In Vivo Prevalence of Beta-Amyloid Pathology and Alzheimer’s Disease Co-Pathology in Idiopathic Normal-Pressure Hydrocephalus—Association with Neuropsychological Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Neuropsychological Assessment
2.3. CSF Sampling, Biomarker Analysis and Sub-Group Creation
2.4. Statistical Analysis
2.5. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, R.D.; Fisher, C.M.; Hakim, S.; Ojemann, R.G.; Sweet, W.H. Symptomatic Occult Hydrocephalus with “Normal” Cerebrospinal-Fluid Pressure. A Treatable Syndrome. N. Engl. J. Med. 1965, 273, 117–126. [Google Scholar] [CrossRef]
- Hakim, S.; Venegas, J.G.; Burton, J.D. The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: Mechanical interpretation and mathematical model. Surg. Neurol. 1976, 5, 187–210. [Google Scholar]
- Skalicky, P.; Mladek, A.; Vlasak, A.; De Lacy, P.; Benes, V.; Bradac, O. Normal pressure hydrocephalus-an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg. Rev. 2020, 43, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, B.P. Neuroimaging in normal pressure hydrocephalus. Dement. Neuropsychol. 2015, 9, 350–355. [Google Scholar] [CrossRef]
- Capone, P.M.; Bertelson, J.A.; Ajtai, B. Neuroimaging of Normal Pressure Hydrocephalus and Hydrocephalus. Neurol. Clin. 2020, 38, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Pyrgelis, E.S.; Paraskevas, G.P.; Constantinides, V.C.; Boufidou, F.; Velonakis, G.; Stefanis, L.; Kapaki, E. Callosal Angle Sub-Score of the Radscale in Patients with Idiopathic Normal Pressure Hydrocephalus Is Associated with Positive Tap Test Response. J. Clin. Med. 2022, 11, 2898. [Google Scholar] [CrossRef]
- Pyrgelis, E.S.; Velonakis, G.; Papageorgiou, S.G.; Stefanis, L.; Kapaki, E.; Constantinides, V.C. Imaging Markers for Normal Pressure Hydrocephalus: An Overview. Biomedicines 2023, 11, 1265. [Google Scholar] [CrossRef] [PubMed]
- Bradley, W.G. Normal pressure hydrocephalus: New concepts on etiology and diagnosis. AJNR Am. J. Neuroradiol. 2000, 21, 1586–1590. [Google Scholar]
- Ringstad, G.; Vatnehol, S.A.S.; Eide, P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 2017, 140, 2691–2705. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Wang, J.; Gong, X.; Chen, Z.; Zhang, X.; Cai, J.; Chen, S.; Fang, L.; Sun, J.; et al. Glymphatic clearance function in patients with cerebral small vessel disease. Neuroimage 2021, 238, 118257. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Zhang, C.; Zeng, Y.; Luo, Y.; Wang, G. Clearance Systems in the Brain, From Structure to Function. Front. Cell Neurosci. 2021, 15, 729706. [Google Scholar] [CrossRef]
- Ammar, A.; Abbas, F.; Al Issawi, W.; Fakhro, F.; Batarfi, L.; Hendam, A.; Hasen, M.; El Shawarby, M.; Al Jehani, H. Idiopathic Normal-Pressure Hydrocephalus Syndrome: Is It Understood? The Comprehensive Idiopathic Normal-Pressure Hydrocephalus Theory (CiNPHT). In Hydrocephalus: What Do We Know? And What Do We Still Not Know? Ammar, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 67–82. [Google Scholar]
- Tanaka, M.; Szabó, Á.; Körtési, T.; Szok, D.; Tajti, J.; Vécsei, L. From CGRP to PACAP, VIP, and Beyond: Unraveling the Next Chapters in Migraine Treatment. Cells 2023, 12, 2649. [Google Scholar] [CrossRef]
- Tajti, J.; Szok, D.; Csáti, A.; Szabó, Á.; Tanaka, M.; Vécsei, L. Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 4114. [Google Scholar] [CrossRef]
- Nazzi, C.; Avenanti, A.; Battaglia, S. The Involvement of Antioxidants in Cognitive Decline and Neurodegeneration: Mens Sana in Corpore Sano. Antioxidants 2024, 13, 701. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S.; Giménez-Llort, L.; Chen, C.; Hepsomali, P.; Avenanti, A.; Vécsei, L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells 2024, 13, 790. [Google Scholar] [CrossRef]
