 | 6 | 1 | 3.0 | 0 | 0 | |||||||
VAS overall effect size | n | Cohen’s D | 95% CI | ||||||||||||
T1 | 6 | 1.96 | [0.51–3.34] | ||||||||||||
T2 | 5 | 2.56 | [0.77–4.27] | ||||||||||||
T3 | 4 | 2.61 | [0.56–4.56] | ||||||||||||
T4 | 0 |
TUG | Baseline | T1 | T2 | T3 | T4 | ||||||||||
References | n | Mean | Sd | n | Mean | Sd | n | Mean | Sd | n | Mean | Sd | n | Mean | Sd |
[30] | 0 | 1 | 28.0 | 1 | 22.0 | 1 | 16.0 | 0 | |||||||
[31] | 3 | 37.0 | 5.3 | 0 | 0 | 3 | 24.7 | 5.9 | 0 | ||||||
[22] | 4 | 33.0 | 13.7 | 0 | 0 | 4 | 19.8 | 6.8 | 0 | ||||||
[32] | 1 | 48.0 | 1 | 34.0 | 0 | 0 | 0 | ||||||||
[23] | 5 | 32.2 | 11.7 | 5 | 21.4 | 10.8 | 0 | 0 | 0 | ||||||
[20] | 1 | 40.0 | 1 | 22.0 | 1 | 22.0 | 0 | 0 | |||||||
[26] | 1 | 31.0 | 1 | 9.0 | 0 | 0 | 0 | ||||||||
TUG overall effect size | n | Cohen’s D | 95% CI | ||||||||||||
T1 | 8 | 2.10 | [0.83–3.33] | ||||||||||||
T2 | 1 | ||||||||||||||
T3 | 7 | 2.33 | [0.90–3.7] | ||||||||||||
T4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seufert, C.G.; Borutta, M.C.; Regensburger, M.; Zhao, Y.; Kinfe, T. New Perspectives for Spinal Cord Stimulation in Parkinson’s Disease-Associated Gait Impairment: A Systematic Review. Biomedicines 2024, 12, 1824. https://doi.org/10.3390/biomedicines12081824
Seufert CG, Borutta MC, Regensburger M, Zhao Y, Kinfe T. New Perspectives for Spinal Cord Stimulation in Parkinson’s Disease-Associated Gait Impairment: A Systematic Review. Biomedicines. 2024; 12(8):1824. https://doi.org/10.3390/biomedicines12081824
Chicago/Turabian StyleSeufert, Christian G., Matthias C. Borutta, Martin Regensburger, Yining Zhao, and Thomas Kinfe. 2024. "New Perspectives for Spinal Cord Stimulation in Parkinson’s Disease-Associated Gait Impairment: A Systematic Review" Biomedicines 12, no. 8: 1824. https://doi.org/10.3390/biomedicines12081824
APA StyleSeufert, C. G., Borutta, M. C., Regensburger, M., Zhao, Y., & Kinfe, T. (2024). New Perspectives for Spinal Cord Stimulation in Parkinson’s Disease-Associated Gait Impairment: A Systematic Review. Biomedicines, 12(8), 1824. https://doi.org/10.3390/biomedicines12081824