- Momjian, S.; Owler, B.K.; Czosnyka, Z.; Czosnyka, M.; Pena, A.; Pickard, J.D. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 2004, 127, 965–972. [Google Scholar] [CrossRef]
- Nakayama, T.; Ouchi, Y.; Yoshikawa, E.; Sugihara, G.; Torizuka, T.; Tanaka, K. Striatal D2 receptor availability after shunting in idiopathic normal pressure hydrocephalus. J. Nucl. Med. 2007, 48, 1981–1986. [Google Scholar] [CrossRef]
- Sasaki, H.; Ishii, K.; Kono, A.K.; Miyamoto, N.; Fukuda, T.; Shimada, K.; Ohkawa, S.; Kawaguchi, T.; Mori, E. Cerebral perfusion pattern of idiopathic normal pressure hydrocephalus studied by SPECT and statistical brain mapping. Ann. Nucl. Med. 2007, 21, 39–45. [Google Scholar] [CrossRef]
- Mocco, J.; Tomey, M.I.; Komotar, R.J.; Mack, W.J.; Frucht, S.J.; Goodman, R.R.; McKhann, G.M., 2nd. Ventriculoperitoneal shunting of idiopathic normal pressure hydrocephalus increases midbrain size: A potential mechanism for gait improvement. Neurosurgery 2006, 59, 847–850, discussion 850–851. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, F.; Ding, J.; Ye, Z. Cognitive Impairment in Idiopathic Normal Pressure Hydrocephalus. Neurosci. Bull. 2022, 38, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Onoda, K.; Mitaki, S.; Nabika, Y.; Nakagawa, T.; Takayoshi, H.; Aoyama, A.; Abe, S.; Yamaguchi, T.; Oguro, H.; et al. Default mode network in normal pressure hydrocephalus. J. Neurol. Sci. 2013, 333, e353–e354. [Google Scholar] [CrossRef]
- Kanno, S.; Ogawa, K.I.; Kikuchi, H.; Toyoshima, M.; Abe, N.; Sato, K.; Miyazawa, K.; Oshima, R.; Ohtomo, S.; Arai, H.; et al. Reduced default mode network connectivity relative to white matter integrity is associated with poor cognitive outcomes in patients with idiopathic normal pressure hydrocephalus. BMC Neurol. 2021, 21, 353. [Google Scholar] [CrossRef]
- Zaccaria, V.; Bacigalupo, I.; Gervasi, G.; Canevelli, M.; Corbo, M.; Vanacore, N.; Lacorte, E. A systematic review on the epidemiology of normal pressure hydrocephalus. Acta Neurol. Scand. 2020, 141, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Golomb, J.; Wisoff, J.; Miller, D.C.; Boksay, I.; Kluger, A.; Weiner, H.; Salton, J.; Graves, W. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: Prevalence and shunt response. J. Neurol. Neurosurg. Psychiatry 2000, 68, 778–781. [Google Scholar] [CrossRef]
- Bech-Azeddine, R.; Hogh, P.; Juhler, M.; Gjerris, F.; Waldemar, G. Idiopathic normal-pressure hydrocephalus: Clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J. Neurol. Neurosurg. Psychiatry 2007, 78, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Bartosch, A.M.; Xiao, H.; Maji, S.; Youth, E.H.H.; Flowers, X.; Leskinen, S.; Tomljanovic, Z.; Iodice, G.; Boyett, D.; et al. An immune response characterizes early Alzheimer’s disease pathology and subjective cognitive impairment in hydrocephalus biopsies. Nat. Commun. 2021, 12, 5659. [Google Scholar] [CrossRef] [PubMed]
- Kapaki, E.N.; Paraskevas, G.P.; Tzerakis, N.G.; Sfagos, C.; Seretis, A.; Kararizou, E.; Vassilopoulos, D. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: A discrimination from Alzheimer’s disease. Eur. J. Neurol. 2007, 14, 168–173. [Google Scholar] [CrossRef]
- Jeppsson, A.; Zetterberg, H.; Blennow, K.; Wikkelso, C. Idiopathic normal-pressure hydrocephalus: Pathophysiology and diagnosis by CSF biomarkers. Neurology 2013, 80, 1385–1392. [Google Scholar] [CrossRef]
- Graff-Radford, N.R. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology 2014, 83, 1573–1575. [Google Scholar] [CrossRef]
- Kudo, T.; Mima, T.; Hashimoto, R.; Nakao, K.; Morihara, T.; Tanimukai, H.; Tsujio, I.; Koike, Y.; Tagami, S.; Mori, H.; et al. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin. Neurosci. 2000, 54, 199–202. [Google Scholar] [CrossRef]
- Lins, H.; Wichart, I.; Bancher, C.; Wallesch, C.W.; Jellinger, K.A.; Rosler, N. Immunoreactivities of amyloid beta peptide (1-42) and total tau protein in lumbar cerebrospinal fluid of patients with normal pressure hydrocephalus. J. Neural Transm. 2004, 111, 273–280. [Google Scholar] [CrossRef]
- Pyrgelis, E.S.; Boufidou, F.; Constantinides, V.C.; Papaioannou, M.; Papageorgiou, S.G.; Stefanis, L.; Paraskevas, G.P.; Kapaki, E. Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics 2022, 12, 2976. [Google Scholar] [CrossRef] [PubMed]
- Pyrgelis, E.S.; Paraskevas, G.P.; Constantinides, V.C.; Boufidou, F.; Papaioannou, M.; Stefanis, L.; Kapaki, E. Alzheimer’s Disease CSF Biomarkers as Possible Indicators of Tap-Test Response in Idiopathic Normal Pressure Hydrocephalus. Brain Sci. 2023, 13, 1593. [Google Scholar] [CrossRef]
- Kang, K.; Ko, P.W.; Jin, M.; Suk, K.; Lee, H.W. Idiopathic normal-pressure hydrocephalus, cerebrospinal fluid biomarkers, and the cerebrospinal fluid tap test. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2014, 21, 1398–1403. [Google Scholar] [CrossRef]
- Lim, T.S.; Choi, J.Y.; Park, S.A.; Youn, Y.C.; Lee, H.Y.; Kim, B.G.; Joo, I.S.; Huh, K.; Moon, S.Y. Evaluation of coexistence of Alzheimer’s disease in idiopathic normal pressure hydrocephalus using ELISA analyses for CSF biomarkers. BMC Neurol. 2014, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Jeppsson, A.; Höltta, M.; Zetterberg, H.; Blennow, K.; Wikkelsø, C.; Tullberg, M. Amyloid mis-metabolism in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2016, 13, 13. [Google Scholar] [CrossRef]
- Akiba, C.; Nakajima, M.; Miyajima, M.; Ogino, I.; Motoi, Y.; Kawamura, K.; Adachi, S.; Kondo, A.; Sugano, H.; Tokuda, T.; et al. Change of Amyloid-beta 1-42 Toxic Conformer Ratio After Cerebrospinal Fluid Diversion Predicts Long-Term Cognitive Outcome in Patients with Idiopathic Normal Pressure Hydrocephalus. J. Alzheimer’s Dis. JAD 2018, 63, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- van der Vlies, A.E.; Verwey, N.A.; Bouwman, F.H.; Blankenstein, M.A.; Klein, M.; Scheltens, P.; van der Flier, W.M. CSF biomarkers in relationship to cognitive profiles in Alzheimer disease. Neurology 2009, 72, 1056–1061. [Google Scholar] [CrossRef]
- Paolini Paoletti, F.; Gaetani, L.; Bellomo, G.; Chipi, E.; Salvadori, N.; Montanucci, C.; Mancini, A.; Filidei, M.; Nigro, P.; Simoni, S.; et al. CSF neurochemical profile and cognitive changes in Parkinson’s disease with mild cognitive impairment. NPJ Park. Dis. 2023, 9, 68. [Google Scholar] [CrossRef]
- Relkin, N.; Marmarou, A.; Klinge, P.; Bergsneider, M.; Black, P.M. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57, S4–S16, discussion ii–v. [Google Scholar] [CrossRef]
- Nakajima, M.; Yamada, S.; Miyajima, M.; Ishii, K.; Kuriyama, N.; Kazui, H.; Kanemoto, H.; Suehiro, T.; Yoshiyama, K.; Kameda, M.; et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol. Med.-Chir. 2021, 61, 63–97. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Mild Alzheimer Disease, Financial Capacity, and the Role of Depression: Eyes Wide Shut? Alzheimer Dis. Assoc. Disord. 2021, 35, 360–362. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Unraveling Ariadne’s Thread Into the Labyrinth of aMCI: Depression and Financial Capacity. Alzheimer Dis. Assoc. Disord. 2021, 35, 363–365. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Beneath the Top of the Iceberg: Financial Capacity Deficits in Mixed Dementia with and without Depression. Healthcare 2023, 11, 505. [Google Scholar] [CrossRef]
- Kubo, Y.; Kazui, H.; Yoshida, T.; Kito, Y.; Kimura, N.; Tokunaga, H.; Ogino, A.; Miyake, H.; Ishikawa, M.; Takeda, M. Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus. Dement. Geriatr. Cogn. Disord. 2008, 25, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef]
- Dubois, B.; Touchon, J.; Portet, F.; Ousset, P.J.; Vellas, B.; Michel, B. “The 5 words”: A simple and sensitive test for the diagnosis of Alzheimer’s disease. Presse Medicale 2002, 31, 1696–1699. [Google Scholar]
- Royall, D.R.; Cordes, J.A.; Polk, M. CLOX: An executive clock drawing task. J. Neurol. Neurosurg. Psychiatry 1998, 64, 588–594. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Tsolaki, M.; Chantzi, H.; Kazis, A. Mini Mental State Examination (MMSE): A validation study in Greece. Am. J. Alzheimer’s Dis. Other Dement.® 2000, 15, 342–345. [Google Scholar] [CrossRef]
- del Campo, M.; Mollenhauer, B.; Bertolotto, A.; Engelborghs, S.; Hampel, H.; Simonsen, A.H.; Kapaki, E.; Kruse, N.; Le Bastard, N.; Lehmann, S.; et al. Recommendations to standardize preanalytical confounding factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: An update. Biomark. Med. 2012, 6, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, V.C.; Paraskevas, G.P.; Boufidou, F.; Bourbouli, M.; Pyrgelis, E.S.; Stefanis, L.; Kapaki, E. CSF Aβ42 and Aβ42/Aβ40 Ratio in Alzheimer’s Disease and Frontotemporal Dementias. Diagnostics 2023, 13, 783. [Google Scholar] [CrossRef] [PubMed]
- Molinuevo, J.L.; Blennow, K.; Dubois, B.; Engelborghs, S.; Lewczuk, P.; Perret-Liaudet, A.; Teunissen, C.E.; Parnetti, L. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: A consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014, 10, 808–817. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Delaby, C.; Estellés, T.; Zhu, N.; Arranz, J.; Barroeta, I.; Carmona-Iragui, M.; Illán-Gala, I.; Santos-Santos, M.Á.; Altuna, M.; Sala, I.; et al. The Aβ1–42/Aβ1–40 ratio in CSF is more strongly associated to tau markers and clinical progression than Aβ1–42 alone. Alzheimer’s Res. Ther. 2022, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lim, T.S.; Lee, S.M.; Kim, T.S.; Kim, Y.; An, Y.S.; Youn, Y.C.; Park, S.A.; Chang, J.; Moon, S.Y. Cerebrospinal Fluid Levels of beta-Amyloid 40 and beta-Amyloid 42 are Proportionately Decreased in Amyloid Positron-Emission Tomography Negative Idiopathic Normal-Pressure Hydrocephalus Patients. J. Clin. Neurol. 2019, 15, 353–359. [Google Scholar] [CrossRef]
- Braun, M.; Bjurnemark, C.; Seo, W.; Freyhult, E.; Nyholm, D.; Niemela, V.; Blennow, K.; Zetterberg, H.; Fallmar, D.; Kultima, K.; et al. Higher levels of neurofilament light chain and total tau in CSF are associated with negative outcome after shunt surgery in patients with normal pressure hydrocephalus. Fluids Barriers CNS 2022, 19, 15. [Google Scholar] [CrossRef]
- Agren-Wilsson, A.; Lekman, A.; Sjoberg, W.; Rosengren, L.; Blennow, K.; Bergenheim, A.T.; Malm, J. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol. Scand. 2007, 116, 333–339. [Google Scholar] [CrossRef]
- Muller-Schmitz, K.; Krasavina-Loka, N.; Yardimci, T.; Lipka, T.; Kolman, A.G.J.; Robbers, S.; Menge, T.; Kujovic, M.; Seitz, R.J. Normal Pressure Hydrocephalus Associated with Alzheimer’s Disease. Ann. Neurol. 2020, 88, 703–711. [Google Scholar] [CrossRef]
- Thavarajasingam, S.G.; El-Khatib, M.; Vemulapalli, K.V.; Iradukunda, H.A.S.; Laleye, J.; Russo, S.; Eichhorn, C.; Eide, P.K. Cerebrospinal fluid and venous biomarkers of shunt-responsive idiopathic normal pressure hydrocephalus: A systematic review and meta-analysis. Acta Neurochir. 2022, 164, 1719–1746. [Google Scholar] [CrossRef]
Gender | 22 Females/31 Male Patients |
---|---|
Age | 75 (69.5–77) |
Years of education | 12 (6–16) |
Disease duration | 24 (13–48) |
iNPH grading scale | 6 (5–7) |
Neuropsychological Test | Amyloid-Positive Patients Ν = 21 | Amyloid-Negative Patients Ν = 32 | p |
---|---|---|---|
MMSE | 22 (17.5–26) | 23.5 (18.25–28) | 0.3167 † |
FAB | 10 (6–13.5) | 12 (9–13) | 0.3664 † |
5-WT immediate recall | 5 (4.5–5) | 5 (5–5) | 0.6794 † |
5-WT delayed recall | 4 (1.5–5) | 5 (4–5) | 0.0145 †* |
CLOX-1 | 6 (2–11) | 8 (5–11) | 0.2083 † |
CLOX-2 | 10 (4.5–13.5) | 11.5 (9–13) | 0.5162 † |
Neuropsychological Test | p-Tau-Positive Patients Ν = 11 | p-Tau-Negative Patients Ν = 42 | p |
---|---|---|---|
MMSE | 23 (11–29) | 24 (18.75–27) | 0.252 † |
FAB | 11 (5–14) | 11.5 (9–13) | 0.640 † |
5-WT immediate recall | 5 (4–5) | 5 (5–5) | 0.1326 † |
5-WT delayed recall | 2 (0–4) | 5 (3.75–5) | 0.0004 †* |
CLOX-1 | 5 (1–13) | 8 (5–11) | 0.6446 † |
CLOX-2 | 11 (1–14) | 11 (8–13) | 0.7649 † |
Neuropsychological Test | t-Tau-Positive Patients Ν = 10 | t-Tau-Negative Patients Ν = 43 | p |
---|---|---|---|
MMSE | 17.5 (11–23) | 24 (20–28) | 0.0128 †* |
FAB | 8 (2.5–12) | 12 (9–13) | 0.0477 †* |
5-WT immediate recall | 4 (0–5) | 5 (5–5) | 0.0008 †* |
5-WT delayed recall | 1 (0–4) | 5 (4–5) | 0.0002 †* |
CLOX-1 | 4.5 (0.75–7.75) | 8 (5–11) | 0.036 †* |
CLOX-2 | 5 (0–12.5) | 12 (9–13) | 0.0285 †* |
Neuropsychological Test | Patients with AD Profile Ν = 11 | Patients with Non-AD Profile Ν = 42 | p |
---|---|---|---|
MMSE | 23 (11–29) | 24 (18.75–27) | 0.252 † |
FAB | 11 (5–14) | 11.5 (9–13) | 0.640 † |
5-WT immediate recall | 5 (4–5) | 5 (5–5) | 0.1326 † |
5-WT delayed recall | 2 (0–4) | 5 (3.75–5) | 0.0004 †* |
CLOX-1 | 5 (1–13) | 8 (5–11) | 0.6446 † |
CLOX-2 | 11 (1–14) | 11 (8–13) | 0.7649 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrgelis, E.-S.; Paraskevas, G.P.; Constantinides, V.C.; Boufidou, F.; Stefanis, L.; Kapaki, E. In Vivo Prevalence of Beta-Amyloid Pathology and Alzheimer’s Disease Co-Pathology in Idiopathic Normal-Pressure Hydrocephalus—Association with Neuropsychological Features. Biomedicines 2024, 12, 1898. https://doi.org/10.3390/biomedicines12081898
Pyrgelis E-S, Paraskevas GP, Constantinides VC, Boufidou F, Stefanis L, Kapaki E. In Vivo Prevalence of Beta-Amyloid Pathology and Alzheimer’s Disease Co-Pathology in Idiopathic Normal-Pressure Hydrocephalus—Association with Neuropsychological Features. Biomedicines. 2024; 12(8):1898. https://doi.org/10.3390/biomedicines12081898
Chicago/Turabian StylePyrgelis, Efstratios-Stylianos, George P. Paraskevas, Vasilios C. Constantinides, Fotini Boufidou, Leonidas Stefanis, and Elisabeth Kapaki. 2024. "In Vivo Prevalence of Beta-Amyloid Pathology and Alzheimer’s Disease Co-Pathology in Idiopathic Normal-Pressure Hydrocephalus—Association with Neuropsychological Features" Biomedicines 12, no. 8: 1898. https://doi.org/10.3390/biomedicines12081898
APA StylePyrgelis, E.-S., Paraskevas, G. P., Constantinides, V. C., Boufidou, F., Stefanis, L., & Kapaki, E. (2024). In Vivo Prevalence of Beta-Amyloid Pathology and Alzheimer’s Disease Co-Pathology in Idiopathic Normal-Pressure Hydrocephalus—Association with Neuropsychological Features. Biomedicines, 12(8), 1898. https://doi.org/10.3390/biomedicines12081898